Upload BacformerForCausalGM
Browse files- config.json +7 -202
- configuration_bacformer.py +72 -0
- modeling_bacformer.py +1461 -0
config.json
CHANGED
|
@@ -1,10 +1,13 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "/rds/user/mw896/rds-flotolab-9X9gY1OFt4M/projects/bacformer/output-data/all-genomes/runs-causal/12L-full-data-rotary-lr15e-5/checkpoint-176000/",
|
| 3 |
"alpha_contrastive_loss": 0.5,
|
| 4 |
"architectures": [
|
| 5 |
"BacformerForCausalGM"
|
| 6 |
],
|
| 7 |
"attention_probs_dropout_prob": 0.1,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
"batch_size": 1,
|
| 9 |
"ckpt_path": null,
|
| 10 |
"dataloader_num_workers": 10,
|
|
@@ -15,212 +18,14 @@
|
|
| 15 |
"hidden_dropout_prob": 0.1,
|
| 16 |
"hidden_size": 480,
|
| 17 |
"id2label": {
|
| 18 |
-
"0": "LABEL_0"
|
| 19 |
-
"1": "LABEL_1",
|
| 20 |
-
"2": "LABEL_2",
|
| 21 |
-
"3": "LABEL_3",
|
| 22 |
-
"4": "LABEL_4",
|
| 23 |
-
"5": "LABEL_5",
|
| 24 |
-
"6": "LABEL_6",
|
| 25 |
-
"7": "LABEL_7",
|
| 26 |
-
"8": "LABEL_8",
|
| 27 |
-
"9": "LABEL_9",
|
| 28 |
-
"10": "LABEL_10",
|
| 29 |
-
"11": "LABEL_11",
|
| 30 |
-
"12": "LABEL_12",
|
| 31 |
-
"13": "LABEL_13",
|
| 32 |
-
"14": "LABEL_14",
|
| 33 |
-
"15": "LABEL_15",
|
| 34 |
-
"16": "LABEL_16",
|
| 35 |
-
"17": "LABEL_17",
|
| 36 |
-
"18": "LABEL_18",
|
| 37 |
-
"19": "LABEL_19",
|
| 38 |
-
"20": "LABEL_20",
|
| 39 |
-
"21": "LABEL_21",
|
| 40 |
-
"22": "LABEL_22",
|
| 41 |
-
"23": "LABEL_23",
|
| 42 |
-
"24": "LABEL_24",
|
| 43 |
-
"25": "LABEL_25",
|
| 44 |
-
"26": "LABEL_26",
|
| 45 |
-
"27": "LABEL_27",
|
| 46 |
-
"28": "LABEL_28",
|
| 47 |
-
"29": "LABEL_29",
|
| 48 |
-
"30": "LABEL_30",
|
| 49 |
-
"31": "LABEL_31",
|
| 50 |
-
"32": "LABEL_32",
|
| 51 |
-
"33": "LABEL_33",
|
| 52 |
-
"34": "LABEL_34",
|
| 53 |
-
"35": "LABEL_35",
|
| 54 |
-
"36": "LABEL_36",
|
| 55 |
-
"37": "LABEL_37",
|
| 56 |
-
"38": "LABEL_38",
|
| 57 |
-
"39": "LABEL_39",
|
| 58 |
-
"40": "LABEL_40",
|
| 59 |
-
"41": "LABEL_41",
|
| 60 |
-
"42": "LABEL_42",
|
| 61 |
-
"43": "LABEL_43",
|
| 62 |
-
"44": "LABEL_44",
|
| 63 |
-
"45": "LABEL_45",
|
| 64 |
-
"46": "LABEL_46",
|
| 65 |
-
"47": "LABEL_47",
|
| 66 |
-
"48": "LABEL_48",
|
| 67 |
-
"49": "LABEL_49",
|
| 68 |
-
"50": "LABEL_50",
|
| 69 |
-
"51": "LABEL_51",
|
| 70 |
-
"52": "LABEL_52",
|
| 71 |
-
"53": "LABEL_53",
|
| 72 |
-
"54": "LABEL_54",
|
| 73 |
-
"55": "LABEL_55",
|
| 74 |
-
"56": "LABEL_56",
|
| 75 |
-
"57": "LABEL_57",
|
| 76 |
-
"58": "LABEL_58",
|
| 77 |
-
"59": "LABEL_59",
|
| 78 |
-
"60": "LABEL_60",
|
| 79 |
-
"61": "LABEL_61",
|
| 80 |
-
"62": "LABEL_62",
|
| 81 |
-
"63": "LABEL_63",
|
| 82 |
-
"64": "LABEL_64",
|
| 83 |
-
"65": "LABEL_65",
|
| 84 |
-
"66": "LABEL_66",
|
| 85 |
-
"67": "LABEL_67",
|
| 86 |
-
"68": "LABEL_68",
|
| 87 |
-
"69": "LABEL_69",
|
| 88 |
-
"70": "LABEL_70",
|
| 89 |
-
"71": "LABEL_71",
|
| 90 |
-
"72": "LABEL_72",
|
| 91 |
-
"73": "LABEL_73",
|
| 92 |
-
"74": "LABEL_74",
|
| 93 |
-
"75": "LABEL_75",
|
| 94 |
-
"76": "LABEL_76",
|
| 95 |
-
"77": "LABEL_77",
|
| 96 |
-
"78": "LABEL_78",
|
| 97 |
-
"79": "LABEL_79",
|
| 98 |
-
"80": "LABEL_80",
|
| 99 |
-
"81": "LABEL_81",
|
| 100 |
-
"82": "LABEL_82",
|
| 101 |
-
"83": "LABEL_83",
|
| 102 |
-
"84": "LABEL_84",
|
| 103 |
-
"85": "LABEL_85",
|
| 104 |
-
"86": "LABEL_86",
|
| 105 |
-
"87": "LABEL_87",
|
| 106 |
-
"88": "LABEL_88",
|
| 107 |
-
"89": "LABEL_89",
|
| 108 |
-
"90": "LABEL_90",
|
| 109 |
-
"91": "LABEL_91",
|
| 110 |
-
"92": "LABEL_92",
|
| 111 |
-
