Commit
·
9a23d52
1
Parent(s):
0d2ad8d
fixed config.json
Browse files
.ipynb_checkpoints/ASR_Inference-checkpoint.ipynb
DELETED
|
@@ -1,960 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 1,
|
| 6 |
-
"metadata": {
|
| 7 |
-
"ExecuteTime": {
|
| 8 |
-
"end_time": "2021-03-17T11:10:25.794375Z",
|
| 9 |
-
"start_time": "2021-03-17T11:10:24.301013Z"
|
| 10 |
-
}
|
| 11 |
-
},
|
| 12 |
-
"outputs": [
|
| 13 |
-
{
|
| 14 |
-
"name": "stderr",
|
| 15 |
-
"output_type": "stream",
|
| 16 |
-
"text": [
|
| 17 |
-
"/home/earendil/anaconda3/envs/cuda110/lib/python3.8/site-packages/torchaudio/backend/utils.py:53: UserWarning: \"sox\" backend is being deprecated. The default backend will be changed to \"sox_io\" backend in 0.8.0 and \"sox\" backend will be removed in 0.9.0. Please migrate to \"sox_io\" backend. Please refer to https://github.com/pytorch/audio/issues/903 for the detail.\n",
|
| 18 |
-
" warnings.warn(\n"
|
| 19 |
-
]
|
| 20 |
-
}
|
| 21 |
-
],
|
| 22 |
-
"source": [
|
| 23 |
-
"from transformers import Wav2Vec2ForCTC\n",
|
| 24 |
-
"from transformers import Wav2Vec2Processor\n",
|
| 25 |
-
"from datasets import load_dataset, load_metric\n",
|
| 26 |
-
"import re\n",
|
| 27 |
-
"import torchaudio\n",
|
| 28 |
-
"import librosa\n",
|
| 29 |
-
"import numpy as np\n",
|
| 30 |
-
"from datasets import load_dataset, load_metric\n",
|
| 31 |
-
"import torch"
|
| 32 |
-
]
|
| 33 |
-
},
|
| 34 |
-
{
|
| 35 |
-
"cell_type": "code",
|
| 36 |
-
"execution_count": 2,
|
| 37 |
-
"metadata": {
|
| 38 |
-
"ExecuteTime": {
|
| 39 |
-
"end_time": "2021-03-17T11:10:29.608803Z",
|
| 40 |
-
"start_time": "2021-03-17T11:10:29.599700Z"
|
| 41 |
-
}
|
| 42 |
-
},
|
| 43 |
-
"outputs": [],
|
| 44 |
-
"source": [
|
| 45 |
-
"chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\“\\%\\‘\\”\\�]'\n",
|
| 46 |
-
"\n",
|
| 47 |
-
"def remove_special_characters(batch):\n",
|
| 48 |
-
" batch[\"text\"] = re.sub(chars_to_ignore_regex, '', batch[\"sentence\"]).lower() + \" \"\n",
|
| 49 |
-
" return batch\n",
|
| 50 |
-
"\n",
|
| 51 |
-
"def speech_file_to_array_fn(batch):\n",
|
| 52 |
-
" speech_array, sampling_rate = torchaudio.load(batch[\"path\"])\n",
|
| 53 |
-
" batch[\"speech\"] = speech_array[0].numpy()\n",
|
| 54 |
-
" batch[\"sampling_rate\"] = sampling_rate\n",
|
| 55 |
-
" batch[\"target_text\"] = batch[\"text\"]\n",
|
| 56 |
-
" return batch\n",
|
| 57 |
-
"\n",
|
| 58 |
-
"def resample(batch):\n",
|
| 59 |
-
" batch[\"speech\"] = librosa.resample(np.asarray(batch[\"speech\"]), 48_000, 16_000)\n",
|
| 60 |
-
" batch[\"sampling_rate\"] = 16_000\n",
|
| 61 |
-
" return batch\n",
|
| 62 |
-
"\n",
|
| 63 |
-
"def prepare_dataset(batch):\n",
|
| 64 |
-
" # check that all files have the correct sampling rate\n",
|
| 65 |
-
" assert (\n",
|
| 66 |
-
" len(set(batch[\"sampling_rate\"])) == 1\n",
|
| 67 |
-
" ), f\"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.\"\n",
|
| 68 |
-
"\n",
|
| 69 |
-
" batch[\"input_values\"] = processor(batch[\"speech\"], sampling_rate=batch[\"sampling_rate\"][0]).input_values\n",
|
| 70 |
-
" \n",
|
| 71 |
-
" with processor.as_target_processor():\n",
|
| 72 |
-
" batch[\"labels\"] = processor(batch[\"target_text\"]).input_ids\n",
|
| 73 |
-
" return batch"
|
| 74 |
-
]
|
| 75 |
-
},
|
| 76 |
-
{
|
| 77 |
-
"cell_type": "code",
|
| 78 |
-
"execution_count": 4,
|
| 79 |
-
"metadata": {
|
| 80 |
-
"ExecuteTime": {
|
| 81 |
-
"end_time": "2021-03-17T11:11:02.120225Z",
|
| 82 |
-
"start_time": "2021-03-17T11:10:56.182488Z"
|
| 83 |
-
}
|
| 84 |
-
},
|
| 85 |
-
"outputs": [
|
| 86 |
-
{
|
| 87 |
-
"name": "stderr",
|
| 88 |
-
"output_type": "stream",
|
| 89 |
-
"text": [
|
| 90 |
-
"Special tokens have been added in the vocabulary, make sure the associated word embedding are fine-tuned or trained.\n"
|
| 91 |
-
]
|
| 92 |
-
}
|
| 93 |
-
],
|
| 94 |
-
"source": [
|
| 95 |
-
"model = Wav2Vec2ForCTC.from_pretrained(\".\").to(\"cuda\")\n",
|
| 96 |
-
"processor = Wav2Vec2Processor.from_pretrained(\".\")"
|
| 97 |
-
]
|
| 98 |
-
},
|
| 99 |
-
{
|
| 100 |
-
"cell_type": "code",
|
| 101 |
-
"execution_count": 6,
|
| 102 |
-
"metadata": {
|
| 103 |
-
"ExecuteTime": {
|
| 104 |
-
"end_time": "2021-03-17T11:12:18.847005Z",
|
| 105 |
-
"start_time": "2021-03-17T11:12:14.919077Z"
|
| 106 |
-
}
|
| 107 |
-
},
|
| 108 |
-
"outputs": [
|
| 109 |
-
{
|
| 110 |
-
"name": "stderr",
|
| 111 |
-
"output_type": "stream",
|
| 112 |
-
"text": [
|
| 113 |
-
"Using custom data configuration el-afd0a157f05ee080\n"
|
| 114 |
