|
|
"""utils.py - Helper functions for building the model and for loading model parameters. |
|
|
These helper functions are built to mirror those in the official TensorFlow implementation. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
|
import math |
|
|
import collections |
|
|
from functools import partial |
|
|
import torch |
|
|
from torch import nn |
|
|
from torch.nn import functional as F |
|
|
from torch.utils import model_zoo |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GlobalParams = collections.namedtuple('GlobalParams', [ |
|
|
'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate', |
|
|
'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon', |
|
|
'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top']) |
|
|
|
|
|
|
|
|
BlockArgs = collections.namedtuple('BlockArgs', [ |
|
|
'num_repeat', 'kernel_size', 'stride', 'expand_ratio', |
|
|
'input_filters', 'output_filters', 'se_ratio', 'id_skip']) |
|
|
|
|
|
|
|
|
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields) |
|
|
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields) |
|
|
|
|
|
|
|
|
if hasattr(nn, 'SiLU'): |
|
|
Swish = nn.SiLU |
|
|
else: |
|
|
|
|
|
class Swish(nn.Module): |
|
|
def forward(self, x): |
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
|
|
|
|
|
|
class SwishImplementation(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(ctx, i): |
|
|
result = i * torch.sigmoid(i) |
|
|
ctx.save_for_backward(i) |
|
|
return result |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, grad_output): |
|
|
i = ctx.saved_tensors[0] |
|
|
sigmoid_i = torch.sigmoid(i) |
|
|
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) |
|
|
|
|
|
|
|
|
class MemoryEfficientSwish(nn.Module): |
|
|
def forward(self, x): |
|
|
return SwishImplementation.apply(x) |
|
|
|
|
|
|
|
|
def round_filters(filters, global_params): |
|
|
"""Calculate and round number of filters based on width multiplier. |
|
|
Use width_coefficient, depth_divisor and min_depth of global_params. |
|
|
|
|
|
Args: |
|
|
filters (int): Filters number to be calculated. |
|
|
global_params (namedtuple): Global params of the model. |
|
|
|
|
|
Returns: |
|
|
new_filters: New filters number after calculating. |
|
|
""" |
|
|
multiplier = global_params.width_coefficient |
|
|
if not multiplier: |
|
|
return filters |
|
|
|
|
|
|
|
|
|
|
|
divisor = global_params.depth_divisor |
|
|
min_depth = global_params.min_depth |
|
|
filters *= multiplier |
|
|
min_depth = min_depth or divisor |
|
|
|
|
|
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) |
|
|
if new_filters < 0.9 * filters: |
|
|
new_filters += divisor |
|
|
return int(new_filters) |
|
|
|
|
|
|
|
|
def round_repeats(repeats, global_params): |
|
|
"""Calculate module's repeat number of a block based on depth multiplier. |
|
|
Use depth_coefficient of global_params. |
|
|
|
|
|
Args: |
|
|
repeats (int): num_repeat to be calculated. |
|
|
global_params (namedtuple): Global params of the model. |
|
|
|
|
|
Returns: |
|
|
new repeat: New repeat number after calculating. |
|
|
""" |
|
|
multiplier = global_params.depth_coefficient |
|
|
if not multiplier: |
|
|
return repeats |
|
|
|
|
|
return int(math.ceil(multiplier * repeats)) |
|
|
|
|
|
|
|
|
def drop_connect(inputs, p, training): |
|
|
"""Drop connect. |
|
|
|
|
|
Args: |
|
|
input (tensor: BCWH): Input of this structure. |
|
|
p (float: 0.0~1.0): Probability of drop connection. |
|
|
training (bool): The running mode. |
|
|
|
|
|
Returns: |
|
|
output: Output after drop connection. |
|
|
""" |
|
|
assert 0 <= p <= 1, 'p must be in range of [0,1]' |
|
|
|
|
|
if not training: |
|
|
return inputs |
|
|
|
|
|
batch_size = inputs.shape[0] |
|
|
keep_prob = 1 - p |
|
|
|
|
|
|
|
|
random_tensor = keep_prob |
|
|
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device) |
|
|
