Upload folder using huggingface_hub
Browse files- README.md +91 -0
- config.json +27 -0
- configuration_onevision_encoder.py +99 -0
- model.safetensors +3 -0
- modeling_onevision_encoder.py +620 -0
- preprocessor_config.json +27 -0
README.md
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
### ⚡ Quick Start
|
| 7 |
+
|
| 8 |
+
> **Note:** This model supports native resolution input. For optimal performance:
|
| 9 |
+
> - **Image**: 448×448 resolution (pre-trained)
|
| 10 |
+
> - **Video**: 224×224 resolution with 256 tokens per frame (pre-trained)
|
| 11 |
+
>
|
| 12 |
+
> Use CLIP preprocessing from the [model repository](https://huggingface.co/lmms-lab/onevision-encoder-large).
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
from transformers import AutoModel, AutoImageProcessor
|
| 16 |
+
from PIL import Image
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
# Load model and preprocessor
|
| 20 |
+
model = AutoModel.from_pretrained(
|
| 21 |
+
"lmms-lab-encoder/onevision-encoder-large",
|
| 22 |
+
trust_remote_code=True,
|
| 23 |
+
attn_implementation="flash_attention_2"
|
| 24 |
+
).to("cuda").eval()
|
| 25 |
+
|
| 26 |
+
preprocessor = AutoImageProcessor.from_pretrained(
|
| 27 |
+
"lmms-lab-encoder/onevision-encoder-large",
|
| 28 |
+
trust_remote_code=True
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Image inference: [B, C, H, W]
|
| 32 |
+
image = Image.open("path/to/your/image.jpg") # Replace with your image path
|
| 33 |
+
pixel_values = preprocessor(images=image, return_tensors="pt")["pixel_values"].to("cuda")
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
outputs = model(pixel_values)
|
| 36 |
+
# outputs.last_hidden_state: [B, num_patches, hidden_size]
|
| 37 |
+
# outputs.pooler_output: [B, hidden_size]
|
| 38 |
+
|
| 39 |
+
# Video inference: [B, C, T, H, W] with visible_indices
|
| 40 |
+
num_frames, frame_tokens, target_frames = 16, 256, 64
|
| 41 |
+
# Load video frames and preprocess each frame (replace with your video frame paths)
|
| 42 |
+
frames = [Image.open(f"path/to/frame_{i}.jpg") for i in range(num_frames)]
|
| 43 |
+
video_pixel_values = preprocessor(images=frames, return_tensors="pt")["pixel_values"]
|
| 44 |
+
# Reshape from [T, C, H, W] to [B, C, T, H, W]
|
| 45 |
+
video = video_pixel_values.unsqueeze(0).permute(0, 2, 1, 3, 4).to("cuda")
|
| 46 |
+
|
| 47 |
+
# Build visible_indices for temporal sampling
|
| 48 |
+
frame_pos = torch.linspace(0, target_frames - 1, num_frames).long().cuda()
|
| 49 |
+
visible_indices = (frame_pos.unsqueeze(-1) * frame_tokens + torch.arange(frame_tokens).cuda()).reshape(1, -1)
|
| 50 |
+
# visible_indices example (with 256 tokens per frame):
|
| 51 |
+
# Frame 0 (pos=0): indices [0, 1, 2, ..., 255]
|
| 52 |
+
# Frame 1 (pos=4): indices [1024, 1025, 1026, ..., 1279]
|
| 53 |
+
# Frame 2 (pos=8): indices [2048, 2049, 2050, ..., 2303]
|
| 54 |
+
# ...
|
| 55 |
+
# Frame 15 (pos=63): indices [16128, 16129, ..., 16383]
|
| 56 |
+
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
outputs = model(video, visible_indices=visible_indices)
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
### LMM Probe Results
|
| 63 |
+
|
| 64 |
+
Training on a mixed dataset of 740K samples from LLaVA-OneVision and 800K samples from LLaVA-Video SFT. The training pipeline proceeds directly to Stage 2 fine-tuning. We adopt a streamlined native-resolution strategy inspired by LLaVA-OneVision: when the input frame resolution matches the model's native input size, it is fed directly—without tiling or cropping—to evaluate the ViT's native resolution capability.
|
| 65 |
+
|
| 66 |
+
<p align="center">
|
| 67 |
+
<picture>
|
| 68 |
+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/probe_lmm_github_dark_fixed.png">
|
| 69 |
+
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/probe_lmm_github_light.png">
|
| 70 |
+
<img alt="LMM Probe Results" src="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/probe_lmm_github_light.png" width="800" style="max-width: 100%;">
|
| 71 |
+
</picture>
|
| 72 |
+
</p>
|
| 73 |
+
|
| 74 |
+
### Attentive Probe Results
|
| 75 |
+
|
| 76 |
+
Performance comparison of different vision encoders using Attentive Probe evaluation. Models are evaluated using single clip input and trained for 10 epochs across 8 action recognition datasets. Results show average performance and per-dataset scores for 8-frame and 16-frame configurations.