-
]
|
| 115 |
-
},
|
| 116 |
-
{
|
| 117 |
-
"name": "stdout",
|
| 118 |
-
"output_type": "stream",
|
| 119 |
-
"text": [
|
| 120 |
-
"Downloading and preparing dataset common_voice/el (download: 363.89 MiB, generated: 4.75 MiB, post-processed: Unknown size, total: 368.64 MiB) to /home/earendil/.cache/huggingface/datasets/common_voice/el-afd0a157f05ee080/6.1.0/0041e06ab061b91d0a23234a2221e87970a19cf3a81b20901474cffffeb7869f...\n"
|
| 121 |
-
]
|
| 122 |
-
},
|
| 123 |
-
{
|
| 124 |
-
"data": {
|
| 125 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 126 |
-
"model_id": "",
|
| 127 |
-
"version_major": 2,
|
| 128 |
-
"version_minor": 0
|
| 129 |
-
},
|
| 130 |
-
"text/plain": [
|
| 131 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 132 |
-
]
|
| 133 |
-
},
|
| 134 |
-
"metadata": {},
|
| 135 |
-
"output_type": "display_data"
|
| 136 |
-
},
|
| 137 |
-
{
|
| 138 |
-
"name": "stdout",
|
| 139 |
-
"output_type": "stream",
|
| 140 |
-
"text": [
|
| 141 |
-
"\r"
|
| 142 |
-
]
|
| 143 |
-
},
|
| 144 |
-
{
|
| 145 |
-
"data": {
|
| 146 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 147 |
-
"model_id": "",
|
| 148 |
-
"version_major": 2,
|
| 149 |
-
"version_minor": 0
|
| 150 |
-
},
|
| 151 |
-
"text/plain": [
|
| 152 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 153 |
-
]
|
| 154 |
-
},
|
| 155 |
-
"metadata": {},
|
| 156 |
-
"output_type": "display_data"
|
| 157 |
-
},
|
| 158 |
-
{
|
| 159 |
-
"name": "stdout",
|
| 160 |
-
"output_type": "stream",
|
| 161 |
-
"text": [
|
| 162 |
-
"\r"
|
| 163 |
-
]
|
| 164 |
-
},
|
| 165 |
-
{
|
| 166 |
-
"data": {
|
| 167 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 168 |
-
"model_id": "",
|
| 169 |
-
"version_major": 2,
|
| 170 |
-
"version_minor": 0
|
| 171 |
-
},
|
| 172 |
-
"text/plain": [
|
| 173 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 174 |
-
]
|
| 175 |
-
},
|
| 176 |
-
"metadata": {},
|
| 177 |
-
"output_type": "display_data"
|
| 178 |
-
},
|
| 179 |
-
{
|
| 180 |
-
"name": "stdout",
|
| 181 |
-
"output_type": "stream",
|
| 182 |
-
"text": [
|
| 183 |
-
"\r"
|
| 184 |
-
]
|
| 185 |
-
},
|
| 186 |
-
{
|
| 187 |
-
"data": {
|
| 188 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 189 |
-
"model_id": "",
|
| 190 |
-
"version_major": 2,
|
| 191 |
-
"version_minor": 0
|
| 192 |
-
},
|
| 193 |
-
"text/plain": [
|
| 194 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 195 |
-
]
|
| 196 |
-
},
|
| 197 |
-
"metadata": {},
|
| 198 |
-
"output_type": "display_data"
|
| 199 |
-
},
|
| 200 |
-
{
|
| 201 |
-
"name": "stdout",
|
| 202 |
-
"output_type": "stream",
|
| 203 |
-
"text": [
|
| 204 |
-
"\r"
|
| 205 |
-
]
|
| 206 |
-
},
|
| 207 |
-
{
|
| 208 |
-
"data": {
|
| 209 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 210 |
-
"model_id": "",
|
| 211 |
-
"version_major": 2,
|
| 212 |
-
"version_minor": 0
|
| 213 |
-
},
|
| 214 |
-
"text/plain": [
|
| 215 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 216 |
-
]
|
| 217 |
-
},
|
| 218 |
-
"metadata": {},
|
| 219 |
-
"output_type": "display_data"
|
| 220 |
-
},
|
| 221 |
-
{
|
| 222 |
-
"name": "stdout",
|
| 223 |
-
"output_type": "stream",
|
| 224 |
-
"text": [
|
| 225 |
-
"\r",
|
| 226 |
-
"Dataset common_voice downloaded and prepared to /home/earendil/.cache/huggingface/datasets/common_voice/el-afd0a157f05ee080/6.1.0/0041e06ab061b91d0a23234a2221e87970a19cf3a81b20901474cffffeb7869f. Subsequent calls will reuse this data.\n"
|
| 227 |
-
]
|
| 228 |
-
}
|
| 229 |
-
],
|
| 230 |
-
"source": [
|
| 231 |
-
"common_voice_test = load_dataset(\"common_voice\", \"el\", data_dir=\"cv-corpus-6.1-2020-12-11\", split=\"test\")"
|
| 232 |
-
]
|
| 233 |
-
},
|
| 234 |
-
{
|
| 235 |
-
"cell_type": "code",
|
| 236 |
-
"execution_count": 7,
|
| 237 |
-
"metadata": {
|
| 238 |
-
"ExecuteTime": {
|
| 239 |
-
"end_time": "2021-03-17T11:12:18.860240Z",
|
| 240 |
-
"start_time": "2021-03-17T11:12:18.857252Z"
|
| 241 |
-
}
|
| 242 |
-
},
|
| 243 |
-
"outputs": [],
|
| 244 |
-
"source": [
|
| 245 |
-
"common_voice_test = common_voice_test.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\"])"
|
| 246 |
-
]
|
| 247 |
-
},
|
| 248 |
-
{
|
| 249 |
-
"cell_type": "code",
|
| 250 |
-
"execution_count": 8,
|
| 251 |
-
"metadata": {
|
| 252 |
-
"ExecuteTime": {
|
| 253 |
-
"end_time": "2021-03-17T11:12:18.928497Z",
|
| 254 |
-
"start_time": "2021-03-17T11:12:18.869198Z"
|
| 255 |
-
}
|
| 256 |
-
},
|
| 257 |
-
"outputs": [
|
| 258 |
-
{
|
| 259 |
-
"data": {
|
