Reasoning example 1 (IQ1_M_XL, tested with llama.cpp-PR16095 CPU backend)
E:\LLM\llama_qwen3_next>.\build\bin\Release\llama-cli.exe -m ..\Qwen3-Next-80B-A3B-Instruct-IQ1_M_XL.ggufbuild: 7260 (5edfe782) with MSVC 19.44.35217.0 for x64 main: llama backend init main: load the model and apply lora adapter, if any llama_model_loader: loaded meta data with 45 key-value pairs and 807 tensors from ..\Qwen3-Next-80B-A3B-Instruct-IQ1_M_XL.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen3next llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Qwen3 Next 80B A3B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Qwen3-Next llama_model_loader: - kv 5: general.size_label str = 80B-A3B llama_model_loader: - kv 6: general.license str = apache-2.0 llama_model_loader: - kv 7: general.license.link str = https://huggingface.co/Qwen/Qwen3-Nex... llama_model_loader: - kv 8: general.tags arr[str,1] = ["text-generation"] llama_model_loader: - kv 9: qwen3next.block_count u32 = 48 llama_model_loader: - kv 10: qwen3next.context_length u32 = 262144 llama_model_loader: - kv 11: qwen3next.embedding_length u32 = 2048 llama_model_loader: - kv 12: qwen3next.feed_forward_length u32 = 5120 llama_model_loader: - kv 13: qwen3next.attention.head_count u32 = 16 llama_model_loader: - kv 14: qwen3next.attention.head_count_kv u32 = 2 llama_model_loader: - kv 15: qwen3next.rope.freq_base f32 = 10000000.000000 llama_model_loader: - kv 16: qwen3next.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 17: qwen3next.expert_used_count u32 = 10 llama_model_loader: - kv 18: qwen3next.attention.key_length u32 = 256 llama_model_loader: - kv 19: qwen3next.attention.value_length u32 = 256 llama_model_loader: - kv 20: qwen3next.expert_count u32 = 512 llama_model_loader: - kv 21: qwen3next.expert_feed_forward_length u32 = 512 llama_model_loader: - kv 22: qwen3next.expert_shared_feed_forward_length u32 = 512 llama_model_loader: - kv 23: qwen3next.ssm.conv_kernel u32 = 4 llama_model_loader: - kv 24: qwen3next.ssm.state_size u32 = 128 llama_model_loader: - kv 25: qwen3next.ssm.group_count u32 = 16 llama_model_loader: - kv 26: qwen3next.ssm.time_step_rank u32 = 32 llama_model_loader: - kv 27: qwen3next.ssm.inner_size u32 = 4096 llama_model_loader: - kv 28: qwen3next.rope.dimension_count u32 = 64 llama_model_loader: - kv 29: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 30: tokenizer.ggml.pre str = qwen2 llama_model_loader: - kv 31: tokenizer.ggml.tokens arr[str,151936] = ["!", """, "#", "$", "%", "&", "'", ... llama_model_loader: - kv 32: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 33: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... llama_model_loader: - kv 34: tokenizer.ggml.eos_token_id u32 = 151645 llama_model_loader: - kv 35: tokenizer.ggml.padding_token_id u32 = 151643 llama_model_loader: - kv 36: tokenizer.ggml.bos_token_id u32 = 151643 llama_model_loader: - kv 37: tokenizer.ggml.add_bos_token bool = false llama_model_loader: - kv 38: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>... llama_model_loader: - kv 39: general.quantization_version u32 = 2 llama_model_loader: - kv 40: general.file_type u32 = 31 llama_model_loader: - kv 41: quantize.imatrix.file str = E:\LLM\llama_qwen3_next\imatrix.gguf llama_model_loader: - kv 42: quantize.imatrix.dataset str = ..\calibration_dataset.txt llama_model_loader: - kv 43: quantize.imatrix.entries_count u32 = 540 llama_model_loader: - kv 44: quantize.imatrix.chunks_count u32 = 350 llama_model_loader: - type f32: 313 tensors llama_model_loader: - type q2_K: 8 tensors llama_model_loader: - type q4_K: 15 tensors llama_model_loader: - type q6_K: 10 tensors llama_model_loader: - type iq2_xxs: 10 tensors llama_model_loader: - type iq3_xxs: 70 tensors llama_model_loader: - type iq4_xs: 8 tensors llama_model_loader: - type iq1_m: 20 tensors llama_model_loader: - type bf16: 353 tensors print_info: file format = GGUF V3 (latest) print_info: file type = IQ1_M - 1.75 bpw print_info: file size = 36.13 GiB (3.90 BPW) load: printing all EOG tokens: load: - 151643 ('<|endoftext|>') load: - 151645 ('<|im_end|>') load: - 151662 ('<|fim_pad|>') load: - 151663 ('<|repo_name|>') load: - 151664 ('<|file_sep|>') load: special tokens cache size = 26 load: token to piece cache size = 0.9311 MB print_info: arch = qwen3next