"93": "LABEL_93",
|
| 112 |
-
"94": "LABEL_94",
|
| 113 |
-
"95": "LABEL_95",
|
| 114 |
-
"96": "LABEL_96",
|
| 115 |
-
"97": "LABEL_97",
|
| 116 |
-
"98": "LABEL_98",
|
| 117 |
-
"99": "LABEL_99"
|
| 118 |
},
|
| 119 |
"initializer_range": 0.02,
|
| 120 |
"input_dir": "/rds/user/mw896/rds-flotolab-9X9gY1OFt4M/projects/bacformer/input-data/eval-genomes/",
|
| 121 |
"intermediate_size": 1280,
|
| 122 |
"is_causal_gm": true,
|
| 123 |
"label2id": {
|
| 124 |
-
"LABEL_0": 0
|
| 125 |
-
"LABEL_1": 1,
|
| 126 |
-
"LABEL_10": 10,
|
| 127 |
-
"LABEL_11": 11,
|
| 128 |
-
"LABEL_12": 12,
|
| 129 |
-
"LABEL_13": 13,
|
| 130 |
-
"LABEL_14": 14,
|
| 131 |
-
"LABEL_15": 15,
|
| 132 |
-
"LABEL_16": 16,
|
| 133 |
-
"LABEL_17": 17,
|
| 134 |
-
"LABEL_18": 18,
|
| 135 |
-
"LABEL_19": 19,
|
| 136 |
-
"LABEL_2": 2,
|
| 137 |
-
"LABEL_20": 20,
|
| 138 |
-
"LABEL_21": 21,
|
| 139 |
-
"LABEL_22": 22,
|
| 140 |
-
"LABEL_23": 23,
|
| 141 |
-
"LABEL_24": 24,
|
| 142 |
-
"LABEL_25": 25,
|
| 143 |
-
"LABEL_26": 26,
|
| 144 |
-
"LABEL_27": 27,
|
| 145 |
-
"LABEL_28": 28,
|
| 146 |
-
"LABEL_29": 29,
|
| 147 |
-
"LABEL_3": 3,
|
| 148 |
-
"LABEL_30": 30,
|
| 149 |
-
"LABEL_31": 31,
|
| 150 |
-
"LABEL_32": 32,
|
| 151 |
-
"LABEL_33": 33,
|
| 152 |
-
"LABEL_34": 34,
|
| 153 |
-
"LABEL_35": 35,
|
| 154 |
-
"LABEL_36": 36,
|
| 155 |
-
"LABEL_37": 37,
|
| 156 |
-
"LABEL_38": 38,
|
| 157 |
-
"LABEL_39": 39,
|
| 158 |
-
"LABEL_4": 4,
|
| 159 |
-
"LABEL_40": 40,
|
| 160 |
-
"LABEL_41": 41,
|
| 161 |
-
"LABEL_42": 42,
|
| 162 |
-
"LABEL_43": 43,
|
| 163 |
-
"LABEL_44": 44,
|
| 164 |
-
"LABEL_45": 45,
|
| 165 |
-
"LABEL_46": 46,
|
| 166 |
-
"LABEL_47": 47,
|
| 167 |
-
"LABEL_48": 48,
|
| 168 |
-
"LABEL_49": 49,
|
| 169 |
-
"LABEL_5": 5,
|
| 170 |
-
"LABEL_50": 50,
|
| 171 |
-
"LABEL_51": 51,
|
| 172 |
-
"LABEL_52": 52,
|
| 173 |
-
"LABEL_53": 53,
|
| 174 |
-
"LABEL_54": 54,
|
| 175 |
-
"LABEL_55": 55,
|
| 176 |
-
"LABEL_56": 56,
|
| 177 |
-
"LABEL_57": 57,
|
| 178 |
-
"LABEL_58": 58,
|
| 179 |
-
"LABEL_59": 59,
|
| 180 |
-
"LABEL_6": 6,
|
| 181 |
-
"LABEL_60": 60,
|
| 182 |
-
"LABEL_61": 61,
|
| 183 |
-
"LABEL_62": 62,
|
| 184 |
-
"LABEL_63": 63,
|
| 185 |
-
"LABEL_64": 64,
|
| 186 |
-
"LABEL_65": 65,
|
| 187 |
-
"LABEL_66": 66,
|
| 188 |
-
"LABEL_67": 67,
|
| 189 |
-
"LABEL_68": 68,
|
| 190 |
-
"LABEL_69": 69,
|
| 191 |
-
"LABEL_7": 7,
|
| 192 |
-
"LABEL_70": 70,
|
| 193 |
-
"LABEL_71": 71,
|
| 194 |
-
"LABEL_72": 72,
|
| 195 |
-
"LABEL_73": 73,
|
| 196 |
-
"LABEL_74": 74,
|
| 197 |
-
"LABEL_75": 75,
|
| 198 |
-
"LABEL_76": 76,
|
| 199 |
-
"LABEL_77": 77,
|
| 200 |
-
"LABEL_78": 78,
|
| 201 |
-
"LABEL_79": 79,
|
| 202 |
-
"LABEL_8": 8,
|
| 203 |
-
"LABEL_80": 80,
|
| 204 |
-
"LABEL_81": 81,
|
| 205 |
-
"LABEL_82": 82,
|
| 206 |
-
"LABEL_83": 83,
|
| 207 |
-
"LABEL_84": 84,
|
| 208 |
-
"LABEL_85": 85,
|
| 209 |
-
"LABEL_86": 86,
|
| 210 |
-
"LABEL_87": 87,
|
| 211 |
-
"LABEL_88": 88,
|
| 212 |
-
"LABEL_89": 89,
|
| 213 |
-
"LABEL_9": 9,
|
| 214 |
-
"LABEL_90": 90,
|
| 215 |
-
"LABEL_91": 91,
|
| 216 |
-
"LABEL_92": 92,
|
| 217 |
-
"LABEL_93": 93,
|
| 218 |
-
"LABEL_94": 94,
|
| 219 |
-
"LABEL_95": 95,
|
| 220 |
-
"LABEL_96": 96,
|
| 221 |
-
"LABEL_97": 97,
|
| 222 |
-
"LABEL_98": 98,
|
| 223 |
-
"LABEL_99": 99
|
| 224 |
},
|
| 225 |
"layer_norm_eps": 1e-12,
|
| 226 |
"logging_steps": 500,
|
|
@@ -262,7 +67,7 @@
|
|
| 262 |
"test_after_train": false,
|
| 263 |
"torch_dtype": "float32",
|
| 264 |
"train_subset_prop": 1.0,
|
| 265 |
-
"transformers_version": "4.