binary_tensor = torch.floor(random_tensor) |
|
|
|
|
|
output = inputs / keep_prob * binary_tensor |
|
|
return output |
|
|
|
|
|
|
|
|
def get_width_and_height_from_size(x): |
|
|
"""Obtain height and width from x. |
|
|
|
|
|
Args: |
|
|
x (int, tuple or list): Data size. |
|
|
|
|
|
Returns: |
|
|
size: A tuple or list (H,W). |
|
|
""" |
|
|
if isinstance(x, int): |
|
|
return x, x |
|
|
if isinstance(x, list) or isinstance(x, tuple): |
|
|
return x |
|
|
else: |
|
|
raise TypeError() |
|
|
|
|
|
|
|
|
def calculate_output_image_size(input_image_size, stride): |
|
|
"""Calculates the output image size when using Conv2dSamePadding with a stride. |
|
|
Necessary for static padding. Thanks to mannatsingh for pointing this out. |
|
|
|
|
|
Args: |
|
|
input_image_size (int, tuple or list): Size of input image. |
|
|
stride (int, tuple or list): Conv2d operation's stride. |
|
|
|
|
|
Returns: |
|
|
output_image_size: A list [H,W]. |
|
|
""" |
|
|
if input_image_size is None: |
|
|
return None |
|
|
image_height, image_width = get_width_and_height_from_size(input_image_size) |
|
|
stride = stride if isinstance(stride, int) else stride[0] |
|
|
image_height = int(math.ceil(image_height / stride)) |
|
|
image_width = int(math.ceil(image_width / stride)) |
|
|
return [image_height, image_width] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_same_padding_conv2d(image_size=None): |
|
|
"""Chooses static padding if you have specified an image size, and dynamic padding otherwise. |
|
|
Static padding is necessary for ONNX exporting of models. |
|
|
|
|
|
Args: |
|
|
image_size (int or tuple): Size of the image. |
|
|
|
|
|
Returns: |
|
|
Conv2dDynamicSamePadding or Conv2dStaticSamePadding. |
|
|
""" |
|
|
if image_size is None: |
|
|
return Conv2dDynamicSamePadding |
|
|
else: |
|
|
return partial(Conv2dStaticSamePadding, image_size=image_size) |
|
|
|
|
|
|
|
|
class Conv2dDynamicSamePadding(nn.Conv2d): |
|
|
"""2D Convolutions like TensorFlow, for a dynamic image size. |
|
|
The padding is operated in forward function by calculating dynamically. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): |
|
|
super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) |
|
|
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 |
|
|
|
|
|
def forward(self, x): |
|
|
ih, iw = x.size()[-2:] |
|
|
kh, kw = self.weight.size()[-2:] |
|
|
sh, sw = self.stride |
|
|
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) |
|
|
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) |
|
|
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) |
|
|
if pad_h > 0 or pad_w > 0: |
|
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) |
|
|
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) |
|
|
|
|
|
|
|
|
class Conv2dStaticSamePadding(nn.Conv2d): |
|
|
"""2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size. |
|
|
The padding mudule is calculated in construction function, then used in forward. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs): |
|
|
super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs) |
|
|
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 |
|
|
|
|
|
|
|
|
assert image_size is not None |
|
|
ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size |
|
|
kh, kw = self.weight.size()[-2:] |
|
|
sh, sw = self.stride |
|
|
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) |
|
|
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) |
|
|
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) |
|
|
if pad_h > 0 or pad_w > 0: |
|
|
self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, |
|
|
pad_h // 2, pad_h - pad_h // 2)) |
|
|
else: |
|
|
self.static_padding = nn.Identity() |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.static_padding(x) |
|
|
x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) |
|
|
return x |
|
|
|
|
|
|
|
|
def get_same_padding_maxPool2d(image_size=None): |