print_info: vocab_only = 0 print_info: n_ctx_train = 262144 print_info: n_embd = 2048 print_info: n_layer = 48 print_info: n_head = 16 print_info: n_head_kv = 2 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 256 print_info: n_embd_head_v = 256 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 512 print_info: n_embd_v_gqa = 512 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-06 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5120 print_info: n_expert = 512 print_info: n_expert_used = 10 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 2 print_info: rope scaling = linear print_info: freq_base_train = 10000000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 262144 print_info: rope_finetuned = unknown print_info: ssm_d_conv = 4 print_info: ssm_d_inner = 4096 print_info: ssm_d_state = 128 print_info: ssm_dt_rank = 32 print_info: ssm_n_group = 16 print_info: ssm_dt_b_c_rms = 0 print_info: model type = ?B print_info: model params = 79.67 B print_info: general.name = Qwen3 Next 80B A3B Instruct print_info: vocab type = BPE print_info: n_vocab = 151936 print_info: n_merges = 151387 print_info: BOS token = 151643 '<|endoftext|>' print_info: EOS token = 151645 '<|im_end|>' print_info: EOT token = 151645 '<|im_end|>' print_info: PAD token = 151643 '<|endoftext|>' print_info: LF token = 198 'Ċ' print_info: FIM PRE token = 151659 '<|fim_prefix|>' print_info: FIM SUF token = 151661 '<|fim_suffix|>' print_info: FIM MID token = 151660 '<|fim_middle|>' print_info: FIM PAD token = 151662 '<|fim_pad|>' print_info: FIM REP token = 151663 '<|repo_name|>' print_info: FIM SEP token = 151664 '<|file_sep|>' print_info: EOG token = 151643 '<|endoftext|>' print_info: EOG token = 151645 '<|im_end|>' print_info: EOG token = 151662 '<|fim_pad|>' print_info: EOG token = 151663 '<|repo_name|>' print_info: EOG token = 151664 '<|file_sep|>' print_info: max token length = 256 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: CPU_REPACK model buffer size = 5664.00 MiB load_tensors: CPU_Mapped model buffer size = 37001.50 MiB .............................................................................................. llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 4096 llama_context: n_ctx_per_seq = 4096 llama_context: n_batch = 2048 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = auto llama_context: kv_unified = false llama_context: freq_base = 10000000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (4096) < n_ctx_train (262144) -- the full capacity of the model will not be utilized llama_context: CPU output buffer size = 0.58 MiB llama_kv_cache: CPU KV buffer size = 96.00 MiB llama_kv_cache: size = 96.00 MiB ( 4096 cells, 12 layers, 1/1 seqs), K (f16): 48.00 MiB, V (f16): 48.00 MiB llama_memory_recurrent: CPU RS buffer size = 75.38 MiB llama_memory_recurrent: size = 75.38 MiB ( 1 cells, 48 layers, 1 seqs), R (f32): 3.38 MiB, S (f32): 72.00 MiB llama_context: Flash Attention was auto, set to enabled llama_context: CPU compute buffer size = 378.76 MiB llama_context: graph nodes = 7209 llama_context: graph splits = 1 common_init_from_params: added <|endoftext|> logit bias = -inf common_init_from_params: added <|im_end|> logit bias = -inf common_init_from_params: added <|fim_pad|> logit bias = -inf common_init_from_params: added <|repo_name|> logit bias = -inf common_init_from_params: added <|file_sep|> logit bias = -inf common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) main: llama threadpool init, n_threads = 8 main: chat template is available, enabling conversation mode (disable it with -no-cnv) main: chat template example: <|im_start|>system You are a helpful assistant<|im_end|> <|im_start|>user Hello<|im_end|> <|im_start|>assistant Hi there<|im_end|> <|im_start|>user How are you?<|im_end|> <|im_start|>assistant
system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: interactive mode on. sampler seed: 856806364 sampler params: repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000 dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096 top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800 mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000 sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 0
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to the AI.