| 260 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 261 |
-
"model_id": "9869698af86e44bca75c4252996ff1a3",
|
| 262 |
-
"version_major": 2,
|
| 263 |
-
"version_minor": 0
|
| 264 |
-
},
|
| 265 |
-
"text/plain": [
|
| 266 |
-
"HBox(children=(IntProgress(value=0, max=1522), HTML(value='')))"
|
| 267 |
-
]
|
| 268 |
-
},
|
| 269 |
-
"metadata": {},
|
| 270 |
-
"output_type": "display_data"
|
| 271 |
-
},
|
| 272 |
-
{
|
| 273 |
-
"name": "stdout",
|
| 274 |
-
"output_type": "stream",
|
| 275 |
-
"text": [
|
| 276 |
-
"\n"
|
| 277 |
-
]
|
| 278 |
-
}
|
| 279 |
-
],
|
| 280 |
-
"source": [
|
| 281 |
-
"common_voice_test = common_voice_test.map(remove_special_characters, remove_columns=[\"sentence\"])"
|
| 282 |
-
]
|
| 283 |
-
},
|
| 284 |
-
{
|
| 285 |
-
"cell_type": "code",
|
| 286 |
-
"execution_count": 9,
|
| 287 |
-
"metadata": {
|
| 288 |
-
"ExecuteTime": {
|
| 289 |
-
"end_time": "2021-03-17T11:12:40.824595Z",
|
| 290 |
-
"start_time": "2021-03-17T11:12:18.937930Z"
|
| 291 |
-
}
|
| 292 |
-
},
|
| 293 |
-
"outputs": [
|
| 294 |
-
{
|
| 295 |
-
"data": {
|
| 296 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 297 |
-
"model_id": "d232b2bb009543e0bb2542bce273c554",
|
| 298 |
-
"version_major": 2,
|
| 299 |
-
"version_minor": 0
|
| 300 |
-
},
|
| 301 |
-
"text/plain": [
|
| 302 |
-
"HBox(children=(IntProgress(value=0, max=1522), HTML(value='')))"
|
| 303 |
-
]
|
| 304 |
-
},
|
| 305 |
-
"metadata": {},
|
| 306 |
-
"output_type": "display_data"
|
| 307 |
-
},
|
| 308 |
-
{
|
| 309 |
-
"name": "stdout",
|
| 310 |
-
"output_type": "stream",
|
| 311 |
-
"text": [
|
| 312 |
-
"\n"
|
| 313 |
-
]
|
| 314 |
-
}
|
| 315 |
-
],
|
| 316 |
-
"source": [
|
| 317 |
-
"common_voice_test = common_voice_test.map(speech_file_to_array_fn, remove_columns=common_voice_test.column_names)"
|
| 318 |
-
]
|
| 319 |
-
},
|
| 320 |
-
{
|
| 321 |
-
"cell_type": "code",
|
| 322 |
-
"execution_count": 10,
|
| 323 |
-
"metadata": {
|
| 324 |
-
"ExecuteTime": {
|
| 325 |
-
"end_time": "2021-03-17T11:13:18.078738Z",
|
| 326 |
-
"start_time": "2021-03-17T11:12:40.834398Z"
|
| 327 |
-
}
|
| 328 |
-
},
|
| 329 |
-
"outputs": [
|
| 330 |
-
{
|
| 331 |
-
"name": "stdout",
|
| 332 |
-
"output_type": "stream",
|
| 333 |
-
"text": [
|
| 334 |
-
" "
|
| 335 |
-
]
|
| 336 |
-
},
|
| 337 |
-
{
|
| 338 |
-
"data": {
|
| 339 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 340 |
-
"model_id": "ffd787bc4ed048ae8f4977f2c539bedb",
|
| 341 |
-
"version_major": 2,
|
| 342 |
-
"version_minor": 0
|
| 343 |
-
},
|
| 344 |
-
"text/plain": [
|
| 345 |
-
"HBox(children=(IntProgress(value=0, description='#0', max=191, style=ProgressStyle(description_width='initial'…"
|
| 346 |
-
]
|
| 347 |
-
},
|
| 348 |
-
"metadata": {},
|
| 349 |
-
"output_type": "display_data"
|
| 350 |
-
},
|
| 351 |
-
{
|
| 352 |
-
"data": {
|
| 353 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 354 |
-
"model_id": "79c51995d4f84ad8812230480d14b8cd",
|
| 355 |
-
"version_major": 2,
|
| 356 |
-
"version_minor": 0
|
| 357 |
-
},
|
| 358 |
-
"text/plain": [
|
| 359 |
-
"HBox(children=(IntProgress(value=0, description='#2', max=190, style=ProgressStyle(description_width='initial'…"
|
| 360 |
-
]
|
| 361 |
-
},
|
| 362 |
-
"metadata": {},
|
| 363 |
-
"output_type": "display_data"
|
| 364 |
-
},
|
| 365 |
-
{
|
| 366 |
-
"data": {
|
| 367 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 368 |
-
"model_id": "52963d9cfd814346af070b2cc4e105cf",
|
| 369 |
-
"version_major": 2,
|
| 370 |
-
"version_minor": 0
|
| 371 |
-
},
|
| 372 |
-
"text/plain": [
|
| 373 |
-
"HBox(children=(IntProgress(value=0, description='#5', max=190, style=ProgressStyle(description_width='initial'…"
|
| 374 |
-
]
|
| 375 |
-
},
|
| 376 |
-
"metadata": {},
|
| 377 |
-
"output_type": "display_data"
|
| 378 |
-
},
|
| 379 |
-
{
|
| 380 |
-
"data": {
|
| 381 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 382 |
-
"model_id": "3b940160575143c7acfa142564e9f7d2",
|
| 383 |
-
"version_major": 2,
|
| 384 |
-
"version_minor": 0
|
| 385 |
-
},
|
| 386 |
-
"text/plain": [
|
| 387 |
-
"HBox(children=(IntProgress(value=0, description='#3', max=190, style=ProgressStyle(description_width='initial'…"
|
| 388 |
-
]
|
| 389 |
-
},
|
| 390 |
-
"metadata": {},
|
| 391 |
-
"output_type": "display_data"
|
| 392 |
-
},
|
| 393 |
-
{
|
| 394 |
-
"data": {
|
| 395 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 396 |
-
"model_id": "aa540f67ba894d7aa64e12fcdfab5ce0",
|
| 397 |
-
"version_major": 2,
|
| 398 |
-
"version_minor": 0
|
| 399 |
-
},