|
|
"""Chooses static padding if you have specified an image size, and dynamic padding otherwise. |
|
|
Static padding is necessary for ONNX exporting of models. |
|
|
|
|
|
Args: |
|
|
image_size (int or tuple): Size of the image. |
|
|
|
|
|
Returns: |
|
|
MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding. |
|
|
""" |
|
|
if image_size is None: |
|
|
return MaxPool2dDynamicSamePadding |
|
|
else: |
|
|
return partial(MaxPool2dStaticSamePadding, image_size=image_size) |
|
|
|
|
|
|
|
|
class MaxPool2dDynamicSamePadding(nn.MaxPool2d): |
|
|
"""2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size. |
|
|
The padding is operated in forward function by calculating dynamically. |
|
|
""" |
|
|
|
|
|
def __init__(self, kernel_size, stride, padding=0, dilation=1, return_indices=False, ceil_mode=False): |
|
|
super().__init__(kernel_size, stride, padding, dilation, return_indices, ceil_mode) |
|
|
self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride |
|
|
self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size |
|
|
self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation |
|
|
|
|
|
def forward(self, x): |
|
|
ih, iw = x.size()[-2:] |
|
|
kh, kw = self.kernel_size |
|
|
sh, sw = self.stride |
|
|
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) |
|
|
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) |
|
|
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) |
|
|
if pad_h > 0 or pad_w > 0: |
|
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) |
|
|
return F.max_pool2d(x, self.kernel_size, self.stride, self.padding, |
|
|
self.dilation, self.ceil_mode, self.return_indices) |
|
|
|
|
|
|
|
|
class MaxPool2dStaticSamePadding(nn.MaxPool2d): |
|
|
"""2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size. |
|
|
The padding mudule is calculated in construction function, then used in forward. |
|
|
""" |
|
|
|
|
|
def __init__(self, kernel_size, stride, image_size=None, **kwargs): |
|
|
super().__init__(kernel_size, stride, **kwargs) |
|
|
self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride |
|
|
self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size |
|
|
self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation |
|
|
|
|
|
|
|
|
assert image_size is not None |
|
|
ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size |
|
|
kh, kw = self.kernel_size |
|
|
sh, sw = self.stride |
|
|
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) |
|
|
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) |
|
|
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) |
|
|
if pad_h > 0 or pad_w > 0: |
|
|
self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)) |
|
|
else: |
|
|
self.static_padding = nn.Identity() |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.static_padding(x) |
|
|
x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding, |
|
|
self.dilation, self.ceil_mode, self.return_indices) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BlockDecoder(object): |
|
|
"""Block Decoder for readability, |
|
|
straight from the official TensorFlow repository. |
|
|
""" |
|
|
|
|
|
@staticmethod |
|
|
def _decode_block_string(block_string): |
|
|
"""Get a block through a string notation of arguments. |
|
|
|
|
|
Args: |
|
|
block_string (str): A string notation of arguments. |
|
|
Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'. |
|
|
|
|
|
Returns: |
|
|
BlockArgs: The namedtuple defined at the top of this file. |
|
|
""" |
|
|
assert isinstance(block_string, str) |
|
|
|
|
|
ops = block_string.split('_') |
|
|
options = {} |
|
|
for op in ops: |
|
|
splits = re.split(r'(\d.*)', op) |
|
|
if len(splits) >= 2: |
|
|
key, value = splits[:2] |
|
|
options[key] = value |
|
|
|
|
|
|
|
|
assert (('s' in options and len(options['s']) == 1) or |
|
|
(len(options['s']) == 2 and options['s'][0] == options['s'][1])) |