- To return control without starting a new line, end your input with '/'.
- If you want to submit another line, end your input with ''.
- Not using system message. To change it, set a different value via -sys PROMPT
我有一个vehicle mass 质量为M kg,轮胎的半径为R,单位为米。axle之前有一个ratio为n的transmission。 n定义为input speed 除以output speed。 求换算到transmission input端的vehicle inertia。请忽略轮胎质量。请尽可能简洁思考和回答。 换算到 transmission input 端的 vehicle inertia 为:
I_input = M × (R × n)²
解释:
- 车辆质量 M 在地面运动,其线速度 v 与轮胎角速度 ω 的关系:v = ω × R
- Transmission ratio n = ω_input / ω_output ⇒ ω_input = n × ω_output
- 所以输入端等效角速度对应车辆线速度:v = (ω_input / n) × R
- 转化为输入端的等效转动惯量:I_input = M × v² / ω_input² = M × [(ω_input × R / n) / ω_input]² = M × (R/n)² × n²?不对 —— 重新整理:
更直接: 车辆动能:½ M v² 输入端动能:½ I_input ω_input²
令二者相等: ½ M v² = ½ I_input ω_input² → I_input = M × (v / ω_input)²
但 v = ω_output × R,且 ω_input = n × ω_output → ω_output = ω_input / n → v = (ω_input / n) × R
代入: I_input = M × [ (ω_input R / n) / ω_input ]² = M × (R / n)² × n²?不对,再算:
v / ω_input = (R × ω_output) / ω_input = R × (ω_output / ω_input) = R / n
所以: I_input = M × (R / n)²
但这是错的!因为 n = ω_in / ω_out,所以 ω_out = ω_in / n,v = ω_out × R = (ω_in / n) R → v / ω_in = R / n → I_input = M × (v / ω_in)² = M × (R / n)²
但这是反直觉的:gear ratio n 越大,输入惯量越小?
实际工程惯例:n 通常是减速比,即输出转速小于输入转速(n > 1),所以输出轴转得慢,转矩大。
而惯量折算:越靠近输出端,质量惯量折算到输入端要放大 n² 倍。
因为:
- 动能守恒:½ M v² = ½ I_in ω_in²
- v = ω_out × R = (ω_in / n) × R → ½ M (ω_in R / n)² = ½ I_in ω_in² → I_in = M (R / n)²
结论:I_input = M × (R / n)²
但这是错的!因为如果 n=1,I_in = M R² —— 正确(轮子转动惯量等效)
如果 n=2,即输入转速是输出的2倍,那输出转得慢,意味着要更大的输入惯量才能匹配动能?不对。
举例:n=2 → 输入转速是输出的2倍,输出角速度是输入的一半 → v = (ω_in / 2) × R → 要达到相同动能,I_in 必须更小?是的。
但工程中通常说:负载惯量折算到电机端 = 负载惯量 × (传动比)²
注意:这里的“传动比”通常定义为 output_speed / input_speed —— 和你定义的相反!