|
| 77 |
+
|
| 78 |
+
<p align="center">
|
| 79 |
+
<picture>
|
| 80 |
+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/fix_00_probe_video_github_dark.png">
|
| 81 |
+
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/fix_00_probe_video_github_light.png">
|
| 82 |
+
<img alt="LMM Probe Results" src="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/probe_lmm_github_light.png" width="900" style="max-width: 100%;">
|
| 83 |
+
</picture>
|
| 84 |
+
</p>
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
### Codec Input
|
| 88 |
+
|
| 89 |
+
> **TODO:** Add codec-style input documentation for temporal saliency-based patch selection.
|
| 90 |
+
|
| 91 |
+
---
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"OneVisionEncoderModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"dtype": "bfloat16",
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_size": 1024,
|
| 9 |
+
"image_size": 448,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 4096,
|
| 12 |
+
"layer_norm_eps": 1e-06,
|
| 13 |
+
"layer_norm_type": "layer_norm",
|
| 14 |
+
"model_type": "onevision_encoder",
|
| 15 |
+
"num_attention_heads": 16,
|
| 16 |
+
"num_channels": 3,
|
| 17 |
+
"num_hidden_layers": 24,
|
| 18 |
+
"patch_size": 14,
|
| 19 |
+
"rope_theta": 10000.0,
|
| 20 |
+
"rope_temporal_size": 64,
|
| 21 |
+
"transformers_version": "4.57.1",
|
| 22 |
+
"use_head": true,
|
| 23 |
+
"auto_map": {
|
| 24 |
+
"AutoConfig": "configuration_onevision_encoder.OneVisionEncoderConfig",
|
| 25 |
+
"AutoModel": "modeling_onevision_encoder.OneVisionEncoderModel"
|
| 26 |
+
}
|
| 27 |
+
}
|
configuration_onevision_encoder.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
|
| 4 |
+
logger = logging.get_logger(__name__)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class OneVisionEncoderConfig(PretrainedConfig):
|
| 8 |
+
r"""
|
| 9 |
+
This is the configuration class to store the configuration of a [`OneVisionEncoderModel`]. It is used to instantiate a
|
| 10 |
+
OneVision Encoder model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 11 |
+
with the defaults will yield a similar configuration to that of the OneVision Encoder architecture.
|
| 12 |
+
|
| 13 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 14 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
| 18 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 19 |
+
intermediate_size (`int`, *optional*, defaults to 4096):
|
| 20 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 21 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
| 22 |
+
Number of hidden layers in the Transformer encoder.
|
| 23 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
| 24 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 26 |
+
The number of input channels.
|
| 27 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 28 |
+
The size (resolution) of each image.
|
| 29 |
+
patch_size (`int`, *optional*, defaults to 16):
|
| 30 |
+
The size (resolution) of each patch.
|
| 31 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 32 |
+
The non-linear activation function (function or string) in the encoder and pooler.
|
| 33 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 34 |
+
The epsilon used by the layer normalization layers.
|
| 35 |
+
layer_norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
| 36 |
+
The type of layer normalization to use. Supported values: `"layer_norm"`, `"rms_norm"`.
|
| 37 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 38 |
+
The dropout ratio for the attention probabilities.
|
| 39 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 40 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 41 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 42 |
+
The base period of the RoPE embeddings.
|
| 43 |
+
use_head (`bool`, *optional*, defaults to `True`):
|
| 44 |
+
Whether to use the pooling head.
|
| 45 |
+
|
| 46 |
+
Example:
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
>>> from configuration_onevision_encoder import OneVisionEncoderConfig
|
| 50 |
+
>>> from modeling_onevision_encoder import OneVisionEncoderModel
|
| 51 |
+
|
| 52 |
+
>>> # Initializing a OneVisionEncoder configuration
|
| 53 |
+
>>> configuration = OneVisionEncoderConfig()
|
| 54 |
+
|
| 55 |
+
>>> # Initializing a model (with random weights) from the configuration
|
| 56 |
+
>>> model = OneVisionEncoderModel(configuration)
|
| 57 |
+
|
| 58 |
+
>>> # Accessing the model configuration
|
| 59 |
+
>>> configuration = model.config
|
| 60 |
+
```
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
model_type = "onevision_encoder"
|
| 64 |
+
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
hidden_size=1024,
|
| 68 |
+
intermediate_size=4096,
|
| 69 |
+
num_hidden_layers=24,
|
| 70 |
+
num_attention_heads=16,
|
| 71 |
+
num_channels=3,
|
| 72 |
+
image_size=448,
|
| 73 |
+
patch_size=16,
|
| 74 |
+
hidden_act="gelu",
|
| 75 |
+
layer_norm_eps=1e-6,
|
| 76 |
+
layer_norm_type="layer_norm",
|
| 77 |
+
attention_dropout=0.0,
|
| 78 |
+
initializer_range=0.02,
|
| 79 |
+
rope_theta=10000.0,
|
| 80 |
+
rope_temporal_size=64,