|
| 400 |
-
"text/plain": [
|
| 401 |
-
"HBox(children=(IntProgress(value=0, description='#1', max=191, style=ProgressStyle(description_width='initial'…"
|
| 402 |
-
]
|
| 403 |
-
},
|
| 404 |
-
"metadata": {},
|
| 405 |
-
"output_type": "display_data"
|
| 406 |
-
},
|
| 407 |
-
{
|
| 408 |
-
"data": {
|
| 409 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 410 |
-
"model_id": "4962bdefdbbc44a7a44591480d8d6406",
|
| 411 |
-
"version_major": 2,
|
| 412 |
-
"version_minor": 0
|
| 413 |
-
},
|
| 414 |
-
"text/plain": [
|
| 415 |
-
"HBox(children=(IntProgress(value=0, description='#4', max=190, style=ProgressStyle(description_width='initial'…"
|
| 416 |
-
]
|
| 417 |
-
},
|
| 418 |
-
"metadata": {},
|
| 419 |
-
"output_type": "display_data"
|
| 420 |
-
},
|
| 421 |
-
{
|
| 422 |
-
"data": {
|
| 423 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 424 |
-
"model_id": "e77f088bfe5644548fe2c4277d0c86da",
|
| 425 |
-
"version_major": 2,
|
| 426 |
-
"version_minor": 0
|
| 427 |
-
},
|
| 428 |
-
"text/plain": [
|
| 429 |
-
"HBox(children=(IntProgress(value=0, description='#7', max=190, style=ProgressStyle(description_width='initial'…"
|
| 430 |
-
]
|
| 431 |
-
},
|
| 432 |
-
"metadata": {},
|
| 433 |
-
"output_type": "display_data"
|
| 434 |
-
},
|
| 435 |
-
{
|
| 436 |
-
"data": {
|
| 437 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 438 |
-
"model_id": "5827f93e99994fe9919aac53f0fb9444",
|
| 439 |
-
"version_major": 2,
|
| 440 |
-
"version_minor": 0
|
| 441 |
-
},
|
| 442 |
-
"text/plain": [
|
| 443 |
-
"HBox(children=(IntProgress(value=0, description='#6', max=190, style=ProgressStyle(description_width='initial'…"
|
| 444 |
-
]
|
| 445 |
-
},
|
| 446 |
-
"metadata": {},
|
| 447 |
-
"output_type": "display_data"
|
| 448 |
-
},
|
| 449 |
-
{
|
| 450 |
-
"name": "stdout",
|
| 451 |
-
"output_type": "stream",
|
| 452 |
-
"text": [
|
| 453 |
-
"\n",
|
| 454 |
-
"\n",
|
| 455 |
-
"\n",
|
| 456 |
-
"\n",
|
| 457 |
-
"\n",
|
| 458 |
-
"\n",
|
| 459 |
-
"\n",
|
| 460 |
-
"\n"
|
| 461 |
-
]
|
| 462 |
-
}
|
| 463 |
-
],
|
| 464 |
-
"source": [
|
| 465 |
-
"common_voice_test = common_voice_test.map(resample, num_proc=8)"
|
| 466 |
-
]
|
| 467 |
-
},
|
| 468 |
-
{
|
| 469 |
-
"cell_type": "code",
|
| 470 |
-
"execution_count": 11,
|
| 471 |
-
"metadata": {
|
| 472 |
-
"ExecuteTime": {
|
| 473 |
-
"end_time": "2021-03-17T11:13:25.145155Z",
|
| 474 |
-
"start_time": "2021-03-17T11:13:18.091929Z"
|
| 475 |
-
}
|
| 476 |
-
},
|
| 477 |
-
"outputs": [
|
| 478 |
-
{
|
| 479 |
-
"name": "stderr",
|
| 480 |
-
"output_type": "stream",
|
| 481 |
-
"text": [
|
| 482 |
-
"/home/earendil/anaconda3/envs/cuda110/lib/python3.8/site-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
|
| 483 |
-
" return array(a, dtype, copy=False, order=order)\n"
|
| 484 |
-
]
|
| 485 |
-
},
|
| 486 |
-
{
|
| 487 |
-
"name": "stdout",
|
| 488 |
-
"output_type": "stream",
|
| 489 |
-
"text": [
|
| 490 |
-
" "
|
| 491 |
-
]
|
| 492 |
-
},
|
| 493 |
-
{
|
| 494 |
-
"data": {
|
| 495 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 496 |
-
"model_id": "ae326a173a044b1494793e2a70d76a87",
|
| 497 |
-
"version_major": 2,
|
| 498 |
-
"version_minor": 0
|
| 499 |
-
},
|
| 500 |
-
"text/plain": [
|
| 501 |
-
"HBox(children=(IntProgress(value=0, description='#0', max=24, style=ProgressStyle(description_width='initial')…"
|
| 502 |
-
]
|
| 503 |
-
},
|
| 504 |
-
"metadata": {},
|
| 505 |
-
"output_type": "display_data"
|
| 506 |
-
},
|
| 507 |
-
{
|
| 508 |
-
"data": {
|
| 509 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 510 |
-
"model_id": "21ab1ef2af5a4a4fb23c68b0c5cf32f8",
|
| 511 |
-
"version_major": 2,
|
| 512 |
-
"version_minor": 0
|
| 513 |
-
},
|
| 514 |
-
"text/plain": [
|
| 515 |
-
"HBox(children=(IntProgress(value=0, description='#1', max=24, style=ProgressStyle(description_width='initial')…"
|
| 516 |
-
]
|
| 517 |
-
},
|
| 518 |
-
"metadata": {},
|
| 519 |
-
"output_type": "display_data"
|
| 520 |
-
},
|
| 521 |
-
{
|
| 522 |
-
"data": {
|
| 523 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 524 |
-
"model_id": "d331c5f4f888477daceffe370f6cd89f",
|
| 525 |
-
"version_major": 2,
|
| 526 |
-
"version_minor": 0
|
| 527 |
-
},
|
| 528 |
-
"text/plain": [
|
| 529 |
-
"HBox(children=(IntProgress(value=0, description='#3', max=24, style=ProgressStyle(description_width='initial')…"
|
| 530 |
-
]
|
| 531 |
-
},
|
| 532 |
-
"metadata": {},
|
| 533 |
-
"output_type": "display_data"
|
| 534 |
-
},
|
| 535 |
-
{
|
| 536 |
-
"data": {