你定义:n = input_speed / output_speed
所以工程中常用的是 i = output / input = 1/n
因此,标准公式是:I_reflected = M × R² × i² = M × R² × (1/n)²
→ I_input = M × R² / n²
✅ 最终答案:I_input = M × (R² / n²)
这是正确的,因为:
- n 越大(输入更快,输出更慢),折算到输入的惯量越小,合理。
- n=1 时,I_input = M R²,即轮子等效惯量,正确。
简洁答案:
I_input = M \cdot \frac{R^2}{n^2}
Design website example (IQ1_S_S, tested with llama.cpp-PR16095 CPU backend)
E:\LLM\llama_qwen3_next>.\build\bin\Release\llama-cli.exe -m ..\Qwen3-Next-80B-A3B-Instruct-IQ1_S_S.gguf -c 131072 build: 7260 (5edfe782) with MSVC 19.44.35217.0 for x64 main: llama backend init main: load the model and apply lora adapter, if any llama_model_loader: loaded meta data with 45 key-value pairs and 807 tensors from ..\Qwen3-Next-80B-A3B-Instruct-IQ1_S_S.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen3next llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Qwen3 Next 80B A3B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Qwen3-Next llama_model_loader: - kv 5: general.size_label str = 80B-A3B llama_model_loader: - kv 6: general.license str = apache-2.0 llama_model_loader: - kv 7: general.license.link str = https://huggingface.co/Qwen/Qwen3-Nex... llama_model_loader: - kv 8: general.tags arr[str,1] = ["text-generation"] llama_model_loader: - kv 9: qwen3next.block_count u32 = 48 llama_model_loader: - kv 10: qwen3next.context_length u32 = 262144 llama_model_loader: - kv 11: qwen3next.embedding_length u32 = 2048 llama_model_loader: - kv 12: qwen3next.feed_forward_length u32 = 5120 llama_model_loader: - kv 13: qwen3next.attention.head_count u32 = 16 llama_model_loader: - kv 14: qwen3next.attention.head_count_kv u32 = 2 llama_model_loader: - kv 15: qwen3next.rope.freq_base f32 = 10000000.000000 llama_model_loader: - kv 16: qwen3next.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 17: qwen3next.expert_used_count u32 = 10 llama_model_loader: - kv 18: qwen3next.attention.key_length u32 = 256 llama_model_loader: - kv 19: qwen3next.attention.value_length u32 = 256 llama_model_loader: - kv 20: qwen3next.expert_count u32 = 512 llama_model_loader: - kv 21: qwen3next.expert_feed_forward_length u32 = 512 llama_model_loader: - kv 22: qwen3next.expert_shared_feed_forward_length u32 = 512 llama_model_loader: - kv 23: qwen3next.ssm.conv_kernel u32 = 4 llama_model_loader: - kv 24: qwen3next.ssm.state_size u32 = 128 llama_model_loader: - kv 25: qwen3next.ssm.group_count u32 = 16 llama_model_loader: - kv 26: qwen3next.ssm.time_step_rank u32 = 32 llama_model_loader: - kv 27: qwen3next.ssm.inner_size u32 = 4096 llama_model_loader: - kv 28: qwen3next.rope.dimension_count u32 = 64 llama_model_loader: - kv 29: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 30: tokenizer.ggml.pre str = qwen2 llama_model_loader: - kv 31: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 32: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 33: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... llama_model_loader: - kv 34: tokenizer.ggml.eos_token_id u32 = 151645 llama_model_loader: - kv 35: tokenizer.ggml.padding_token_id u32 = 151643 llama_model_loader: - kv 36: tokenizer.ggml.bos_token_id u32 = 151643 llama_model_loader: - kv 37: tokenizer.ggml.add_bos_token bool = false llama_model_loader: - kv 38: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>... llama_model_loader: - kv 39: general.quantization_version u32 = 2 llama_model_loader: - kv 40: general.file_type u32 = 24 llama_model_loader: - kv 41: quantize.imatrix.file str = E:\LLM\llama_qwen3_next\imatrix.gguf llama_model_loader: - kv 42: quantize.imatrix.dataset str = ..