| # Author: Lart Pang (https://github.com/lartpang) | |
| _base_ = ["icod_train.py"] | |
| has_test = False | |
| __BATCHSIZE = 8 | |
| __NUM_EPOCHS = 150 | |
| __NUM_TR_SAMPLES = 3040 | |
| __ITER_PER_EPOCH = __NUM_TR_SAMPLES // __BATCHSIZE | |
| __NUM_ITERS = __NUM_EPOCHS * __ITER_PER_EPOCH | |
| train = dict( | |
| batch_size=__BATCHSIZE, | |
| use_amp=True, | |
| num_epochs=__NUM_EPOCHS, | |
| lr=0.0001, | |
| optimizer=dict( | |
| mode="adam", | |
| set_to_none=False, | |
| group_mode="finetune", | |
| cfg=dict( | |
| weight_decay=0, | |
| diff_factor=0.1, | |
| ), | |
| ), | |
| sche_usebatch=True, | |
| scheduler=dict( | |
| warmup=dict( | |
| num_iters=0, | |
| initial_coef=0.01, | |
| mode="linear", | |
| ), | |
| mode="step", | |
| cfg=dict( | |
| milestones=int(__NUM_ITERS * 2 / 3), | |
| gamma=0.1, | |
| ), | |
| ), | |
| bn=dict( | |
| freeze_status=True, | |
| freeze_affine=True, | |
| freeze_encoder=False, | |
| ), | |
| data=dict( | |
| shape=dict(h=384, w=384), | |
| names=["cod10k_tr"], | |
| ), | |
| ) | |
| test = dict( | |
| data=dict( | |
| shape=dict(h=384, w=384), | |
| names=[], | |
| ), | |
| ) | |