|
| 537 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 538 |
-
"model_id": "6fa790118aa340e4afb9f83e71403a13",
|
| 539 |
-
"version_major": 2,
|
| 540 |
-
"version_minor": 0
|
| 541 |
-
},
|
| 542 |
-
"text/plain": [
|
| 543 |
-
"HBox(children=(IntProgress(value=0, description='#2', max=24, style=ProgressStyle(description_width='initial')…"
|
| 544 |
-
]
|
| 545 |
-
},
|
| 546 |
-
"metadata": {},
|
| 547 |
-
"output_type": "display_data"
|
| 548 |
-
},
|
| 549 |
-
{
|
| 550 |
-
"data": {
|
| 551 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 552 |
-
"model_id": "c8092e2f59a9404596dc2bab206edf2c",
|
| 553 |
-
"version_major": 2,
|
| 554 |
-
"version_minor": 0
|
| 555 |
-
},
|
| 556 |
-
"text/plain": [
|
| 557 |
-
"HBox(children=(IntProgress(value=0, description='#5', max=24, style=ProgressStyle(description_width='initial')…"
|
| 558 |
-
]
|
| 559 |
-
},
|
| 560 |
-
"metadata": {},
|
| 561 |
-
"output_type": "display_data"
|
| 562 |
-
},
|
| 563 |
-
{
|
| 564 |
-
"data": {
|
| 565 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 566 |
-
"model_id": "20f913f0caf8401098743b9e5051fc52",
|
| 567 |
-
"version_major": 2,
|
| 568 |
-
"version_minor": 0
|
| 569 |
-
},
|
| 570 |
-
"text/plain": [
|
| 571 |
-
"HBox(children=(IntProgress(value=0, description='#4', max=24, style=ProgressStyle(description_width='initial')…"
|
| 572 |
-
]
|
| 573 |
-
},
|
| 574 |
-
"metadata": {},
|
| 575 |
-
"output_type": "display_data"
|
| 576 |
-
},
|
| 577 |
-
{
|
| 578 |
-
"data": {
|
| 579 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 580 |
-
"model_id": "7c7e15e24384494cb49a72106ce41ccd",
|
| 581 |
-
"version_major": 2,
|
| 582 |
-
"version_minor": 0
|
| 583 |
-
},
|
| 584 |
-
"text/plain": [
|
| 585 |
-
"HBox(children=(IntProgress(value=0, description='#6', max=24, style=ProgressStyle(description_width='initial')…"
|
| 586 |
-
]
|
| 587 |
-
},
|
| 588 |
-
"metadata": {},
|
| 589 |
-
"output_type": "display_data"
|
| 590 |
-
},
|
| 591 |
-
{
|
| 592 |
-
"data": {
|
| 593 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 594 |
-
"model_id": "73245add55e24ee2a6dbe0713d5073d9",
|
| 595 |
-
"version_major": 2,
|
| 596 |
-
"version_minor": 0
|
| 597 |
-
},
|
| 598 |
-
"text/plain": [
|
| 599 |
-
"HBox(children=(IntProgress(value=0, description='#7', max=24, style=ProgressStyle(description_width='initial')…"
|
| 600 |
-
]
|
| 601 |
-
},
|
| 602 |
-
"metadata": {},
|
| 603 |
-
"output_type": "display_data"
|
| 604 |
-
},
|
| 605 |
-
{
|
| 606 |
-
"name": "stdout",
|
| 607 |
-
"output_type": "stream",
|
| 608 |
-
"text": [
|
| 609 |
-
"\n",
|
| 610 |
-
"\n",
|
| 611 |
-
"\n",
|
| 612 |
-
"\n",
|
| 613 |
-
"\n",
|
| 614 |
-
"\n",
|
| 615 |
-
"\n",
|
| 616 |
-
"\n"
|
| 617 |
-
]
|
| 618 |
-
}
|
| 619 |
-
],
|
| 620 |
-
"source": [
|
| 621 |
-
"common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names, batch_size=8, num_proc=8, batched=True)"
|
| 622 |
-
]
|
| 623 |
-
},
|
| 624 |
-
{
|
| 625 |
-
"cell_type": "code",
|
| 626 |
-
"execution_count": 12,
|
| 627 |
-
"metadata": {
|
| 628 |
-
"ExecuteTime": {
|
| 629 |
-
"end_time": "2021-03-17T11:14:12.721500Z",
|
| 630 |
-
"start_time": "2021-03-17T11:14:08.198478Z"
|
| 631 |
-
}
|
| 632 |
-
},
|
| 633 |
-
"outputs": [
|
| 634 |
-
{
|
| 635 |
-
"name": "stderr",
|
| 636 |
-
"output_type": "stream",
|
| 637 |
-
"text": [
|
| 638 |
-
"Using custom data configuration el-ac779bf2c9f7c09b\n"
|
| 639 |
-
]
|
| 640 |
-
},
|
| 641 |
-
{
|
| 642 |
-
"name": "stdout",
|
| 643 |
-
"output_type": "stream",
|
| 644 |
-
"text": [
|
| 645 |
-
"Downloading and preparing dataset common_voice/el (download: 363.89 MiB, generated: 4.75 MiB, post-processed: Unknown size, total: 368.64 MiB) to /home/earendil/.cache/huggingface/datasets/common_voice/el-ac779bf2c9f7c09b/6.1.0/0041e06ab061b91d0a23234a2221e87970a19cf3a81b20901474cffffeb7869f...\n"
|
| 646 |
-
]
|
| 647 |
-
},
|
| 648 |
-
{
|
| 649 |
-
"data": {
|
| 650 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 651 |
-
"model_id": "",
|
| 652 |
-
"version_major": 2,
|
| 653 |
-
"version_minor": 0
|
| 654 |
-
},
|
| 655 |
-
"text/plain": [
|
| 656 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 657 |
-
]
|
| 658 |
-
},
|
| 659 |
-
"metadata": {},
|
| 660 |
-
"output_type": "display_data"
|
| 661 |
-
},
|
| 662 |
-
{
|
| 663 |
-
"name": "stdout",
|
| 664 |
-
"output_type": "stream",
|
| 665 |
-
"text": [
|
| 666 |
-
"\r"
|
| 667 |
-
]
|
| 668 |
-
},
|
| 669 |
-
{
|
| 670 |
-
"data": {
|