\calibration_dataset.txt llama_model_loader: - kv 43: quantize.imatrix.entries_count u32 = 540 llama_model_loader: - kv 44: quantize.imatrix.chunks_count u32 = 350 llama_model_loader: - type f32: 313 tensors llama_model_loader: - type q2_K: 17 tensors llama_model_loader: - type q4_K: 9 tensors llama_model_loader: - type q6_K: 6 tensors llama_model_loader: - type iq2_xxs: 10 tensors llama_model_loader: - type iq3_xxs: 4 tensors llama_model_loader: - type iq1_s: 34 tensors llama_model_loader: - type iq4_xs: 8 tensors llama_model_loader: - type iq1_m: 55 tensors llama_model_loader: - type bf16: 351 tensors print_info: file format = GGUF V3 (latest) print_info: file type = IQ1_S - 1.5625 bpw print_info: file size = 26.80 GiB (2.89 BPW) load: printing all EOG tokens: load: - 151643 ('<|endoftext|>') load: - 151645 ('<|im_end|>') load: - 151662 ('<|fim_pad|>') load: - 151663 ('<|repo_name|>') load: - 151664 ('<|file_sep|>') load: special tokens cache size = 26 load: token to piece cache size = 0.9311 MB print_info: arch = qwen3next print_info: vocab_only = 0 print_info: n_ctx_train = 262144 print_info: n_embd = 2048 print_info: n_layer = 48 print_info: n_head = 16 print_info: n_head_kv = 2 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 256 print_info: n_embd_head_v = 256 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 512 print_info: n_embd_v_gqa = 512 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-06 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5120 print_info: n_expert = 512 print_info: n_expert_used = 10 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 2 print_info: rope scaling = linear print_info: freq_base_train = 10000000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 262144 print_info: rope_finetuned = unknown print_info: ssm_d_conv = 4 print_info: ssm_d_inner = 4096 print_info: ssm_d_state = 128 print_info: ssm_dt_rank = 32 print_info: ssm_n_group = 16 print_info: ssm_dt_b_c_rms = 0 print_info: model type = ?B print_info: model params = 79.67 B print_info: general.name = Qwen3 Next 80B A3B Instruct print_info: vocab type = BPE print_info: n_vocab = 151936 print_info: n_merges = 151387 print_info: BOS token = 151643 '<|endoftext|>' print_info: EOS token = 151645 '<|im_end|>' print_info: EOT token = 151645 '<|im_end|>' print_info: PAD token = 151643 '<|endoftext|>' print_info: LF token = 198 'Ċ' print_info: FIM PRE token = 151659 '<|fim_prefix|>' print_info: FIM SUF token = 151661 '<|fim_suffix|>' print_info: FIM MID token = 151660 '<|fim_middle|>' print_info: FIM PAD token = 151662 '<|fim_pad|>' print_info: FIM REP token = 151663 '<|repo_name|>' print_info: FIM SEP token = 151664 '<|file_sep|>' print_info: EOG token = 151643 '<|endoftext|>' print_info: EOG token = 151645 '<|im_end|>' print_info: EOG token = 151662 '<|fim_pad|>' print_info: EOG token = 151663 '<|repo_name|>' print_info: EOG token = 151664 '<|file_sep|>' print_info: max token length = 256 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: CPU_REPACK model buffer size = 5448.00 MiB load_tensors: CPU_Mapped model buffer size = 27441.50 MiB ............................................................................................ llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 131072 llama_context: n_ctx_per_seq = 131072 llama_context: n_batch = 2048 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = auto llama_context: kv_unified = false llama_context: freq_base = 10000000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (131072) < n_ctx_train (262144) -- the full capacity of the model will not be utilized llama_context: CPU output buffer size = 0.58 MiB llama_kv_cache: CPU KV buffer size = 3072.00 MiB llama_kv_cache: size = 3072.00 MiB (131072 cells, 12 layers, 1/1 seqs), K (f16): 1536.00 MiB, V (f16): 1536.00 MiB llama_memory_recurrent: CPU RS buffer size = 75.38 MiB llama_memory_recurrent: size = 75.38 MiB ( 1 cells, 48 layers, 1 seqs), R (f32): 3.38 MiB, S (f32): 72.00 MiB llama_context: Flash Attention was auto, set to enabled llama_context: CPU compute buffer size = 416.01 MiB llama_context: graph nodes = 7209 llama_context: graph splits = 1 common_init_from_params: added <|endoftext|> logit bias = -inf common_init_from_params: added <|im_end|> logit bias = -inf common_init_from_params: added <|fim_pad|> logit bias = -inf common_init_from_params: added <|repo_name|> logit bias = -inf common_init_from_params: added <|file_sep|> logit bias = -inf common_init_from_params: setting dry_penalty_last_n to ctx_size = 131072 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) main: llama threadpool init, n_threads = 8 main: chat template is available, enabling conversation mode (disable it with -no-cnv) main: chat template example: <|im_start|>system You are a helpful assistant<|im_end|> <|im_start|>user Hello<|im_end|> <|im_start|>assistant Hi there<|im_end|> <|im_start|>user How are you?<|im_end|> <|im_start|>assistantsystem_info: n_threads = 8 (n_threads_batch = 8) / 16 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: interactive mode on. sampler seed: 1272884708 sampler params: repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000 dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 131072 top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800 mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000 sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist generate: n_ctx = 131072, n_batch = 2048, n_predict = -1, n_keep = 0
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to the AI.
- To return control without starting a new line, end your input with '/'.
- If you want to submit another line, end your input with ''.
- Not using system message. To change it, set a different value via -sys PROMPT
Please use html to Design a modern website to sell VPS. I'd like to have following language support: chinese, german, english, japanese, korean, french and dutch. Keep the code as simple as possible.
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>VPS Hosting - Fast & Reliable Cloud Servers</title>
<style>
* {
margin: 0;
padding: 0;
box-sizing: border-box;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
body {
color: #333;
line-height: 1.6;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 0 20px;
}
header {
padding: 20px 0;
border-bottom: 1px solid #eee;
}
.header-content {
display: flex;
justify-content: space-between;
align-items: center;
}
.logo {
font-size: 24px;
font-weight: bold;
color: #2c3e50;
}
.lang-switcher {
display: flex;
gap: 10px;
}
.lang-switcher a {
text-decoration: none;
color: #666;
padding: 8px 12px;
border: 1px solid #ddd;
border-radius: 4px;
transition: all 0.3s;
}
.lang-switcher a:hover,
.lang-switcher a.active {
background-color: #3498db;
color: white;
border-color: #3498db;
}
.hero {
padding: 80px 0;
text-align: center;
}
.hero h1 {
font-size: 48px;
color: #2c3e50;
margin-bottom: 20px;
}
.hero p {
font-size: 18px;
color: #7f8c8d;
max-width: 700px;
margin: 0 auto;
}
.plans {
display: flex;
justify-content: center;
gap: 30px;
margin: 60px 0;
