|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class OneVisionEncoderConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`OneVisionEncoderModel`]. It is used to instantiate a |
|
|
OneVision Encoder model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
|
with the defaults will yield a similar configuration to that of the OneVision Encoder architecture. |
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
|
hidden_size (`int`, *optional*, defaults to 1024): |
|
|
Dimensionality of the encoder layers and the pooler layer. |
|
|
intermediate_size (`int`, *optional*, defaults to 4096): |
|
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
|
Number of hidden layers in the Transformer encoder. |
|
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
|
num_channels (`int`, *optional*, defaults to 3): |
|
|
The number of input channels. |
|
|
image_size (`int`, *optional*, defaults to 224): |
|
|
The size (resolution) of each image. |
|
|
patch_size (`int`, *optional*, defaults to 16): |
|
|
The size (resolution) of each patch. |
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
|
The non-linear activation function (function or string) in the encoder and pooler. |
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-6): |
|
|
The epsilon used by the layer normalization layers. |
|
|
layer_norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
|
The type of layer normalization to use. Supported values: `"layer_norm"`, `"rms_norm"`. |
|
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
|
The dropout ratio for the attention probabilities. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
|
The base period of the RoPE embeddings. |
|
|
use_head (`bool`, *optional*, defaults to `True`): |
|
|
Whether to use the pooling head. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from configuration_onevision_encoder import OneVisionEncoderConfig |
|
|
>>> from modeling_onevision_encoder import OneVisionEncoderModel |
|
|
|
|
|
>>> # Initializing a OneVisionEncoder configuration |
|
|
>>> configuration = OneVisionEncoderConfig() |
|
|
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
|
>>> model = OneVisionEncoderModel(configuration) |
|
|
|
|
|
>>> # Accessing the model configuration |
|
|
>>> configuration = model.config |
|
|
``` |
|
|
""" |
|
|
|
|
|
model_type = "onevision_encoder" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
hidden_size=1024, |
|
|
intermediate_size=4096, |
|
|
num_hidden_layers=24, |
|
|
num_attention_heads=16, |
|
|
num_channels=3, |
|
|
image_size=448, |
|
|
patch_size=16, |
|
|
hidden_act="gelu", |
|
|
layer_norm_eps=1e-6, |
|
|
layer_norm_type="layer_norm", |
|
|
attention_dropout=0.0, |
|
|
initializer_range=0.02, |
|
|
rope_theta=10000.0, |
|
|
rope_temporal_size=64, |
|
|
use_head=True, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.num_channels = num_channels |
|
|
self.image_size = image_size |
|
|
self.patch_size = patch_size |
|
|
self.hidden_act = hidden_act |
|
|
self.layer_norm_eps = layer_norm_eps |
|
|
self.layer_norm_type = layer_norm_type |
|
|
self.attention_dropout = attention_dropout |
|
|
self.initializer_range = initializer_range |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_temporal_size = rope_temporal_size |
|
|
self.use_head = use_head |
|
|
|