| 671 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 672 |
-
"model_id": "",
|
| 673 |
-
"version_major": 2,
|
| 674 |
-
"version_minor": 0
|
| 675 |
-
},
|
| 676 |
-
"text/plain": [
|
| 677 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 678 |
-
]
|
| 679 |
-
},
|
| 680 |
-
"metadata": {},
|
| 681 |
-
"output_type": "display_data"
|
| 682 |
-
},
|
| 683 |
-
{
|
| 684 |
-
"name": "stdout",
|
| 685 |
-
"output_type": "stream",
|
| 686 |
-
"text": [
|
| 687 |
-
"\r"
|
| 688 |
-
]
|
| 689 |
-
},
|
| 690 |
-
{
|
| 691 |
-
"data": {
|
| 692 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 693 |
-
"model_id": "",
|
| 694 |
-
"version_major": 2,
|
| 695 |
-
"version_minor": 0
|
| 696 |
-
},
|
| 697 |
-
"text/plain": [
|
| 698 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 699 |
-
]
|
| 700 |
-
},
|
| 701 |
-
"metadata": {},
|
| 702 |
-
"output_type": "display_data"
|
| 703 |
-
},
|
| 704 |
-
{
|
| 705 |
-
"name": "stdout",
|
| 706 |
-
"output_type": "stream",
|
| 707 |
-
"text": [
|
| 708 |
-
"\r"
|
| 709 |
-
]
|
| 710 |
-
},
|
| 711 |
-
{
|
| 712 |
-
"data": {
|
| 713 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 714 |
-
"model_id": "",
|
| 715 |
-
"version_major": 2,
|
| 716 |
-
"version_minor": 0
|
| 717 |
-
},
|
| 718 |
-
"text/plain": [
|
| 719 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 720 |
-
]
|
| 721 |
-
},
|
| 722 |
-
"metadata": {},
|
| 723 |
-
"output_type": "display_data"
|
| 724 |
-
},
|
| 725 |
-
{
|
| 726 |
-
"name": "stdout",
|
| 727 |
-
"output_type": "stream",
|
| 728 |
-
"text": [
|
| 729 |
-
"\r"
|
| 730 |
-
]
|
| 731 |
-
},
|
| 732 |
-
{
|
| 733 |
-
"data": {
|
| 734 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 735 |
-
"model_id": "",
|
| 736 |
-
"version_major": 2,
|
| 737 |
-
"version_minor": 0
|
| 738 |
-
},
|
| 739 |
-
"text/plain": [
|
| 740 |
-
"HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))"
|
| 741 |
-
]
|
| 742 |
-
},
|
| 743 |
-
"metadata": {},
|
| 744 |
-
"output_type": "display_data"
|
| 745 |
-
},
|
| 746 |
-
{
|
| 747 |
-
"name": "stdout",
|
| 748 |
-
"output_type": "stream",
|
| 749 |
-
"text": [
|
| 750 |
-
"\r",
|
| 751 |
-
"Dataset common_voice downloaded and prepared to /home/earendil/.cache/huggingface/datasets/common_voice/el-ac779bf2c9f7c09b/6.1.0/0041e06ab061b91d0a23234a2221e87970a19cf3a81b20901474cffffeb7869f. Subsequent calls will reuse this data.\n"
|
| 752 |
-
]
|
| 753 |
-
}
|
| 754 |
-
],
|
| 755 |
-
"source": [
|
| 756 |
-
"common_voice_test_transcription = load_dataset(\"common_voice\", \"el\", data_dir=\"./cv-corpus-6.1-2020-12-11\", split=\"test\")"
|
| 757 |
-
]
|
| 758 |
-
},
|
| 759 |
-
{
|
| 760 |
-
"cell_type": "code",
|
| 761 |
-
"execution_count": 11,
|
| 762 |
-
"metadata": {
|
| 763 |
-
"ExecuteTime": {
|
| 764 |
-
"end_time": "2021-03-14T19:33:39.856174Z",
|
| 765 |
-
"start_time": "2021-03-14T19:33:14.402825Z"
|
| 766 |
-
}
|
| 767 |
-
},
|
| 768 |
-
"outputs": [],
|
| 769 |
-
"source": [
|
| 770 |
-
"# Change this value to try inference on different CommonVoice extracts\n",
|
| 771 |
-
"example = 678\n",
|
| 772 |
-
"\n",
|
| 773 |
-
"input_dict = processor(common_voice_test[\"input_values\"][example], return_tensors=\"pt\", sampling_rate=16_000, padding=True)\n",
|
| 774 |
-
"\n",
|
| 775 |
-
"logits = model(input_dict.input_values.to(\"cuda\")).logits\n",
|
| 776 |
-
"\n",
|
| 777 |
-
"pred_ids = torch.argmax(logits, dim=-1)"
|
| 778 |
-
]
|
| 779 |
-
},
|
| 780 |
-
{
|
| 781 |
-
"cell_type": "code",
|
| 782 |
-
"execution_count": 12,
|
| 783 |
-
"metadata": {
|
| 784 |
-
"ExecuteTime": {
|
| 785 |
-
"end_time": "2021-03-14T19:33:39.887236Z",
|
| 786 |
-
"start_time": "2021-03-14T19:33:39.881958Z"
|
| 787 |
-
}
|
| 788 |
-
},
|
| 789 |
-
"outputs": [
|
| 790 |
-
{
|
| 791 |
-
"name": "stdout",
|
| 792 |
-
"output_type": "stream",
|
| 793 |
-
"text": [
|
| 794 |
-
"Prediction:\n",
|
| 795 |
-
"πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς\n",
|
| 796 |
-
"\n",
|
| 797 |
-
"Reference:\n",
|
| 798 |
-
"πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς.\n"
|
| 799 |
-
]
|
| 800 |
-
}
|
| 801 |
-
],
|
| 802 |
-
"source": [
|
| 803 |
-
"print(\"Prediction:\")\n",
|
| 804 |
-
"print(processor.decode(pred_ids[0]))\n",
|
| 805 |
-
"# πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς\n",
|
| 806 |
-
"\n",
|
| 807 |
-
"print(\"\\nReference:\")\n",
|
| 808 |
-
"print(common_voice_test_transcription[\"sentence\"][example].lower())\n",
|
| 809 |
-
"# πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς."