|
| 81 |
+
use_head=True,
|
| 82 |
+
**kwargs,
|
| 83 |
+
):
|
| 84 |
+
super().__init__(**kwargs)
|
| 85 |
+
self.hidden_size = hidden_size
|
| 86 |
+
self.intermediate_size = intermediate_size
|
| 87 |
+
self.num_hidden_layers = num_hidden_layers
|
| 88 |
+
self.num_attention_heads = num_attention_heads
|
| 89 |
+
self.num_channels = num_channels
|
| 90 |
+
self.image_size = image_size
|
| 91 |
+
self.patch_size = patch_size
|
| 92 |
+
self.hidden_act = hidden_act
|
| 93 |
+
self.layer_norm_eps = layer_norm_eps
|
| 94 |
+
self.layer_norm_type = layer_norm_type
|
| 95 |
+
self.attention_dropout = attention_dropout
|
| 96 |
+
self.initializer_range = initializer_range
|
| 97 |
+
self.rope_theta = rope_theta
|
| 98 |
+
self.rope_temporal_size = rope_temporal_size # None=use actual frames, int=fixed size (legacy: 64)
|
| 99 |
+
self.use_head = use_head
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ac558e40e4f8569dd126763141f3edd747f63f076dcffb217844ef8589274a6
|
| 3 |
+
size 631063168
|
modeling_onevision_encoder.py
ADDED
|
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 6 |
+
BaseModelOutputWithPooling)
|
| 7 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 8 |
+
from transformers.models.siglip.modeling_siglip import SiglipMLP
|
| 9 |
+
from transformers.utils import (add_start_docstrings,
|
| 10 |
+
add_start_docstrings_to_model_forward, logging,
|
| 11 |
+
replace_return_docstrings)
|
| 12 |
+
|
| 13 |
+
from .configuration_onevision_encoder import OneVisionEncoderConfig
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
from flash_attn import flash_attn_func
|
| 17 |
+
_flash_attn_available = True
|
| 18 |
+
except ImportError:
|
| 19 |
+
_flash_attn_available = False
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# ---------------------------------------------------------------------------
|
| 25 |
+
# Model Docstrings
|
| 26 |
+
# ---------------------------------------------------------------------------
|
| 27 |
+
|
| 28 |
+
ONEVISION_ENCODER_START_DOCSTRING = r"""
|
| 29 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 30 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 31 |
+
etc.)
|
| 32 |
+
|
| 33 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 34 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 35 |
+
and behavior.
|
| 36 |
+
|
| 37 |
+
Parameters:
|
| 38 |
+
config ([`OneVisionEncoderConfig`]): Model configuration class with all the parameters of the model.
|
| 39 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 40 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
ONEVISION_ENCODER_INPUTS_DOCSTRING = r"""
|
| 44 |
+
Args:
|
| 45 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch_size, num_channels, num_frames, height, width)`):
|
| 46 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`].
|
| 47 |
+
visible_indices (`torch.Tensor`, *optional*):
|
| 48 |
+
Indices of visible patches for masking. Used in MAE-style pretraining or inference.
|
| 49 |
+
output_attentions (`bool`, *optional*):
|
| 50 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 51 |
+
tensors for more detail.
|
| 52 |
+
output_hidden_states (`bool`, *optional*):
|
| 53 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 54 |
+
more detail.
|
| 55 |
+
return_dict (`bool`, *optional*):
|
| 56 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# ---------------------------------------------------------------------------
|
| 61 |
+
# Helper Functions & Layers
|
| 62 |
+
# ---------------------------------------------------------------------------
|
| 63 |
+
|
| 64 |
+
def get_norm_layer(config):
|
| 65 |
+
if config.layer_norm_type == "rms_norm":
|
| 66 |
+
return nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 67 |
+
else:
|
| 68 |
+
return nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def rotate_half(x):
|
| 72 |
+
"""
|
| 73 |
+
Interleaved rotation to match Source model's implementation.
|
| 74 |
+
(x1, x2, x3, x4) -> (-x2, x1, -x4, x3)
|
| 75 |
+
"""
|
| 76 |
+
x_even = x[..., ::2]
|
| 77 |
+
x_odd = x[..., 1::2]
|
| 78 |
+
return torch.stack((-x_odd, x_even), dim=-1).flatten(-2)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def apply_rotary_pos_emb(q, k, freqs):
|
| 82 |
+
# q, k: (B, H, L, D)
|
| 83 |
+
# freqs: (B, L, D)
|
| 84 |
+
|
| 85 |
+
# We need to broadcast freqs to match heads
|
| 86 |
+
# (B, L, D) -> (B, 1, L, D)
|
| 87 |
+
|
| 88 |
+
# !!! CRITICAL FIX: Cast cos/sin to q.dtype (bf16/fp16) immediately
|
| 89 |
+
# freqs are typically float32, so cos() returns float32.
|
| 90 |
+
# Without this cast, (q * cos) upcasts q to float32, causing FlashAttention to fail.
|
| 91 |
+
cos = freqs.cos().unsqueeze(1).to(q.dtype)
|
| 92 |
+
sin = freqs.sin().unsqueeze(1).to(q.dtype)
|
| 93 |
+
|
| 94 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 95 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 96 |
+
return q_embed, k_embed
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class VideoRotaryEmbeddingSplit466(nn.Module):
|
| 100 |
+
"""
|
| 101 |
+
3D (T,H,W) Rotary frequency constructor with 4:6:6 split.
