legacy107 commited on
Commit
ae3767f
·
1 Parent(s): 406fac8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -7
README.md CHANGED
@@ -2,11 +2,11 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
5
  model-index:
6
  - name: flan-t5-large-bottleneck-adapter-cpgQA
7
  results: []
8
- datasets:
9
- - legacy107/cpgQA
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -14,7 +14,11 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # flan-t5-large-bottleneck-adapter-cpgQA
16
 
17
- This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on [legacy107/cpgQA](https://huggingface.co/datasets/legacy107/cpgQA).
 
 
 
 
18
 
19
  ## Model description
20
 
@@ -33,16 +37,45 @@ More information needed
33
  ### Training hyperparameters
34
 
35
  The following hyperparameters were used during training:
36
- - learning_rate: 3e-05
37
- - train_batch_size: 2
38
  - eval_batch_size: 8
39
  - seed: 42
40
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
  - lr_scheduler_type: linear
42
- - num_epochs: 3
 
43
 
44
  ### Training results
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
 
48
  ### Framework versions
@@ -50,4 +83,4 @@ The following hyperparameters were used during training:
50
  - Transformers 4.26.1
51
  - Pytorch 2.0.0
52
  - Datasets 2.1.0
53
- - Tokenizers 0.13.3
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
+ metrics:
6
+ - bleu
7
  model-index:
8
  - name: flan-t5-large-bottleneck-adapter-cpgQA
9
  results: []
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
14
 
15
  # flan-t5-large-bottleneck-adapter-cpgQA
16
 
17
+ This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1175
20
+ - Squad: {'exact_match': 74.03846153846153, 'f1': 92.73025873728763}
21
+ - Bleu: {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
22
 
23
  ## Model description
24
 
 
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
+ - learning_rate: 0.003
41
+ - train_batch_size: 8
42
  - eval_batch_size: 8
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.05
47
+ - num_epochs: 6
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss | Squad | Bleu |
52
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
53
+ | 0.4902 | 0.23 | 100 | 0.1695 | {'exact_match': 59.61538461538461, 'f1': 88.39664262292322} | {'bleu': 0.8611708764560243, 'precisions': [0.8791469194312796, 0.8657487091222031, 0.8552631578947368, 0.8448979591836735], 'brevity_penalty': 1.0, 'length_ratio': 1.0284321689683185, 'translation_length': 1266, 'reference_length': 1231} |
54
+ | 0.3577 | 0.45 | 200 | 0.3243 | {'exact_match': 47.11538461538461, 'f1': 75.97696037540817} | {'bleu': 0.44597697779640594, 'precisions': [0.9202211690363349, 0.9087779690189329, 0.8994360902255639, 0.8948979591836734], 'brevity_penalty': 0.49236704919459706, 'length_ratio': 0.5852981969486823, 'translation_length': 1266, 'reference_length': 2163} |
55
+ | 0.2751 | 0.68 | 300 | 0.1577 | {'exact_match': 69.23076923076923, 'f1': 89.48763228957931} | {'bleu': 0.8601252797928449, 'precisions': [0.8925750394944708, 0.878657487091222, 0.8656015037593985, 0.8561224489795919], 'brevity_penalty': 0.985104158338853, 'length_ratio': 0.9852140077821012, 'translation_length': 1266, 'reference_length': 1285} |
56
+ | 0.5794 | 0.9 | 400 | 0.4970 | {'exact_match': 32.69230769230769, 'f1': 67.89210636760458} | {'bleu': 0.5849757239612657, 'precisions': [0.7282780410742496, 0.693631669535284, 0.6635338345864662, 0.6387755102040816], 'brevity_penalty': 0.8599604506941122, 'length_ratio': 0.8689087165408373, 'translation_length': 1266, 'reference_length': 1457} |
57
+ | 0.2114 | 1.13 | 500 | 0.1245 | {'exact_match': 67.3076923076923, 'f1': 89.96309177836906} | {'bleu': 0.8997821698527838, 'precisions': [0.9360189573459715, 0.9285714285714286, 0.9238721804511278, 0.9204081632653062], 'brevity_penalty': 0.9704302027764995, 'length_ratio': 0.9708588957055214, 'translation_length': 1266, 'reference_length': 1304} |
58
+ | 0.1765 | 1.36 | 600 | 0.1214 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
59
+ | 0.1822 | 1.58 | 700 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
60
+ | 0.14 | 1.81 | 800 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
61
+ | 0.1456 | 2.04 | 900 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
62
+ | 0.1172 | 2.26 | 1000 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
63
+ | 0.1376 | 2.49 | 1100 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
64
+ | 0.1683 | 2.71 | 1200 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
65
+ | 0.0717 | 2.94 | 1300 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
66
+ | 0.1038 | 3.17 | 1400 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
67
+ | 0.0812 | 3.39 | 1500 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
68
+ | 0.1887 | 3.62 | 1600 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
69
+ | 0.0824 | 3.85 | 1700 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
70
+ | 0.1046 | 4.07 | 1800 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
71
+ | 0.0952 | 4.3 | 1900 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
72
+ | 0.1054 | 4.52 | 2000 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
73
+ | 0.1603 | 4.75 | 2100 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
74
+ | 0.1643 | 4.98 | 2200 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
75
+ | 0.1326 | 5.2 | 2300 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
76
+ | 0.1922 | 5.43 | 2400 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
77
+ | 0.1154 | 5.66 | 2500 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
78
+ | 0.07 | 5.88 | 2600 | 0.1175 | {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} | {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270} |
79
 
80
 
81
  ### Framework versions
 
83
  - Transformers 4.26.1
84
  - Pytorch 2.0.0
85
  - Datasets 2.1.0
86
+ - Tokenizers 0.13.3