|
| 266 |
"warmup_proportion": 0.1,
|
| 267 |
"weight_decay": 0.01
|
| 268 |
}
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"alpha_contrastive_loss": 0.5,
|
| 3 |
"architectures": [
|
| 4 |
"BacformerForCausalGM"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_bacformer.BacformerConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_bacformer.BacformerForCausalGM"
|
| 10 |
+
},
|
| 11 |
"batch_size": 1,
|
| 12 |
"ckpt_path": null,
|
| 13 |
"dataloader_num_workers": 10,
|
|
|
|
| 18 |
"hidden_dropout_prob": 0.1,
|
| 19 |
"hidden_size": 480,
|
| 20 |
"id2label": {
|
| 21 |
+
"0": "LABEL_0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
},
|
| 23 |
"initializer_range": 0.02,
|
| 24 |
"input_dir": "/rds/user/mw896/rds-flotolab-9X9gY1OFt4M/projects/bacformer/input-data/eval-genomes/",
|
| 25 |
"intermediate_size": 1280,
|
| 26 |
"is_causal_gm": true,
|
| 27 |
"label2id": {
|
| 28 |
+
"LABEL_0": 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
},
|
| 30 |
"layer_norm_eps": 1e-12,
|
| 31 |
"logging_steps": 500,
|
|
|
|
| 67 |
"test_after_train": false,
|
| 68 |
"torch_dtype": "float32",
|
| 69 |
"train_subset_prop": 1.0,
|
| 70 |
+
"transformers_version": "4.50.3",
|
| 71 |
"warmup_proportion": 0.1,
|
| 72 |
"weight_decay": 0.01
|
| 73 |
}
|
configuration_bacformer.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Literal
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
SPECIAL_TOKENS_DICT = {
|
| 6 |
+
"PAD": 0,
|
| 7 |
+
"MASK": 1,
|
| 8 |
+
"CLS": 2,
|
| 9 |
+
"SEP": 3,
|
| 10 |
+
"PROT_EMB": 4,
|
| 11 |
+
"END": 5,
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class BacformerConfig(PretrainedConfig):
|
| 16 |
+
"""Configuration class to store the configuration of a `BacformerModel`."""
|
| 17 |
+
|
| 18 |
+
model_type = "bacformer"
|
| 19 |
+
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
num_hidden_layers: int = 6,
|
| 23 |
+
num_attention_heads: int = 8,
|
| 24 |
+
hidden_size: int = 480, # default esm2_t12_35M_UR50D embedding dim
|
| 25 |
+
intermediate_size: int = 1280,
|
| 26 |
+
hidden_dropout_prob: float = 0.1,
|
| 27 |
+
attention_probs_dropout_prob: float = 0.1,
|
| 28 |
+
max_position_embeddings: int = 6000,
|
| 29 |
+
max_token_type_embeddings: int = 1000,
|
| 30 |
+
layer_norm_eps: float = 1e-12,
|
| 31 |
+
initializer_range: float = 0.02,
|
| 32 |
+
pad_token_id: int = SPECIAL_TOKENS_DICT["PAD"],
|
| 33 |
+
mask_token_id: int = SPECIAL_TOKENS_DICT["MASK"],
|
| 34 |
+
prot_emb_token_id: int = SPECIAL_TOKENS_DICT["PROT_EMB"],
|
| 35 |
+
end_token_id: int = SPECIAL_TOKENS_DICT["END"],
|
| 36 |
+
num_special_tokens: int = len(SPECIAL_TOKENS_DICT),
|
| 37 |
+
protein_clusters_vocab_size: int = 50001, # equal to the nr of protein clusters + 1
|
| 38 |
+
num_labels: int = 1, # for downstream tasks
|
| 39 |
+
is_causal_gm: bool = False,
|
| 40 |
+
return_dict: bool = False,
|
| 41 |
+
return_attn_weights: bool = False,
|
| 42 |
+
alpha_contrastive_loss: float = 0.5,
|
| 43 |
+
# only to use in the BacformerForGenomeClassification
|
| 44 |
+
problem_type: Literal[
|
| 45 |
+
"regression", "binary_classification", "single_label_classification", "multi_label_classification"
|
| 46 |
+
] = "single_label_classification",
|
| 47 |
+
**kwargs,
|
| 48 |
+
):
|
| 49 |
+
super().__init__(**kwargs)
|
| 50 |
+
|
| 51 |
+
self.num_hidden_layers = num_hidden_layers
|
| 52 |
+
self.num_attention_heads = num_attention_heads
|
| 53 |
+
self.hidden_size = hidden_size
|
| 54 |
+
self.intermediate_size = intermediate_size
|
| 55 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 56 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 57 |
+
self.max_position_embeddings = max_position_embeddings
|
| 58 |
+
self.max_token_type_embeddings = max_token_type_embeddings
|
| 59 |
+
self.layer_norm_eps = layer_norm_eps
|
| 60 |
+
self.initializer_range = initializer_range
|
| 61 |
+
self.pad_token_id = pad_token_id
|
| 62 |
+
self.mask_token_id = mask_token_id
|
| 63 |
+
self.prot_emb_token_id = prot_emb_token_id
|
| 64 |
+
self.end_token_id = end_token_id
|
| 65 |
+
self.num_special_tokens = num_special_tokens
|
| 66 |
+
self.protein_clusters_vocab_size = protein_clusters_vocab_size
|
| 67 |
+
self.num_labels = num_labels
|
| 68 |
+
self.is_causal_gm = is_causal_gm
|
| 69 |
+
self.return_dict = return_dict
|
| 70 |
+
self.return_attn_weights = return_attn_weights
|
| 71 |
+
self.problem_type = problem_type
|
| 72 |
+
self.alpha_contrastive_loss = alpha_contrastive_loss
|
modeling_bacformer.py
ADDED
|
@@ -0,0 +1,1461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Literal, Optional, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn.functional import (
|
| 9 |
+
binary_cross_entropy_with_logits,
|
| 10 |
+
cross_entropy,
|
| 11 |
+
gelu,
|
| 12 |
+
mse_loss,
|
| 13 |
+
scaled_dot_product_attention,
|
| 14 |
+
softmax,
|
| 15 |
+
)
|
| 16 |
+
from transformers import PreTrainedModel
|
| 17 |
+
from transformers.utils import ModelOutput
|
| 18 |
+
|
| 19 |
+
from bacformer_model.configuration_bacformer import SPECIAL_TOKENS_DICT, BacformerConfig
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def compute_contrastive_loss(
|
| 23 |
+
protein_embeddings: torch.Tensor,
|
| 24 |
+
last_hidden_state: torch.Tensor,
|
| 25 |
+
special_tokens_mask: torch.Tensor,
|
| 26 |
+
) -> torch.Tensor:
|
| 27 |
+
"""Compute contrastive loss between protein embeddings and masked items."""