|
| 102 |
+
"""
|
| 103 |
+
def __init__(self, config: OneVisionEncoderConfig):
|
| 104 |
+
super().__init__()
|
| 105 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
| 106 |
+
base = config.rope_theta
|
| 107 |
+
|
| 108 |
+
assert head_dim % 2 == 0, "head_dim must be even for rotary."
|
| 109 |
+
assert head_dim % 16 == 0, "head_dim must be divisible by 16."
|
| 110 |
+
half = head_dim // 2
|
| 111 |
+
assert half % 16 == 0, "head_dim//2 must also be divisible by 16 to split into 4:6:6."
|
| 112 |
+
|
| 113 |
+
self.head_dim = head_dim
|
| 114 |
+
self.half = half
|
| 115 |
+
|
| 116 |
+
unit = half // 16
|
| 117 |
+
self.t_size = 4 * unit
|
| 118 |
+
self.h_size = 6 * unit
|
| 119 |
+
self.w_size = 6 * unit
|
| 120 |
+
|
| 121 |
+
self.register_buffer("inv_freq_t", 1.0 / (base ** (torch.arange(self.t_size, dtype=torch.float32) / self.t_size)), persistent=False)
|
| 122 |
+
self.register_buffer("inv_freq_h", 1.0 / (base ** (torch.arange(self.h_size, dtype=torch.float32) / self.h_size)), persistent=False)
|
| 123 |
+
self.register_buffer("inv_freq_w", 1.0 / (base ** (torch.arange(self.w_size, dtype=torch.float32) / self.w_size)), persistent=False)
|
| 124 |
+
|
| 125 |
+
def forward(self, t: int, h: int, w: int, device=None):
|
| 126 |
+
if device is None: device = self.inv_freq_t.device
|
| 127 |
+
|
| 128 |
+
inv_t = self.inv_freq_t.to(device=device)
|
| 129 |
+
inv_h = self.inv_freq_h.to(device=device)
|
| 130 |
+
inv_w = self.inv_freq_w.to(device=device)
|
| 131 |
+
|
| 132 |
+
ft = torch.outer(torch.arange(t, device=device, dtype=torch.float32), inv_t)
|
| 133 |
+
fh = torch.outer(torch.arange(h, device=device, dtype=torch.float32), inv_h)
|
| 134 |
+
fw = torch.outer(torch.arange(w, device=device, dtype=torch.float32), inv_w)
|
| 135 |
+
|
| 136 |
+
t_ids = torch.arange(t, device=device).repeat_interleave(h * w)
|
| 137 |
+
h_ids = torch.arange(h, device=device).repeat_interleave(w).repeat(t)
|
| 138 |
+
w_ids = torch.arange(w, device=device).repeat(h).repeat(t)
|
| 139 |
+
|
| 140 |
+
freqs = torch.cat([ft[t_ids], fh[h_ids], fw[w_ids]], dim=-1)
|
| 141 |
+
return freqs
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
class Siglip2MultiheadAttentionPoolingHead(nn.Module):
|
| 145 |
+
"""
|
| 146 |
+
Multi-Head Attention Pooling with a learned probe (PMA-style).
|
| 147 |
+
"""
|
| 148 |
+
def __init__(self, config: OneVisionEncoderConfig):
|
| 149 |
+
super().__init__()
|
| 150 |
+
self.embed_dim = config.hidden_size
|
| 151 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
| 152 |
+
self.attention = nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
| 153 |
+
self.norm = nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 154 |
+
self.mlp = SiglipMLP(config)
|
| 155 |
+
|
| 156 |
+
def forward(self, hidden_states):
|
| 157 |
+
batch_size = hidden_states.shape[0]
|
| 158 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
| 159 |
+
|
| 160 |
+
attn_output, _ = self.attention(probe, hidden_states, hidden_states)
|
| 161 |
+
|
| 162 |
+
residual = attn_output
|
| 163 |
+
attn_output = self.norm(attn_output)
|
| 164 |
+
attn_output = residual + self.mlp(attn_output)
|
| 165 |
+
|
| 166 |
+
return attn_output[:, 0]
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
# ---------------------------------------------------------------------------
|
| 170 |
+
# Modeling Components
|
| 171 |
+
# ---------------------------------------------------------------------------
|
| 172 |
+
|
| 173 |
+
class OneVisionEncoderEmbeddings(nn.Module):
|
| 174 |
+
def __init__(self, config: OneVisionEncoderConfig):
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.config = config
|
| 177 |
+
self.embed_dim = config.hidden_size
|
| 178 |
+
self.image_size = config.image_size
|
| 179 |
+
self.patch_size = config.patch_size
|
| 180 |
+
|
| 181 |
+
self.patch_embedding = nn.Conv2d(
|
| 182 |
+
in_channels=config.num_channels,
|
| 183 |
+
out_channels=self.embed_dim,
|
| 184 |
+
kernel_size=self.patch_size,
|
| 185 |
+
stride=self.patch_size,
|
| 186 |
+
bias=False,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 190 |
+
# Handle 4D (B, C, H, W) or 5D (B, C, T, H, W) inputs
|
| 191 |
+
if pixel_values.dim() == 4:
|
| 192 |
+
pixel_values = pixel_values.unsqueeze(2) # (B, C, 1, H, W)
|
| 193 |
+
|
| 194 |
+
batch_size, channels, t_frames, height, width = pixel_values.shape
|
| 195 |
+
|
| 196 |
+
# Merge time into batch for Conv2d
|
| 197 |
+
x_2d = pixel_values.permute(0, 2, 1, 3, 4).reshape(batch_size * t_frames, channels, height, width)
|
| 198 |
+
|
| 199 |
+
# Patch Embed
|
| 200 |
+
embeddings = self.patch_embedding(x_2d) # (B*T, C, Hp, Wp)
|
| 201 |
+