|
| 810 |
-
]
|
| 811 |
-
},
|
| 812 |
-
{
|
| 813 |
-
"cell_type": "code",
|
| 814 |
-
"execution_count": 13,
|
| 815 |
-
"metadata": {
|
| 816 |
-
"ExecuteTime": {
|
| 817 |
-
"end_time": "2021-03-17T11:15:35.637739Z",
|
| 818 |
-
"start_time": "2021-03-17T11:14:14.689842Z"
|
| 819 |
-
}
|
| 820 |
-
},
|
| 821 |
-
"outputs": [
|
| 822 |
-
{
|
| 823 |
-
"data": {
|
| 824 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 825 |
-
"model_id": "1f7ba9e12187401f870555d20a6a9458",
|
| 826 |
-
"version_major": 2,
|
| 827 |
-
"version_minor": 0
|
| 828 |
-
},
|
| 829 |
-
"text/plain": [
|
| 830 |
-
"HBox(children=(IntProgress(value=0, max=1522), HTML(value='')))"
|
| 831 |
-
]
|
| 832 |
-
},
|
| 833 |
-
"metadata": {},
|
| 834 |
-
"output_type": "display_data"
|
| 835 |
-
},
|
| 836 |
-
{
|
| 837 |
-
"name": "stdout",
|
| 838 |
-
"output_type": "stream",
|
| 839 |
-
"text": [
|
| 840 |
-
"\n"
|
| 841 |
-
]
|
| 842 |
-
}
|
| 843 |
-
],
|
| 844 |
-
"source": [
|
| 845 |
-
"def map_to_result(batch):\n",
|
| 846 |
-
" model.to(\"cuda\")\n",
|
| 847 |
-
" input_values = processor(\n",
|
| 848 |
-
" batch[\"input_values\"], \n",
|
| 849 |
-
" sampling_rate=16_000, \n",
|
| 850 |
-
" return_tensors=\"pt\"\n",
|
| 851 |
-
" ).input_values.to(\"cuda\")\n",
|
| 852 |
-
"\n",
|
| 853 |
-
" with torch.no_grad():\n",
|
| 854 |
-
" logits = model(input_values).logits\n",
|
| 855 |
-
"\n",
|
| 856 |
-
" pred_ids = torch.argmax(logits, dim=-1)\n",
|
| 857 |
-
" batch[\"pred_str\"] = processor.batch_decode(pred_ids)[0]\n",
|
| 858 |
-
"\n",
|
| 859 |
-
" return batch\n",
|
| 860 |
-
"\n",
|
| 861 |
-
"results = common_voice_test.map(map_to_result)\n"
|
| 862 |
-
]
|
| 863 |
-
},
|
| 864 |
-
{
|
| 865 |
-
"cell_type": "code",
|
| 866 |
-
"execution_count": 16,
|
| 867 |
-
"metadata": {
|
| 868 |
-
"ExecuteTime": {
|
| 869 |
-
"end_time": "2021-03-17T11:17:11.951524Z",
|
| 870 |
-
"start_time": "2021-03-17T11:17:08.856552Z"
|
| 871 |
-
}
|
| 872 |
-
},
|
| 873 |
-
"outputs": [
|
| 874 |
-
{
|
| 875 |
-
"name": "stdout",
|
| 876 |
-
"output_type": "stream",
|
| 877 |
-
"text": [
|
| 878 |
-
"Test WER: 0.396\n"
|
| 879 |
-
]
|
| 880 |
-
}
|
| 881 |
-
],
|
| 882 |
-
"source": [
|
| 883 |
-
"def compute_metrics(pred):\n",
|
| 884 |
-
" pred_logits = pred.predictions\n",
|
| 885 |
-
" pred_ids = np.argmax(pred_logits, axis=-1)\n",
|
| 886 |
-
"\n",
|
| 887 |
-
" pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
|
| 888 |
-
"\n",
|
| 889 |
-
" pred_str = processor.batch_decode(pred_ids)\n",
|
| 890 |
-
" # we do not want to group tokens when computing the metrics\n",
|
| 891 |
-
" label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
|
| 892 |
-
"\n",
|
| 893 |
-
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
|
| 894 |
-
"\n",
|
| 895 |
-
" return {\"wer\": wer}\n",
|
| 896 |
-
"\n",
|
| 897 |
-
"wer_metric = load_metric(\"wer\")\n",
|
| 898 |
-
"\n",
|
| 899 |
-
"print(\"Test WER: {:.3f}\".format(wer_metric.compute(predictions=results[\"pred_str\"], references= [item.lower() for item in common_voice_test_transcription['sentence']])))"
|
| 900 |
-
]
|
| 901 |
-
},
|
| 902 |
-
{
|
| 903 |
-
"cell_type": "code",
|
| 904 |
-
"execution_count": null,
|
| 905 |
-
"metadata": {},
|
| 906 |
-
"outputs": [],
|
| 907 |
-
"source": []
|
| 908 |
-
}
|
| 909 |
-
],
|
| 910 |
-
"metadata": {
|
| 911 |
-
"kernelspec": {
|
| 912 |
-
"display_name": "cuda110",
|
| 913 |
-
"language": "python",
|
| 914 |
-
"name": "cuda110"
|
| 915 |
-
},
|
| 916 |
-
"language_info": {
|
| 917 |
-
"codemirror_mode": {
|
| 918 |
-