|
| 28 |
+
# keep protein embeddings and masked items
|
| 29 |
+
# ensure the batch size is 1, the model currently does not work with batch size > 1
|
| 30 |
+
assert protein_embeddings.shape[0] == last_hidden_state.shape[0] == 1
|
| 31 |
+
|
| 32 |
+
# subset to mask and protein embedding tokens
|
| 33 |
+
special_tokens_mask = special_tokens_mask.squeeze(0)
|
| 34 |
+
mask = (special_tokens_mask == SPECIAL_TOKENS_DICT["PROT_EMB"]) | (
|
| 35 |
+
special_tokens_mask == SPECIAL_TOKENS_DICT["MASK"]
|
| 36 |
+
)
|
| 37 |
+
protein_embeddings = protein_embeddings.squeeze(0)[mask]
|
| 38 |
+
last_hidden_state = last_hidden_state.squeeze(0)[mask]
|
| 39 |
+
|
| 40 |
+
# Normalize embeddings
|
| 41 |
+
last_hidden_state = last_hidden_state / last_hidden_state.norm(dim=1, keepdim=True)
|
| 42 |
+
protein_embeddings = protein_embeddings / protein_embeddings.norm(dim=1, keepdim=True)
|
| 43 |
+
|
| 44 |
+
# Compute similarity matrix and loss as before
|
| 45 |
+
similarity_matrix = torch.matmul(last_hidden_state, protein_embeddings.T)
|
| 46 |
+
|
| 47 |
+
n_prots = protein_embeddings.shape[0]
|
| 48 |
+
labels = torch.arange(n_prots).to(protein_embeddings.device)
|
| 49 |
+
|
| 50 |
+
# Compute the loss
|
| 51 |
+
loss = cross_entropy(similarity_matrix, labels)
|
| 52 |
+
return loss
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def top_k_filtering(logits: torch.Tensor, top_k: int = 50):
|
| 56 |
+
"""
|
| 57 |
+
Keep only top_k logits and set the rest to -inf.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
logits (torch.Tensor): Logits of shape (batch_size, vocab_size).
|
| 61 |
+
top_k (int): The number of highest probability logits to keep.
|
| 62 |
+
|
| 63 |
+
Returns
|
| 64 |
+
-------
|
| 65 |
+
torch.Tensor: Filtered logits where only the top k values remain, and all others are -inf.
|
| 66 |
+
"""
|
| 67 |
+
if top_k <= 0:
|
| 68 |
+
return logits
|
| 69 |
+
|
| 70 |
+
# Find top_k values
|
| 71 |
+
top_k = min(top_k, logits.size(-1))
|
| 72 |
+
vals, idx = torch.topk(logits, top_k, dim=-1)
|
| 73 |
+
# Get the smallest logit in the top_k
|
| 74 |
+
min_vals = vals[:, -1].unsqueeze(-1)
|
| 75 |
+
# Mask all logits that are < this min value
|
| 76 |
+
mask = logits < min_vals
|
| 77 |
+
logits[mask] = float("-inf")
|
| 78 |
+
return logits
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def top_p_filtering(logits: torch.Tensor, top_p: float = 0.9):
|
| 82 |
+
"""
|
| 83 |
+
Keep the smallest set of logits whose cumulative probability >= top_p.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
logits (torch.Tensor): Logits of shape (batch_size, vocab_size).
|
| 87 |
+
top_p (float): Cumulative probability threshold.
|
| 88 |
+
|
| 89 |
+
Returns
|
| 90 |
+
-------
|
| 91 |
+
torch.Tensor: Filtered logits where only tokens within the top_p cumulative
|
| 92 |
+
probability mass are kept; the rest are set to -inf.
|
| 93 |
+
"""
|
| 94 |
+
if top_p >= 1.0:
|
| 95 |
+
return logits
|
| 96 |
+
|
| 97 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
| 98 |
+
cumulative_probs = torch.cumsum(softmax(sorted_logits, dim=-1), dim=-1)
|
| 99 |
+
|
| 100 |
+
# Identify where cumulative probability exceeds top_p
|
| 101 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 102 |
+
# Shift the mask to ensure we always keep at least one token
|
| 103 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 104 |
+
sorted_indices_to_remove[..., 0] = False
|
| 105 |
+
|
| 106 |
+
# Scatter to replicate the mask in the original ordering
|
| 107 |
+
for i in range(logits.size(0)):
|
| 108 |
+
remove_indices = sorted_indices[i, sorted_indices_to_remove[i]]
|
| 109 |
+
logits[i, remove_indices] = float("-inf")
|
| 110 |
+
|
| 111 |
+
return logits
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def create_4d_from_2d_attn_mask(attn_mask: torch.Tensor, num_attn_heads: int):
|
| 115 |
+
"""Helper function to reshape attn_mask to 3D from 2D"""
|
| 116 |
+
assert (
|
| 117 |
+
len(attn_mask.shape) == 2
|
| 118 |
+
), f"Please provide attn_mask of shape (batch_size, seq_len), current shape {attn_mask.shape}"
|
| 119 |
+
|
| 120 |
+
bs, seq_len = attn_mask.shape
|
| 121 |
+
attn_mask = attn_mask.view(bs, 1, 1, seq_len)
|
| 122 |
+
attn_mask = attn_mask.expand(-1, num_attn_heads, -1, -1)
|
| 123 |
+
attn_mask = attn_mask.view(bs, num_attn_heads, -1, seq_len)
|
| 124 |
+
return attn_mask
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
@dataclass
|
| 128 |
+
class BacformerModelOutput(ModelOutput):
|
| 129 |
+
"""Base class for outputs of the Bacformer model."""