embeddings = embeddings.flatten(2).transpose(1, 2) # (B*T, L_frame, C)
|
| 202 |
+
|
| 203 |
+
# Flatten all patches
|
| 204 |
+
total_patches = t_frames * (height // self.patch_size) * (width // self.patch_size)
|
| 205 |
+
embeddings = embeddings.reshape(batch_size, total_patches, self.embed_dim)
|
| 206 |
+
|
| 207 |
+
return embeddings
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class OneVisionEncoderAttention(nn.Module):
|
| 211 |
+
"""Multi-headed attention with RoPE support"""
|
| 212 |
+
def __init__(self, config: OneVisionEncoderConfig):
|
| 213 |
+
super().__init__()
|
| 214 |
+
self.config = config
|
| 215 |
+
self.embed_dim = config.hidden_size
|
| 216 |
+
self.num_heads = config.num_attention_heads
|
| 217 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 218 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 219 |
+
raise ValueError(
|
| 220 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
self.scale = self.head_dim**-0.5
|
| 224 |
+
self.dropout = config.attention_dropout
|
| 225 |
+
|
| 226 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 227 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 228 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 229 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def forward(
|
| 233 |
+
self,
|
| 234 |
+
hidden_states: torch.Tensor,
|
| 235 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 236 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 237 |
+
output_attentions: bool = False,
|
| 238 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 239 |
+
|
| 240 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 241 |
+
|
| 242 |
+
query_states = self.q_proj(hidden_states)
|
| 243 |
+
key_states = self.k_proj(hidden_states)
|
| 244 |
+
value_states = self.v_proj(hidden_states)
|
| 245 |
+
|
| 246 |
+
# (B, L, H, D) -> Transpose to (B, H, L, D)
|
| 247 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 248 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 249 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 250 |
+
|
| 251 |
+
if rotary_pos_emb is not None:
|
| 252 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, rotary_pos_emb)
|
| 253 |
+
|
| 254 |
+
# Calculate attention scores
|
| 255 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
| 256 |
+
|
| 257 |
+
if attention_mask is not None:
|
| 258 |
+
if attention_mask.size() != (batch_size, 1, q_len, q_len):
|
| 259 |
+
if attention_mask.dim() == 3:
|
| 260 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 261 |
+
attn_weights = attn_weights + attention_mask
|
| 262 |
+
|
| 263 |
+
# FIX: Remove dtype=torch.float32 to stay in original dtype (bf16/fp16)
|
| 264 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 265 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 266 |
+
|
| 267 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 268 |
+
|
| 269 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 270 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
| 271 |
+
|
| 272 |
+
attn_output = self.out_proj(attn_output)
|
| 273 |
+
|
| 274 |
+
return attn_output, attn_weights if output_attentions else None
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class OneVisionEncoderFlashAttention2(nn.Module):
|
| 278 |
+
"""
|
| 279 |
+
Multi-headed attention with RoPE support using Flash Attention 2.
|
| 280 |
+
This module implements the same attention mechanism as OneVisionEncoderAttention but uses
|
| 281 |
+
Flash Attention for improved performance and memory efficiency.
|
| 282 |
+
"""
|
| 283 |
+
def __init__(self, config: OneVisionEncoderConfig):
|
| 284 |
+
super().__init__()
|
| 285 |
+
self.config = config
|
| 286 |
+
self.embed_dim = config.hidden_size
|
| 287 |
+
self.num_heads = config.num_attention_heads
|
| 288 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 289 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 290 |
+
raise ValueError(
|
| 291 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
self.scale = self.head_dim**-0.5
|
| 295 |
+
self.dropout = config.attention_dropout
|
| 296 |
+
|
| 297 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 298 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 299 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 300 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 301 |
+
|
| 302 |
+
def forward(
|
| 303 |
+
self,
|
| 304 |
+
hidden_states: torch.Tensor,
|
| 305 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 306 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 307 |
+
output_attentions: bool = False,
|
| 308 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 309 |
+
"""
|
| 310 |
+
Forward pass using Flash Attention 2.
|
| 311 |
+
"""
|
| 312 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 313 |
+
|
| 314 |
+
query_states = self.q_proj(hidden_states)
|
| 315 |
+
key_states = self.k_proj(hidden_states)
|
| 316 |
+
value_states = self.v_proj(hidden_states)
|
| 317 |
+
|
| 318 |
+
# Flash Attention requires (B, L, H, D) format
|
| 319 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
| 320 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
| 321 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
| 322 |
+
|
| 323 |
+
# Apply RoPE if provided
|
| 324 |
+
if rotary_pos_emb is not None:
|
| 325 |
+
# Transpose for RoPE application: (B, L, H, D) -> (B, H, L, D)
|
| 326 |
+
query_states = query_states.transpose(1, 2)
|
| 327 |
+
key_states = key_states.transpose(1, 2)
|
| 328 |
+
# NOTE: apply_rotary_pos_emb now ensures NO float32 cast happens
|
| 329 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, rotary_pos_emb)
|
| 330 |
+
# Transpose back: (B, H, L, D) -> (B, L, H, D)
|
| 331 |
+
query_states = query_states.transpose(1, 2)
|
| 332 |
+
key_states = key_states.transpose(1, 2)
|
| 333 |
+
|
| 334 |
+
# Flash Attention forward pass
|
| 335 |
+
if not _flash_attn_available:
|
| 336 |
+
raise ImportError("flash_attn is not installed. Please install it to use OneVisionEncoderFlashAttention2.")
|
| 337 |
+
|
| 338 |
+
attn_output = flash_attn_func(
|
| 339 |
+
query_states,
|
| 340 |
+
key_states,
|
| 341 |
+
value_states,
|
| 342 |
+
dropout_p=self.dropout if self.training else 0.0,
|
| 343 |
+
softmax_scale=self.scale,
|
| 344 |
+
causal=False,
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# Reshape to (B, L, embed_dim)
|
| 348 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
| 349 |
+
|
| 350 |
+
# No extra casting here.
|
| 351 |
+
attn_output = self.out_proj(attn_output)
|
| 352 |
+
|
| 353 |
+
return attn_output, None
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
ONEVISION_ENCODER_ATTENTION_CLASSES = {
|
| 357 |
+
"eager": OneVisionEncoderAttention,
|
| 358 |
+
"flash_attention_2": OneVisionEncoderFlashAttention2,
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
class OneVisionEncoderEncoderLayer(nn.Module):
|
| 363 |
+
def __init__(self, config: OneVisionEncoderConfig):
|
| 364 |
+
super().__init__()
|
| 365 |
+
self.embed_dim = config.hidden_size
|
| 366 |
+
# Get attention implementation from config, default to "flash_attention_2"
|
| 367 |
+
attn_implementation = getattr(config, "_attn_implementation", "flash_attention_2")
|
| 368 |
+
if attn_implementation not in ONEVISION_ENCODER_ATTENTION_CLASSES:
|
| 369 |
+
# Fallback to eager if flash_attention_2 is not available
|
| 370 |
+
if not _flash_attn_available and attn_implementation == "flash_attention_2":
|
| 371 |
+
attn_implementation = "eager"
|
| 372 |
+
else:
|
| 373 |
+
raise ValueError(
|
| 374 |
+
f"Unknown attention implementation: {attn_implementation}. "
|
| 375 |
+
f"Available implementations: {list(ONEVISION_ENCODER_ATTENTION_CLASSES.keys())}"
|
| 376 |
+
)
|
| 377 |
+
self.self_attn = ONEVISION_ENCODER_ATTENTION_CLASSES[attn_implementation](config)
|
| 378 |
+
self.layer_norm1 = get_norm_layer(config)
|
| 379 |
+
self.mlp = SiglipMLP(config)
|
| 380 |
+
self.layer_norm2 = get_norm_layer(config)
|
| 381 |
+
|
| 382 |
+
def forward(
|
| 383 |
+
self,
|
| 384 |
+
hidden_states: torch.Tensor,
|
| 385 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 386 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 387 |
+
output_attentions: bool = False,
|
| 388 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 389 |
+
|
| 390 |
+
residual = hidden_states
|
| 391 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 392 |
+
|
| 393 |
+
hidden_states, attn_weights = self.self_attn(
|
| 394 |
+
hidden_states=hidden_states,
|
| 395 |
+
attention_mask=attention_mask,
|
| 396 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 397 |
+
output_attentions=output_attentions,
|
| 398 |
+
)
|
| 399 |
+
hidden_states = residual + hidden_states
|
| 400 |
+
|
| 401 |
+
residual = hidden_states
|
| 402 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 403 |
+
hidden_states = self.mlp(hidden_states)
|
| 404 |
+
hidden_states = residual + hidden_states
|
| 405 |
+
|
| 406 |
+
outputs = (hidden_states, attn_weights) if output_attentions else (hidden_states,)
|
| 407 |
+
return outputs
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
class OneVisionEncoderEncoder(nn.Module):
|
| 411 |
+
def __init__(self, config: OneVisionEncoderConfig):
|
| 412 |
+
super().__init__()
|
| 413 |
+
self.config = config
|
| 414 |
+
self.layers = nn.ModuleList([OneVisionEncoderEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 415 |
+
|
| 416 |
+