|
|
|
|
|
return BlockArgs( |
|
|
num_repeat=int(options['r']), |
|
|
kernel_size=int(options['k']), |
|
|
stride=[int(options['s'][0])], |
|
|
expand_ratio=int(options['e']), |
|
|
input_filters=int(options['i']), |
|
|
output_filters=int(options['o']), |
|
|
se_ratio=float(options['se']) if 'se' in options else None, |
|
|
id_skip=('noskip' not in block_string)) |
|
|
|
|
|
@staticmethod |
|
|
def _encode_block_string(block): |
|
|
"""Encode a block to a string. |
|
|
|
|
|
Args: |
|
|
block (namedtuple): A BlockArgs type argument. |
|
|
|
|
|
Returns: |
|
|
block_string: A String form of BlockArgs. |
|
|
""" |
|
|
args = [ |
|
|
'r%d' % block.num_repeat, |
|
|
'k%d' % block.kernel_size, |
|
|
's%d%d' % (block.strides[0], block.strides[1]), |
|
|
'e%s' % block.expand_ratio, |
|
|
'i%d' % block.input_filters, |
|
|
'o%d' % block.output_filters |
|
|
] |
|
|
if 0 < block.se_ratio <= 1: |
|
|
args.append('se%s' % block.se_ratio) |
|
|
if block.id_skip is False: |
|
|
args.append('noskip') |
|
|
return '_'.join(args) |
|
|
|
|
|
@staticmethod |
|
|
def decode(string_list): |
|
|
"""Decode a list of string notations to specify blocks inside the network. |
|
|
|
|
|
Args: |
|
|
string_list (list[str]): A list of strings, each string is a notation of block. |
|
|
|
|
|
Returns: |
|
|
blocks_args: A list of BlockArgs namedtuples of block args. |
|
|
""" |
|
|
assert isinstance(string_list, list) |
|
|
blocks_args = [] |
|
|
for block_string in string_list: |
|
|
blocks_args.append(BlockDecoder._decode_block_string(block_string)) |
|
|
return blocks_args |
|
|
|
|
|
@staticmethod |
|
|
def encode(blocks_args): |
|
|
"""Encode a list of BlockArgs to a list of strings. |
|
|
|
|
|
Args: |
|
|
blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args. |
|
|
|
|
|
Returns: |
|
|
block_strings: A list of strings, each string is a notation of block. |
|
|
""" |
|
|
block_strings = [] |
|
|
for block in blocks_args: |
|
|
block_strings.append(BlockDecoder._encode_block_string(block)) |
|
|
return block_strings |
|
|
|
|
|
|
|
|
def efficientnet_params(model_name): |
|
|
"""Map EfficientNet model name to parameter coefficients. |
|
|
|
|
|
Args: |
|
|
model_name (str): Model name to be queried. |
|
|
|
|
|
Returns: |
|
|
params_dict[model_name]: A (width,depth,res,dropout) tuple. |
|
|
""" |
|
|
params_dict = { |
|
|
|
|
|
'efficientnet-b0': (1.0, 1.0, 224, 0.2), |
|
|
'efficientnet-b1': (1.0, 1.1, 240, 0.2), |
|
|
'efficientnet-b2': (1.1, 1.2, 260, 0.3), |
|
|
'efficientnet-b3': (1.2, 1.4, 300, 0.3), |
|
|
'efficientnet-b4': (1.4, 1.8, 380, 0.4), |
|
|
'efficientnet-b5': (1.6, 2.2, 456, 0.4), |
|
|
'efficientnet-b6': (1.8, 2.6, 528, 0.5), |
|
|
'efficientnet-b7': (2.0, 3.1, 600, 0.5), |
|
|
'efficientnet-b8': (2.2, 3.6, 672, 0.5), |
|
|
'efficientnet-l2': (4.3, 5.3, 800, 0.5), |
|
|
} |
|
|
return params_dict[model_name] |
|
|
|
|
|
|
|
|
def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None, |
|
|
dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True): |
|
|
"""Create BlockArgs and GlobalParams for efficientnet model. |
|
|
|
|
|
Args: |
|
|
width_coefficient (float) |
|
|
depth_coefficient (float) |
|
|
image_size (int) |
|
|
dropout_rate (float) |
|
|
drop_connect_rate (float) |
|
|
num_classes (int) |
|
|
|
|
|
Meaning as the name suggests. |
|
|
|
|
|
Returns: |
|
|
blocks_args, global_params. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
blocks_args = [ |
|
|
'r1_k3_s11_e1_i32_o16_se0.25', |
|
|
'r2_k3_s22_e6_i16_o24_se0.25', |
|
|
'r2_k5_s22_e6_i24_o40_se0.25', |
|
|
'r3_k3_s22_e6_i40_o80_se0.25', |
|
|
'r3_k5_s11_e6_i80_o112_se0.25', |
|
|
'r4_k5_s22_e6_i112_o192_se0.25', |
|
|
'r1_k3_s11_e6_i192_o320_se0.25', |
|
|
] |
|
|
blocks_args = BlockDecoder.decode(blocks_args) |
|
|
|
|
|
global_params = GlobalParams( |
|
|
width_coefficient=width_coefficient, |