|
| 130 |
+
|
| 131 |
+
loss: torch.FloatTensor | None = None
|
| 132 |
+
logits: torch.FloatTensor = None
|
| 133 |
+
last_hidden_state: torch.FloatTensor | None = None
|
| 134 |
+
attentions: Union[torch.FloatTensor, None] = None
|
| 135 |
+
pooler_output: torch.FloatTensor | None = None
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# Taken from facebookresearch/llama/model.py
|
| 139 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
| 140 |
+
"""Reshape the rotary embeddings for broadcasting."""
|
| 141 |
+
ndim = x.ndim
|
| 142 |
+
assert 0 <= 1 < ndim
|
| 143 |
+
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
| 144 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
| 145 |
+
return freqs_cis.view(*shape)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# Taken from facebookresearch/llama/model.py
|
| 149 |
+
def apply_rotary_emb(
|
| 150 |
+
xq: torch.Tensor,
|
| 151 |
+
xk: torch.Tensor,
|
| 152 |
+
freqs_cos: torch.Tensor,
|
| 153 |
+
freqs_sin: torch.Tensor,
|
| 154 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 155 |
+
"""Apply rotary embeddings to the query and key tensors."""
|
| 156 |
+
# reshape xq and xk to match the complex representation
|
| 157 |
+
xq_r, xq_i = xq.float().reshape(*xq.shape[:-1], -1, 2).unbind(-1)
|
| 158 |
+
xk_r, xk_i = xk.float().reshape(*xk.shape[:-1], -1, 2).unbind(-1)
|
| 159 |
+
|
| 160 |
+
# reshape freqs_cos and freqs_sin for broadcasting
|
| 161 |
+
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
|
| 162 |
+
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
|
| 163 |
+
|
| 164 |
+
# apply rotation using real numbers
|
| 165 |
+
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
|
| 166 |
+
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
|
| 167 |
+
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
|
| 168 |
+
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
|
| 169 |
+
|
| 170 |
+
# flatten last two dimensions
|
| 171 |
+
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
|
| 172 |
+
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
|
| 173 |
+
|
| 174 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
# Taken from facebookresearch/llama/model.py
|
| 178 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
| 179 |
+
"""Precompute the freqs cis for rotary embeddings."""
|
| 180 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
| 181 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
| 182 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
| 183 |
+
|
| 184 |
+
freqs_cos = torch.cos(freqs) # real part
|
| 185 |
+
freqs_sin = torch.sin(freqs) # imaginary part
|
| 186 |
+
return freqs_cos, freqs_sin
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def symmetrize(x):
|
| 190 |
+
"""Make layer symmetric in final two dimensions, used for protein-protein interaction prediction."""
|
| 191 |
+
return x + x.transpose(-1, -2)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def average_product_correct(x):
|
| 195 |
+
"""Perform average product correct, used for protein-protein interaction prediction."""
|
| 196 |
+
a1 = x.sum(-1, keepdims=True)
|
| 197 |
+
a2 = x.sum(-2, keepdims=True)
|
| 198 |
+
a12 = x.sum((-1, -2), keepdims=True)
|
| 199 |
+
|
| 200 |
+
avg = a1 * a2
|
| 201 |
+
# avg.div_(a12) # in-place to reduce memory
|
| 202 |
+
normalized = x - avg.div_(a12)
|
| 203 |
+
return normalized
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def scaled_dot_product_attention_w_attn_weights(
|
| 207 |
+
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
|
| 208 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 209 |
+
"""PyTorch Native implementation, modified to return attention weights."""
|
| 210 |
+
L, S = query.size(-2), key.size(-2)
|
| 211 |
+
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
| 212 |
+
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
|
| 213 |
+
if is_causal:
|
| 214 |
+
assert attn_mask is None
|
| 215 |
+
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
| 216 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
| 217 |
+
attn_bias.to(query.dtype)
|
| 218 |
+
|
| 219 |
+
if attn_mask is not None:
|
| 220 |
+
if attn_mask.dtype == torch.bool:
|
| 221 |
+
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
| 222 |
+
else:
|
| 223 |
+
attn_bias += attn_mask
|
| 224 |
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
| 225 |
+
attn_weight += attn_bias
|
| 226 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
| 227 |
+
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
| 228 |
+
attn_output = attn_weight @ value
|
| 229 |
+
return attn_output, attn_weight
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class RotarySelfAttention(nn.Module):
|
| 233 |
+
"""Rotary self-attention module."""
|
| 234 |
+
|
| 235 |
+
def __init__(
|
| 236 |
+
self,
|
| 237 |
+
embed_dim: int,
|
| 238 |
+
num_heads: int,
|
| 239 |
+
dropout: float = 0.1,
|
| 240 |
+
):
|
| 241 |
+
super().__init__()
|
| 242 |
+
self.embed_dim = embed_dim
|
| 243 |
+
self.num_heads = num_heads
|
| 244 |
+
self.dim_head = embed_dim // num_heads
|
| 245 |
+
self.dropout_rate = dropout
|
| 246 |
+
|
| 247 |
+
self.q = nn.Linear(embed_dim, embed_dim, bias=False)
|
| 248 |
+
self.k = nn.Linear(embed_dim, embed_dim, bias=False)
|
| 249 |
+
self.v = nn.Linear(embed_dim, embed_dim, bias=False)
|
| 250 |
+
self.att_proj_linear = nn.Linear(embed_dim, embed_dim)
|
| 251 |
+
|
| 252 |
+
def forward(
|
| 253 |
+
self,
|
| 254 |
+
x: torch.Tensor,
|
| 255 |
+
attn_mask: torch.Tensor,
|
| 256 |
+
freqs_cos: torch.Tensor,
|
| 257 |
+
freqs_sin: torch.Tensor,
|
| 258 |
+
is_causal: bool = False,
|
| 259 |
+
return_attn_weights: bool = False,
|
| 260 |
+
):
|
| 261 |
+
"""Forward pass for the rotary self-attention module."""