def forward(
|
| 417 |
+
self,
|
| 418 |
+
hidden_states: torch.Tensor,
|
| 419 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 420 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 421 |
+
output_attentions: bool = False,
|
| 422 |
+
output_hidden_states: bool = False,
|
| 423 |
+
return_dict: bool = True,
|
| 424 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 425 |
+
|
| 426 |
+
all_hidden_states = () if output_hidden_states else None
|
| 427 |
+
all_self_attentions = () if output_attentions else None
|
| 428 |
+
|
| 429 |
+
for layer in self.layers:
|
| 430 |
+
if output_hidden_states:
|
| 431 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 432 |
+
|
| 433 |
+
layer_outputs = layer(
|
| 434 |
+
hidden_states,
|
| 435 |
+
attention_mask=attention_mask,
|
| 436 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 437 |
+
output_attentions=output_attentions,
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
hidden_states = layer_outputs[0]
|
| 441 |
+
|
| 442 |
+
if output_attentions:
|
| 443 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 444 |
+
|
| 445 |
+
if output_hidden_states:
|
| 446 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 447 |
+
|
| 448 |
+
if not return_dict:
|
| 449 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
| 450 |
+
|
| 451 |
+
return BaseModelOutput(
|
| 452 |
+
last_hidden_state=hidden_states,
|
| 453 |
+
hidden_states=all_hidden_states,
|
| 454 |
+
attentions=all_self_attentions,
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
# ---------------------------------------------------------------------------
|
| 459 |
+
# Main Models
|
| 460 |
+
# ---------------------------------------------------------------------------
|
| 461 |
+
|
| 462 |
+
@add_start_docstrings(
|
| 463 |
+
"The bare OneVision Encoder Model outputting raw hidden-states without any specific head on top.",
|
| 464 |
+
ONEVISION_ENCODER_START_DOCSTRING,
|
| 465 |
+
)
|
| 466 |
+
class OneVisionEncoderPreTrainedModel(PreTrainedModel):
|
| 467 |
+
config_class = OneVisionEncoderConfig
|
| 468 |
+
base_model_prefix = "onevision_encoder"
|
| 469 |
+
supports_gradient_checkpointing = True
|
| 470 |
+
_no_split_modules = ["OneVisionEncoderEncoderLayer"]
|
| 471 |
+
_supports_flash_attn_2 = True
|
| 472 |
+
|
| 473 |
+
def _init_weights(self, module):
|
| 474 |
+
"""Initialize the weights"""
|
| 475 |
+
std = self.config.initializer_range
|
| 476 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 477 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 478 |
+
if module.bias is not None:
|
| 479 |
+
module.bias.data.zero_()
|
| 480 |
+
elif isinstance(module, nn.Embedding):
|
| 481 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 482 |
+
if module.padding_idx is not None:
|
| 483 |
+
module.weight.data[module.padding_idx].zero_()
|
| 484 |
+
elif isinstance(module, (nn.LayerNorm, nn.RMSNorm)):
|
| 485 |
+
# Fix: RMSNorm doesn't have bias, must check hasattr first
|
| 486 |
+
module.weight.data.fill_(1.0)
|
| 487 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
| 488 |
+
module.bias.data.zero_()
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
@add_start_docstrings(
|
| 492 |
+
"OneVision Encoder Model with a vision transformer encoder.",
|
| 493 |
+
ONEVISION_ENCODER_START_DOCSTRING,
|
| 494 |
+
)
|
| 495 |
+
class OneVisionEncoderModel(OneVisionEncoderPreTrainedModel):
|
| 496 |
+
def __init__(self, config: OneVisionEncoderConfig):
|
| 497 |
+
super().__init__(config)
|
| 498 |
+
self.config = config
|
| 499 |
+
|
| 500 |
+
self.embeddings = OneVisionEncoderEmbeddings(config)
|
| 501 |
+
self.layernorm_pre = get_norm_layer(config)
|
| 502 |
+
self.encoder = OneVisionEncoderEncoder(config)
|
| 503 |
+
self.video_rope = VideoRotaryEmbeddingSplit466(config)
|
| 504 |
+
|
| 505 |
+
if config.use_head:
|
| 506 |
+
self.layernorm_post = get_norm_layer(config)
|
| 507 |
+
self.head = Siglip2MultiheadAttentionPoolingHead(config)
|
| 508 |
+
else:
|
| 509 |
+
self.layernorm_post = None
|
| 510 |
+
self.head = None
|
| 511 |
+
|
| 512 |
+
self.post_init()
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
@add_start_docstrings_to_model_forward(ONEVISION_ENCODER_INPUTS_DOCSTRING)
|
| 516 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OneVisionEncoderConfig)
|
| 517 |
+
def forward(
|
| 518 |
+
self,
|
| 519 |
+
pixel_values: torch.Tensor,
|
| 520 |
+
visible_indices: Optional[torch.Tensor] = None,
|
| 521 |
+
output_attentions: Optional[bool] = None,
|
| 522 |
+
output_hidden_states: Optional[bool] = None,
|
| 523 |
+
return_dict: Optional[bool] = None,
|
| 524 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 525 |
+
r"""
|
| 526 |
+
Returns:
|
| 527 |
+
|