|
|
depth_coefficient=depth_coefficient, |
|
|
image_size=image_size, |
|
|
dropout_rate=dropout_rate, |
|
|
|
|
|
num_classes=num_classes, |
|
|
batch_norm_momentum=0.99, |
|
|
batch_norm_epsilon=1e-3, |
|
|
drop_connect_rate=drop_connect_rate, |
|
|
depth_divisor=8, |
|
|
min_depth=None, |
|
|
include_top=include_top, |
|
|
) |
|
|
|
|
|
return blocks_args, global_params |
|
|
|
|
|
|
|
|
def get_model_params(model_name, override_params): |
|
|
"""Get the block args and global params for a given model name. |
|
|
|
|
|
Args: |
|
|
model_name (str): Model's name. |
|
|
override_params (dict): A dict to modify global_params. |
|
|
|
|
|
Returns: |
|
|
blocks_args, global_params |
|
|
""" |
|
|
if model_name.startswith('efficientnet'): |
|
|
w, d, s, p = efficientnet_params(model_name) |
|
|
|
|
|
blocks_args, global_params = efficientnet( |
|
|
width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s) |
|
|
else: |
|
|
raise NotImplementedError('model name is not pre-defined: {}'.format(model_name)) |
|
|
if override_params: |
|
|
|
|
|
global_params = global_params._replace(**override_params) |
|
|
return blocks_args, global_params |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
url_map = { |
|
|
'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth', |
|
|
'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth', |
|
|
'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth', |
|
|
'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth', |
|
|
'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth', |
|
|
'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth', |
|
|
'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth', |
|
|
'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth', |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
url_map_advprop = { |
|
|
'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth', |
|
|
'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth', |
|
|
'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth', |
|
|
'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth', |
|
|
'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth', |
|
|
'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth', |
|
|
'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth', |
|
|
'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth', |
|
|
'efficientnet-b8': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth', |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_pretrained_weights(model, model_name, weights_path=None, load_fc=True, advprop=False, verbose=True): |
|
|
"""Loads pretrained weights from weights path or download using url. |
|
|
|
|
|
Args: |
|
|
model (Module): The whole model of efficientnet. |
|
|
model_name (str): Model name of efficientnet. |
|
|
weights_path (None or str): |
|
|
str: path to pretrained weights file on the local disk. |
|
|
None: use pretrained weights downloaded from the Internet. |
|
|
load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model. |
|
|
advprop (bool): Whether to load pretrained weights |
|
|
trained with advprop (valid when weights_path is None). |
|
|
""" |
|
|
if isinstance(weights_path, str): |
|
|
state_dict = torch.load(weights_path) |
|
|
else: |
|
|
|
|
|
url_map_ = url_map_advprop if advprop else url_map |
|
|
state_dict = model_zoo.load_url(url_map_[model_name]) |
|
|
|
|
|
if load_fc: |
|
|
ret = model.load_state_dict(state_dict, strict=False) |
|
|
assert not ret.missing_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys) |
|
|
else: |
|
|
state_dict.pop('_fc.weight') |
|
|
state_dict.pop('_fc.bias') |
|
|
ret = model.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
|
|
|
assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys) |
|
|
|
|
|
if verbose: |
|
|
print('Loaded pretrained weights for {}'.format(model_name)) |
|
|
|