|
| 262 |
+
batch_size, seq_len, _ = x.shape
|
| 263 |
+
xq, xk, xv = self.q(x), self.k(x), self.v(x)
|
| 264 |
+
# Reshape for rotary embeddings
|
| 265 |
+
xq = xq.view(batch_size, seq_len, self.num_heads, self.dim_head)
|
| 266 |
+
xk = xk.view(batch_size, seq_len, self.num_heads, self.dim_head)
|
| 267 |
+
xv = xv.view(batch_size, seq_len, self.num_heads, self.dim_head)
|
| 268 |
+
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
|
| 269 |
+
|
| 270 |
+
# Reshape for attention calculation: (b_sz, n_head, s_len, d_head)
|
| 271 |
+
xq = xq.transpose(1, 2)
|
| 272 |
+
xk = xk.transpose(1, 2)
|
| 273 |
+
xv = xv.transpose(1, 2)
|
| 274 |
+
|
| 275 |
+
attn_weights = None
|
| 276 |
+
if return_attn_weights:
|
| 277 |
+
att, attn_weights = scaled_dot_product_attention_w_attn_weights(
|
| 278 |
+
query=xq,
|
| 279 |
+
key=xk,
|
| 280 |
+
value=xv,
|
| 281 |
+
attn_mask=attn_mask,
|
| 282 |
+
dropout_p=self.dropout_rate if self.training else 0.0,
|
| 283 |
+
is_causal=is_causal,
|
| 284 |
+
)
|
| 285 |
+
else:
|
| 286 |
+
att = scaled_dot_product_attention(
|
| 287 |
+
query=xq,
|
| 288 |
+
key=xk,
|
| 289 |
+
value=xv,
|
| 290 |
+
attn_mask=attn_mask,
|
| 291 |
+
dropout_p=self.dropout_rate if self.training else 0.0,
|
| 292 |
+
is_causal=is_causal,
|
| 293 |
+
)
|
| 294 |
+
# Shape (b_sz, s_len, n_head, d_head)
|
| 295 |
+
out = att.transpose(1, 2).contiguous()
|
| 296 |
+
out = out.view(batch_size, seq_len, self.num_heads * self.dim_head)
|
| 297 |
+
|
| 298 |
+
return self.att_proj_linear(out), attn_weights
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
class BacformerTransformerLayer(nn.Module):
|
| 302 |
+
"""Own implementation of transformer layer which uses pytorch native MHA but returns attention weights"""
|
| 303 |
+
|
| 304 |
+
def __init__(
|
| 305 |
+
self,
|
| 306 |
+
hidden_size: int,
|
| 307 |
+
intermediate_size: int,
|
| 308 |
+
num_attention_heads: int,
|
| 309 |
+
dropout: float = 0.1,
|
| 310 |
+
activation: Literal["gelu", "relu"] = "gelu",
|
| 311 |
+
):
|
| 312 |
+
super().__init__()
|
| 313 |
+
self.self_mha = RotarySelfAttention(
|
| 314 |
+
embed_dim=hidden_size,
|
| 315 |
+
num_heads=num_attention_heads,
|
| 316 |
+
dropout=dropout,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
self.fc1 = nn.Linear(hidden_size, intermediate_size)
|
| 320 |
+
self.fc2 = nn.Linear(intermediate_size, hidden_size)
|
| 321 |
+
self.activation = nn.GELU() if activation == "gelu" else nn.ReLU()
|
| 322 |
+
self.norm1 = nn.LayerNorm(hidden_size)
|
| 323 |
+
self.norm2 = nn.LayerNorm(hidden_size)
|
| 324 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 325 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 326 |
+
self.dropout3 = nn.Dropout(dropout)
|
| 327 |
+
|
| 328 |
+
def forward(
|
| 329 |
+
self,
|
| 330 |
+
hidden_state: torch.Tensor,
|
| 331 |
+
attention_mask: torch.Tensor = None,
|
| 332 |
+
freqs_cos: torch.Tensor = None,
|
| 333 |
+
freqs_sin: torch.Tensor = None,
|
| 334 |
+
return_attn_weights: bool = False,
|
| 335 |
+
is_causal: bool = False,
|
| 336 |
+
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
| 337 |
+
"""Forward pass"""
|
| 338 |
+
attn_outputs, attn_weights = self.self_mha(
|
| 339 |
+
hidden_state,
|
| 340 |
+
attn_mask=attention_mask,
|
| 341 |
+
freqs_cos=freqs_cos,
|
| 342 |
+
freqs_sin=freqs_sin,
|
| 343 |
+
return_attn_weights=return_attn_weights,
|
| 344 |
+
is_causal=is_causal,
|
| 345 |
+
)
|
| 346 |
+
x = self.norm1(hidden_state + self.dropout1(attn_outputs))
|
| 347 |
+
ff_output = self.fc2(self.dropout2(self.activation(self.fc1(x))))
|
| 348 |
+
x = self.norm2(x + self.dropout3(ff_output))
|
| 349 |
+
return x, attn_weights
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
class BacformerTransformerEncoder(nn.Module):
|
| 353 |
+
"""Own implementation of Transformer which return attention weights"""
|
| 354 |
+
|
| 355 |
+
def __init__(
|
| 356 |
+
self,
|
| 357 |
+
num_hidden_layers: int,
|
| 358 |
+
hidden_size: int,
|
| 359 |
+
intermediate_size: int,
|
| 360 |
+
num_attention_heads: int,
|
| 361 |
+
dropout: float = 0.1,
|
| 362 |
+
activation: Literal["gelu", "relu"] = "gelu",
|
| 363 |
+
):
|
| 364 |
+
super().__init__()
|
| 365 |
+
|
| 366 |
+
self.layers = nn.ModuleList(
|
| 367 |
+
[
|
| 368 |
+
BacformerTransformerLayer(
|
| 369 |
+
hidden_size=hidden_size,
|
| 370 |
+
intermediate_size=intermediate_size,
|
| 371 |
+
num_attention_heads=num_attention_heads,
|
| 372 |
+
dropout=dropout,
|
| 373 |
+
activation=activation,
|
| 374 |
+
)
|
| 375 |
+
for _ in range(num_hidden_layers)
|
| 376 |
+
]
|
| 377 |
+
)
|
| 378 |
+
self.gradient_checkpointing = False
|
| 379 |
+
|
| 380 |
+
def forward(
|
| 381 |
+
self,
|
| 382 |
+
hidden_state: torch.Tensor,
|
| 383 |
+
attention_mask: torch.Tensor = None,
|
| 384 |
+
freqs_cos: torch.Tensor = None,
|
| 385 |
+
freqs_sin: torch.Tensor = None,
|
| 386 |
+
return_attn_weights: bool = False,
|
| 387 |
+
is_causal: bool = False,
|
| 388 |
+
) -> tuple[torch.Tensor, list[torch.Tensor | None]]:
|
| 389 |
+
"""Forward pass"""
|
| 390 |
+
attn_weights_arr = []
|
| 391 |
+
for layer in self.layers:
|
| 392 |
+
if self.gradient_checkpointing and self.training:
|
| 393 |
+
hidden_state, attn_weights = self._gradient_checkpointing_func(
|
| 394 |
+
layer.__call__,
|
| 395 |
+
hidden_state,
|
| 396 |
+
attention_mask,
|
| 397 |
+
freqs_cos,
|
| 398 |
+
freqs_sin,
|
| 399 |
+
return_attn_weights,
|
| 400 |
+
is_causal,
|
| 401 |
+
)
|
| 402 |
+
else:
|
| 403 |
+
hidden_state, attn_weights = layer(
|
| 404 |
+
hidden_state=hidden_state,
|
| 405 |
+
attention_mask=attention_mask,
|
| 406 |
+
freqs_cos=freqs_cos,
|
| 407 |
+
freqs_sin=freqs_sin,
|
| 408 |
+
return_attn_weights=return_attn_weights,
|
| 409 |
+
is_causal=is_causal,
|
| 410 |
+
)
|
| 411 |
+
# keep the attention weights from each layer
|
| 412 |
+
attn_weights_arr.append(attn_weights)
|
| 413 |
+
return hidden_state, attn_weights_arr
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
class BacformerEmbeddings(nn.Module):
|
| 417 |
+
"""Construct the protein embeddings from protein sequence, position embeddings and sequence type embeddings."""