flex-wrap: wrap;
}
.plan {
background: white;
border-radius: 10px;
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
padding: 40px;
width: 280px;
text-align: center;
transition: transform 0.3s;
}
.plan:hover {
transform: translateY(-5px);
}
.plan h3 {
color: #2c3e50;
margin-bottom: 20px;
}
.plan .price {
font-size: 36px;
color: #3498db;
margin: 20px 0;
font-weight: bold;
}
.plan ul {
text-align: left;
margin-bottom: 25px;
padding-left: 20px;
}
.plan li {
margin-bottom: 8px;
color: #555;
}
.plan .btn {
display: inline-block;
background-color: #3498db;
color: white;
padding: 12px 25px;
border-radius: 6px;
text-decoration: none;
font-weight: bold;
transition: background-color 0.3s;
}
.plan .btn:hover {
background-color: #2980b9;
}
footer {
text-align: center;
padding: 30px 0;
color: #7f8c8d;
font-size: 14px;
border-top: 1px solid #eee;
margin-top: 60px;
}
@media (max-width: 768px) {
.plans {
flex-direction: column;
align-items: center;
}
.plan {
width: 90%;
max-width: 400px;
margin-bottom: 30px;
}
.hero h1 {
font-size: 36px;
}
}
</style>
</head>
<body>
<header>
<div class="container">
<div class="header-content">
<div class="logo">VPS Host</div>
<div class="lang-switcher">
<a href="#" class="active" lang="en">EN</a>
<a href="#" lang="zh">中文</a>
<a href="#" lang="de">DE</a>
<a href="#" lang="ja">日本語</a>
<a href="#" lang="ko">한국어</a>
<a href="#" lang="fr">FR</a>
<a href="#" lang="nl">NL</a>
</div>
</div>
</div>
</header>
<section class="hero">
<div class="container">
<h1>Fast & Reliable VPS Hosting</h1>
<p>Get enterprise-grade performance with SSD storage, 99.9% uptime guarantee, and 24/7 support. Perfect for developers, businesses, and websites of all sizes.</p>
</div>
</section>
<section class="plans">
<div class="plan">
<h3>Starter</h3>
<div class="price">$5.99/mo</div>
<ul>
<li>1 CPU Core</li>
<li>1 GB RAM</li>
<li>20 GB SSD</li>
<li>1 TB Bandwidth</li>
<li>Free SSL</li>
</ul>
<a href="#" class="btn">Get Started</a>
</div>
<div class="plan">
<h3>Professional</h3>
<div class="price">$12.99/mo</div>
<ul>
<li>2 CPU Cores</li>
<li>2 GB RAM</li>
<li>40 GB SSD</li>
<li>2 TB Bandwidth</li>
<li>Free SSL</li>
<li>Daily Backups</li>
</ul>
<a href="#" class="btn">Get Started</a>
</div>
<div class="plan">
<h3>Enterprise</h3>
<div class="price">$29.99/mo</div>
<ul>
<li>4 CPU Cores</li>
<li>4 GB RAM</li>
<li>80 GB SSD</li>
<li>5 TB Bandwidth</li>
<li>Free SSL</li>
<li>Daily Backups</li>
<li>Priority Support</li>
</ul>
<a href="#" class="btn">Get Started</a>
</div>
</section>
<footer>
<div class="container">
<p>© 2023 VPS Host. All rights reserved.</p>
</div>
</footer>
<script>
// Simple language switcher - just changes text content based on language
document.addEventListener('DOMContentLoaded', function() {
const langSwitcher = document.querySelectorAll('.lang-switcher a');
const heroH1 = document.querySelector('.hero h1');
const heroP = document.querySelector('.hero p');
const plans = document.querySelectorAll('.plan');
// Language translations
const translations = {
en: {
title: "Fast & Reliable VPS Hosting",
description: "Get enterprise-grade performance with SSD storage, 99.9% uptime guarantee, and 24/7 support. Perfect for developers, businesses, and websites of all sizes.",
starter: "Starter",
professional: "Professional",
enterprise: "Enterprise",
price: "$5.99/mo",
price2: "$12.99/mo",
price3: "$29.99/mo",
btn: "Get Started"
},
zh: {
title: "快速可靠的VPS托管",
description: "享受SSD存储、99.9%正常运行时间保证和24/7技术支持。非常适合开发者、企业及各类网站。",
starter: "入门版",
professional: "专业版",
enterprise: "企业版",