"name": "ipython",
|
| 919 |
-
"version": 3
|
| 920 |
-
},
|
| 921 |
-
"file_extension": ".py",
|
| 922 |
-
"mimetype": "text/x-python",
|
| 923 |
-
"name": "python",
|
| 924 |
-
"nbconvert_exporter": "python",
|
| 925 |
-
"pygments_lexer": "ipython3",
|
| 926 |
-
"version": "3.8.5"
|
| 927 |
-
},
|
| 928 |
-
"varInspector": {
|
| 929 |
-
"cols": {
|
| 930 |
-
"lenName": 16,
|
| 931 |
-
"lenType": 16,
|
| 932 |
-
"lenVar": 40
|
| 933 |
-
},
|
| 934 |
-
"kernels_config": {
|
| 935 |
-
"python": {
|
| 936 |
-
"delete_cmd_postfix": "",
|
| 937 |
-
"delete_cmd_prefix": "del ",
|
| 938 |
-
"library": "var_list.py",
|
| 939 |
-
"varRefreshCmd": "print(var_dic_list())"
|
| 940 |
-
},
|
| 941 |
-
"r": {
|
| 942 |
-
"delete_cmd_postfix": ") ",
|
| 943 |
-
"delete_cmd_prefix": "rm(",
|
| 944 |
-
"library": "var_list.r",
|
| 945 |
-
"varRefreshCmd": "cat(var_dic_list()) "
|
| 946 |
-
}
|
| 947 |
-
},
|
| 948 |
-
"types_to_exclude": [
|
| 949 |
-
"module",
|
| 950 |
-
"function",
|
| 951 |
-
"builtin_function_or_method",
|
| 952 |
-
"instance",
|
| 953 |
-
"_Feature"
|
| 954 |
-
],
|
| 955 |
-
"window_display": false
|
| 956 |
-
}
|
| 957 |
-
},
|
| 958 |
-
"nbformat": 4,
|
| 959 |
-
"nbformat_minor": 4
|
| 960 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/Fine_Tune_XLSR_Wav2Vec2_on_Greek_ASR_with_🤗_Transformers-checkpoint.ipynb
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
README.md
CHANGED
|
@@ -22,6 +22,9 @@ model-index:
|
|
| 22 |
- name: Test WER
|
| 23 |
type: wer
|
| 24 |
value: 10.497628
|
|
|
|
|
|
|
|
|
|
| 25 |
---
|
| 26 |
|
| 27 |
# Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model
|
|
@@ -204,6 +207,7 @@ Instructions and code to replicate the process are provided in the Fine_Tune_XLS
|
|
| 204 |
| ----------- | ----------- |
|
| 205 |
| Training Loss | 0.0545 |
|
| 206 |
| Validation Loss | 0.1661 |
|
|
|
|
| 207 |
| WER on CommonVoice Test (%) *| 10.4976 |
|
| 208 |
* Reference transcripts were lower-cased and striped of punctuation and special characters.
|
| 209 |
|
|
|
|
| 22 |
- name: Test WER
|
| 23 |
type: wer
|
| 24 |
value: 10.497628
|
| 25 |
+
- name: Test CER
|
| 26 |
+
type: cer
|
| 27 |
+
value: 2.875260
|
| 28 |
---
|
| 29 |
|
| 30 |
# Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model
|
|
|
|
| 207 |
| ----------- | ----------- |
|
| 208 |
| Training Loss | 0.0545 |
|
| 209 |
| Validation Loss | 0.1661 |
|
| 210 |
+
| CER on CommonVoice Test (%) *| 2.8753 |
|
| 211 |
| WER on CommonVoice Test (%) *| 10.4976 |
|
| 212 |
* Reference transcripts were lower-cased and striped of punctuation and special characters.
|
| 213 |
|
config.json
CHANGED
|
@@ -36,7 +36,7 @@
|
|
| 36 |
2
|
| 37 |
],
|
| 38 |
"ctc_loss_reduction": "mean",
|
| 39 |
-
"ctc_zero_infinity":
|
| 40 |
"do_stable_layer_norm": true,
|
| 41 |
"eos_token_id": 2,
|
| 42 |
"feat_extract_activation": "gelu",
|
|
@@ -70,7 +70,7 @@
|
|
| 70 |
"num_conv_pos_embeddings": 128,
|
| 71 |
"num_feat_extract_layers": 7,
|
| 72 |
"num_hidden_layers": 24,
|
| 73 |
-
"pad_token_id":
|
| 74 |
"transformers_version": "4.4.0.dev0",
|
| 75 |
-
"vocab_size":
|
| 76 |
}
|
|
|
|
| 36 |
2
|
| 37 |
],
|
| 38 |
"ctc_loss_reduction": "mean",
|
| 39 |
+
"ctc_zero_infinity": true,
|
| 40 |
"do_stable_layer_norm": true,
|
| 41 |
"eos_token_id": 2,
|
| 42 |
"feat_extract_activation": "gelu",
|
|
|
|
| 70 |
"num_conv_pos_embeddings": 128,
|
| 71 |
"num_feat_extract_layers": 7,
|
| 72 |
"num_hidden_layers": 24,
|
| 73 |
+
"pad_token_id": 54,
|
| 74 |
"transformers_version": "4.4.0.dev0",
|
| 75 |
+
"vocab_size": 55
|
| 76 |
}
|