|
| 418 |
+
|
| 419 |
+
def __init__(self, config: BacformerConfig):
|
| 420 |
+
super().__init__()
|
| 421 |
+
self.config = config
|
| 422 |
+
self.linear = nn.Linear(config.hidden_size, config.hidden_size)
|
| 423 |
+
|
| 424 |
+
self.token_type_embeddings = nn.Embedding(
|
| 425 |
+
num_embeddings=config.max_token_type_embeddings + 1,
|
| 426 |
+
embedding_dim=config.hidden_size,
|
| 427 |
+
padding_idx=config.max_token_type_embeddings,
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
self.special_tokens_embeddings = nn.Embedding(
|
| 431 |
+
num_embeddings=config.num_special_tokens,
|
| 432 |
+
embedding_dim=config.hidden_size,
|
| 433 |
+
)
|
| 434 |
+
self.prot_emb_token_id = config.prot_emb_token_id
|
| 435 |
+
self.pad_token_id = config.pad_token_id
|
| 436 |
+
|
| 437 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 438 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 439 |
+
|
| 440 |
+
def forward(
|
| 441 |
+
self,
|
| 442 |
+
protein_embeddings: torch.Tensor = None,
|
| 443 |
+
special_tokens_mask: torch.Tensor = None,
|
| 444 |
+
token_type_ids: torch.Tensor = None,
|
| 445 |
+
labels: torch.Tensor = None, # used for causal protein family modeling
|
| 446 |
+
property_ids: torch.Tensor = None, # used for conditional fine-tuning for desired property
|
| 447 |
+
) -> torch.Tensor:
|
| 448 |
+
"""Forward pass for protein embeddings."""
|
| 449 |
+
bs, seq_length, dim = protein_embeddings.shape
|
| 450 |
+
|
| 451 |
+
# pass the pooled ESM protein embeddings through a linear layer
|
| 452 |
+
protein_embeddings = self.linear(protein_embeddings)
|
| 453 |
+
protein_embeddings = torch.where(
|
| 454 |
+
special_tokens_mask.unsqueeze(-1).repeat(1, 1, dim) == self.prot_emb_token_id,
|
| 455 |
+
protein_embeddings,
|
| 456 |
+
self.special_tokens_embeddings(special_tokens_mask),
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
if token_type_ids is not None:
|
| 460 |
+
protein_embeddings += self.token_type_embeddings(token_type_ids)
|
| 461 |
+
|
| 462 |
+
protein_embeddings = self.LayerNorm(protein_embeddings)
|
| 463 |
+
protein_embeddings = self.dropout(protein_embeddings)
|
| 464 |
+
return protein_embeddings
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
class BacformerProteinFamilyEmbeddings(nn.Module):
|
| 468 |
+
"""Construct the protein embeddings from protein family tokens, special tokens and sequence type embeddings."""
|
| 469 |
+
|
| 470 |
+
def __init__(
|
| 471 |
+
self,
|
| 472 |
+
config: BacformerConfig,
|
| 473 |
+
protein_family_embeddings: torch.Tensor = None,
|
| 474 |
+
token_type_embeddings: torch.Tensor = None,
|
| 475 |
+
special_tokens_embeddings: torch.Tensor = None,
|
| 476 |
+
n_conditional_properties: int = None,
|
| 477 |
+
):
|
| 478 |
+
super().__init__()
|
| 479 |
+
self.config = config
|
| 480 |
+
|
| 481 |
+
if protein_family_embeddings is not None:
|
| 482 |
+
self.protein_family_embeddings = nn.Embedding.from_pretrained(
|
| 483 |
+
protein_family_embeddings,
|
| 484 |
+
freeze=False,
|
| 485 |
+
padding_idx=config.pad_token_id,
|
| 486 |
+
)
|
| 487 |
+
else:
|
| 488 |
+
self.protein_family_embeddings = nn.Embedding(
|
| 489 |
+
num_embeddings=config.protein_clusters_vocab_size + 1,
|
| 490 |
+
embedding_dim=config.hidden_size,
|
| 491 |
+
padding_idx=config.pad_token_id,
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
if token_type_embeddings is not None:
|
| 495 |
+
self.token_type_embeddings = nn.Embedding.from_pretrained(
|
| 496 |
+
token_type_embeddings,
|
| 497 |
+
freeze=False,
|
| 498 |
+
padding_idx=config.max_token_type_embeddings,
|
| 499 |
+
)
|
| 500 |
+
else:
|
| 501 |
+
self.token_type_embeddings = nn.Embedding(
|
| 502 |
+
num_embeddings=config.max_token_type_embeddings + 1,
|
| 503 |
+
embedding_dim=config.hidden_size,
|
| 504 |
+
padding_idx=config.max_token_type_embeddings,
|
| 505 |
+
)
|
| 506 |
+
|
| 507 |
+
if special_tokens_embeddings is not None:
|
| 508 |
+
self.special_tokens_embeddings = nn.Embedding.from_pretrained(
|
| 509 |
+
special_tokens_embeddings,
|
| 510 |
+
freeze=False,
|
| 511 |
+
padding_idx=config.pad_token_id,
|
| 512 |
+
)
|
| 513 |
+
else:
|
| 514 |
+
self.special_tokens_embeddings = nn.Embedding(
|
| 515 |
+
num_embeddings=config.num_special_tokens,
|
| 516 |
+
embedding_dim=config.hidden_size,
|
| 517 |
+
padding_idx=config.pad_token_id,
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
# add layer for conditional properties
|
| 521 |
+
if n_conditional_properties is not None:
|
| 522 |
+
self.conditional_properties_layer = nn.Embedding(n_conditional_properties, config.hidden_size)
|
| 523 |
+
|
| 524 |
+
self.prot_emb_token_id = config.prot_emb_token_id
|
| 525 |
+
self.pad_token_id = config.pad_token_id
|
| 526 |
+
|
| 527 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 528 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 529 |
+
|
| 530 |
+
def forward(
|
| 531 |
+
self,
|
| 532 |
+
protein_embeddings: torch.Tensor = None,
|
| 533 |
+
special_tokens_mask: torch.Tensor = None,
|
| 534 |
+
token_type_ids: torch.Tensor = None,
|
| 535 |
+
labels: torch.Tensor = None, # used for causal protein family modeling
|
| 536 |
+
property_ids: torch.Tensor = None, # used for conditional fine-tuning for desired property
|
| 537 |
+
) -> torch.Tensor:
|
| 538 |
+
"""Forward pass for protein embeddings."""
