--- library_name: transformers license: mit base_model: xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-roberta-es-2025-II results: [] --- # sentiment-roberta-es-2025-II This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the Tweets dataset. It achieves the following results on the evaluation set: - Loss: 0.8121 - Accuracy: 0.8826 - Precision: 0.8829 - Recall: 0.8826 - F1: 0.8820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6043 | 1.0 | 656 | 0.6682 | 0.8826 | 0.8824 | 0.8826 | 0.8825 | | 0.5065 | 2.0 | 1312 | 0.6298 | 0.8720 | 0.8721 | 0.8720 | 0.8720 | | 0.4613 | 3.0 | 1968 | 0.6470 | 0.8826 | 0.8889 | 0.8826 | 0.8832 | | 0.2488 | 4.0 | 2624 | 0.7832 | 0.8765 | 0.8811 | 0.8765 | 0.8771 | | 0.149 | 5.0 | 3280 | 0.8121 | 0.8826 | 0.8829 | 0.8826 | 0.8820 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1