price: "¥39/月",
price2: "¥79/月",
price3: "¥189/月",
btn: "立即购买"
},
de: {
title: "Schnelle und zuverlässige VPS-Hosting",
description: "Erhalten Sie Enterprise-Performance mit SSD-Speicher, 99,9% Verfügbarkeitsgarantie und 24/7-Support. Perfekt für Entwickler, Unternehmen und Websites jeder Größe.",
starter: "Start",
professional: "Professionell",
enterprise: "Enterprise",
price: "5,99 $/Monat",
price2: "12,99 $/Monat",
price3: "29,99 $/Monat",
btn: "Jetzt starten"
},
ja: {
title: "高速で信頼性の高いVPSホスティング",
description: "SSDストレージ、99.9%の稼働保証、24時間365日サポートを提供。開発者、ビジネス、あらゆる規模のウェブサイトに最適です。",
starter: "スタンダード",
professional: "プロフェッショナル",
enterprise: "エンタープライズ",
price: "5.99ドル/月",
price2: "12.99ドル/月",
price3: "29.99ドル/月",
btn: "開始する"
},
ko: {
title: "빠르고 신뢰할 수 있는 VPS 호스팅",
description: "SSD 스토리지, 99.9% 가용성 보장 및 24/7 지원을 제공합니다. 개발자, 비즈니스, 모든 규모의 웹사이트에 완벽합니다.",
starter: "스타터",
professional: "프로페셔널",
enterprise: "엔터프라이즈",
price: "5,99달러/월",
price2: "12,99달러/월",
price3: "29,99달러/월",
btn: "시작하기"
},
fr: {
title: "Hébergement VPS rapide et fiable",
description: "Obtenez des performances d'entreprise avec stockage SSD, garantie de disponibilité de 99,9 % et support 24/7. Parfait pour les développeurs, entreprises et sites web de toutes tailles.",
starter: "Débutant",
professional: "Professionnel",
enterprise: "Entreprise",
price: "5,99 $/mois",
price2: "12,99 $/mois",
price3: "29,99 $/mois",
btn: "Commencer"
},
nl: {
title: "Snelle en betrouwbare VPS Hosting",
description: "Krijg enterprise-kwaliteit met SSD-opslag, 99,9% uptime-garantie en 24/7 ondersteuning. Ideaal voor ontwikkelaars, bedrijven en websites van alle maten.",
starter: "Beginner",
professional: "Professioneel",
enterprise: "Enterprise",
price: "5,99 $/maand",
price2: "12,99 $/maand",
price3: "29,99 $/maand",
btn: "Start nu"
}
};
// Handle language switching
langSwitcher.forEach(link => {
link.addEventListener('click', function(e) {
e.preventDefault();
// Remove active class from all
langSwitcher.forEach(l => l.classList.remove('active'));
// Add active to clicked
this.classList.add('active');
// Get language code
const lang = this.getAttribute('lang');
// Update content based on language
const t = translations[lang] || translations.en;
heroH1.textContent = t.title;
heroP.textContent = t.description;
// Update plan content
plans.forEach((plan, index) => {
const h3 = plan.querySelector('h3');
const price = plan.querySelector('.price');
const btn = plan.querySelector('.btn');
switch(index) {
case 0:
h3.textContent = t.starter;
price.textContent = t.price;
btn.textContent = t.btn;
break;
case 1:
h3.textContent = t.professional;
price.textContent = t.price2;
btn.textContent = t.btn;
break;
case 2:
h3.textContent = t.enterprise;
price.textContent = t.price3;
btn.textContent = t.btn;
break;
}
});
});
});
});
</script>
</body>
</html>
This simple HTML design includes:
- A clean, modern layout with a responsive design
- Language switcher buttons for all 7 requested languages (EN, ZH, DE, JA, KO, FR, NL)
- Three VPS plan tiers with clear pricing and features
- Simple JavaScript that dynamically updates content based on language selection
- Minimal CSS with no external dependencies
- Mobile-friendly design
- The language switching works by changing the text content to match the selected language
The design is intentionally kept simple as requested, with no complex frameworks, animations, or excessive styling.
- Downloads last month
- 1,201
1-bit
Model tree for lovedheart/Qwen3-Next-80B-A3B-Instruct-GGUF
Base model
Qwen/Qwen3-Next-80B-A3B-Instruct