# Author: Lart Pang (https://github.com/lartpang) has_test = True deterministic = True use_custom_worker_init = True log_interval = 20 base_seed = 112358 __BATCHSIZE = 8 __NUM_EPOCHS = 150 __NUM_TR_SAMPLES = 3040 + 1000 __ITER_PER_EPOCH = __NUM_TR_SAMPLES // __BATCHSIZE __NUM_ITERS = __NUM_EPOCHS * __ITER_PER_EPOCH train = dict( batch_size=__BATCHSIZE, num_workers=2, use_amp=True, num_epochs=__NUM_EPOCHS, epoch_based=True, num_iters=None, lr=0.0001, grad_acc_step=1, optimizer=dict( mode="adam", set_to_none=False, group_mode="finetune", cfg=dict( weight_decay=0, diff_factor=0.1, ), ), sche_usebatch=True, scheduler=dict( warmup=dict( num_iters=0, initial_coef=0.01, mode="linear", ), mode="step", cfg=dict( milestones=int(__NUM_ITERS * 2 / 3), gamma=0.1, ), ), bn=dict( freeze_status=True, freeze_affine=True, freeze_encoder=False, ), data=dict( shape=dict(h=384, w=384), names=["cod10k_tr", "camo_tr"], ), ) test = dict( batch_size=__BATCHSIZE, num_workers=2, clip_range=None, data=dict( shape=dict(h=384, w=384), names=["chameleon", "camo_te", "cod10k_te", "nc4k"], ), )