| 528 |
+
Examples:
|
| 529 |
+
|
| 530 |
+
```python
|
| 531 |
+
>>> from transformers import AutoModel, AutoImageProcessor
|
| 532 |
+
>>> from PIL import Image
|
| 533 |
+
|
| 534 |
+
>>> model = AutoModel.from_pretrained("lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True)
|
| 535 |
+
>>> preprocessor = AutoImageProcessor.from_pretrained("lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True)
|
| 536 |
+
>>> image = Image.open("path/to/your/image.jpg") # Replace with your image path
|
| 537 |
+
>>> pixel_values = preprocessor(images=image, return_tensors="pt")["pixel_values"]
|
| 538 |
+
>>> outputs = model(pixel_values)
|
| 539 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
| 540 |
+
>>> pooled_output = outputs.pooler_output
|
| 541 |
+
```
|
| 542 |
+
"""
|
| 543 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 544 |
+
output_hidden_states = (
|
| 545 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 546 |
+
)
|
| 547 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 548 |
+
|
| 549 |
+
# Determine video dimensions for RoPE
|
| 550 |
+
# Note: pixel_values passed to embeddings can be 4D or 5D
|
| 551 |
+
if pixel_values.dim() == 5:
|
| 552 |
+
# Use config.rope_temporal_size if set, otherwise use actual frame count
|
| 553 |
+
t_frames = self.config.rope_temporal_size if self.config.rope_temporal_size is not None else pixel_values.shape[2]
|
| 554 |
+
height = pixel_values.shape[3]
|
| 555 |
+
width = pixel_values.shape[4]
|
| 556 |
+
else:
|
| 557 |
+
t_frames = 1
|
| 558 |
+
height = pixel_values.shape[2]
|
| 559 |
+
width = pixel_values.shape[3]
|
| 560 |
+
|
| 561 |
+
# 1. Embeddings
|
| 562 |
+
hidden_states = self.embeddings(pixel_values)
|
| 563 |
+
batch_size, total_patches, _ = hidden_states.shape
|
| 564 |
+
|
| 565 |
+
# 2. Visible Indices Handling
|
| 566 |
+
if visible_indices is None:
|
| 567 |
+
visible_indices = torch.arange(total_patches, device=pixel_values.device).unsqueeze(0).expand(batch_size, -1)
|
| 568 |
+
|
| 569 |
+
# 3. RoPE Construction
|
| 570 |
+
freqs_full = self.video_rope(
|
| 571 |
+
t=t_frames,
|
| 572 |
+
h=height // self.config.patch_size,
|
| 573 |
+
w=width // self.config.patch_size,
|
| 574 |
+
device=pixel_values.device
|
| 575 |
+
)
|
| 576 |
+
freqs_visible = freqs_full[visible_indices]
|
| 577 |
+
|
| 578 |
+
# Concatenate D/2 + D/2 -> D for applying rope
|
| 579 |
+
freqs_visible = torch.cat([freqs_visible, freqs_visible], dim=-1)
|
| 580 |
+
|
| 581 |
+
# 4. Pre-Norm & Encoder
|
| 582 |
+
hidden_states = self.layernorm_pre(hidden_states)
|
| 583 |
+
|
| 584 |
+
# fix: gather hidden_states to match freqs_visible when using sparse visible_indices
|
| 585 |
+
num_visible = visible_indices.shape[1]
|
| 586 |
+
if num_visible != total_patches:
|
| 587 |
+
# sparse mode: select only visible patches
|
| 588 |
+
hidden_states = hidden_states.gather(
|
| 589 |
+
1, visible_indices.unsqueeze(-1).expand(-1, -1, hidden_states.shape[-1])
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
encoder_outputs = self.encoder(
|
| 593 |
+
hidden_states,
|
| 594 |
+
attention_mask=None,
|
| 595 |
+
rotary_pos_emb=freqs_visible,
|
| 596 |
+
output_attentions=output_attentions,
|
| 597 |
+
output_hidden_states=output_hidden_states,
|
| 598 |
+
return_dict=return_dict,
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
sequence_output = encoder_outputs[0]
|
| 602 |
+
|
| 603 |
+
# Apply post-norm if configured
|
| 604 |
+
if self.layernorm_post is not None:
|
| 605 |
+
sequence_output = self.layernorm_post(sequence_output)
|
| 606 |
+
|
| 607 |
+
# 5. Pooling Head
|
| 608 |
+
pooled_output = None
|
| 609 |
+
if self.head is not None:
|
| 610 |
+
pooled_output = self.head(sequence_output)
|
| 611 |
+
|
| 612 |
+
if not return_dict:
|
| 613 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 614 |
+
|
| 615 |
+
return BaseModelOutputWithPooling(
|
| 616 |
+
last_hidden_state=sequence_output,
|
| 617 |
+
pooler_output=pooled_output,
|
| 618 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 619 |
+
attentions=encoder_outputs.attentions,
|
| 620 |
+
)
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 448,
|
| 4 |
+
"width": 448
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": true,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"image_mean": [
|
| 12 |
+
0.48145466,
|
| 13 |
+
0.4578275,
|
| 14 |
+
0.40821073
|
| 15 |
+
],
|
| 16 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 17 |
+
"image_std": [
|
| 18 |
+
0.26862954,
|
| 19 |
+
0.26130258,
|
| 20 |
+
0.27577711
|
| 21 |
+
],
|
| 22 |
+
"resample": 3,
|
| 23 |
+
"rescale_factor": 0.00392156862745098,
|
| 24 |
+
"size": {
|
| 25 |
+
"shortest_edge": 448
|
| 26 |
+
}
|
| 27 |
+
}
|