|
| 539 |
+
# pass the pooled ESM protein embeddings through a linear layer
|
| 540 |
+
# replace -100 with pad_token_id
|
| 541 |
+
labels[labels == -100] = self.pad_token_id
|
| 542 |
+
protein_embeddings = self.protein_family_embeddings(labels)
|
| 543 |
+
|
| 544 |
+
bs, seq_length, dim = protein_embeddings.shape
|
| 545 |
+
protein_embeddings = torch.where(
|
| 546 |
+
special_tokens_mask.unsqueeze(-1).repeat(1, 1, dim) == self.prot_emb_token_id,
|
| 547 |
+
protein_embeddings,
|
| 548 |
+
self.special_tokens_embeddings(special_tokens_mask),
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
if token_type_ids is not None:
|
| 552 |
+
protein_embeddings += self.token_type_embeddings(token_type_ids)
|
| 553 |
+
|
| 554 |
+
if property_ids is not None:
|
| 555 |
+
# get the embeddings for the conditional properties
|
| 556 |
+
property_embedding = self.conditional_properties_layer(property_ids).unsqueeze(1)
|
| 557 |
+
# concatenate the protein embeddings with the conditional properties embeddings
|
| 558 |
+
# property embeddings are added to the beginning of the protein embeddings after the CLS token
|
| 559 |
+
protein_embeddings = torch.cat(
|
| 560 |
+
[
|
| 561 |
+
protein_embeddings[:, :1, :], # CLS token
|
| 562 |
+
property_embedding, # conditional properties embeddings
|
| 563 |
+
protein_embeddings[:, 1:, :],
|
| 564 |
+
], # protein embeddings
|
| 565 |
+
dim=1,
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
protein_embeddings = self.LayerNorm(protein_embeddings)
|
| 569 |
+
protein_embeddings = self.dropout(protein_embeddings)
|
| 570 |
+
return protein_embeddings
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
class BacformerEncoder(nn.Module):
|
| 574 |
+
"""Bacformer encoder model"""
|
| 575 |
+
|
| 576 |
+
def __init__(self, config: BacformerConfig):
|
| 577 |
+
super().__init__()
|
| 578 |
+
self.config = config
|
| 579 |
+
|
| 580 |
+
self.encoder = BacformerTransformerEncoder(
|
| 581 |
+
num_hidden_layers=config.num_hidden_layers,
|
| 582 |
+
hidden_size=config.hidden_size,
|
| 583 |
+
num_attention_heads=config.num_attention_heads,
|
| 584 |
+
intermediate_size=config.intermediate_size,
|
| 585 |
+
activation="gelu",
|
| 586 |
+
dropout=config.attention_probs_dropout_prob,
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
+
# Note that config.max_position_embeddings is multiplied by 1.5 because the token limit for the Bacformer of
|
| 590 |
+
# models is 6000. Adding this multiplier instead of using 6000 directly allows for dynamism of token
|
| 591 |
+
# lengths while training or fine-tuning.
|
| 592 |
+
freqs_cos, freqs_sin = precompute_freqs_cis(
|
| 593 |
+
config.hidden_size // config.num_attention_heads, int(config.max_position_embeddings * 1.5)
|
| 594 |
+
)
|
| 595 |
+
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
|
| 596 |
+
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
|
| 597 |
+
|
| 598 |
+
def forward(
|
| 599 |
+
self,
|
| 600 |
+
hidden_states: torch.Tensor,
|
| 601 |
+
attention_mask: torch.Tensor = None,
|
| 602 |
+
return_attn_weights: Union[bool, None] = None,
|
| 603 |
+
is_causal: bool = False,
|
| 604 |
+
) -> tuple[torch.Tensor, list[torch.Tensor | None]]:
|
| 605 |
+
"""Pass the input through the encoder layers in turn.
|
| 606 |
+
|
| 607 |
+
Args:
|
| 608 |
+
hidden_states: hidden states from the BacformerEmbeddings layer
|
| 609 |
+
attention_mask: mask for the attention in the transformer
|
| 610 |
+
"""
|
| 611 |
+
return_attn_weights = (
|
| 612 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
| 613 |
+
)
|
| 614 |
+
bs, seq_len, _ = hidden_states.shape
|
| 615 |
+
last_hidden_state, attn_weights = self.encoder(
|
| 616 |
+
hidden_state=hidden_states,
|
| 617 |
+
attention_mask=attention_mask,
|
| 618 |
+
freqs_cos=self.freqs_cos[:seq_len, :],
|
| 619 |
+
freqs_sin=self.freqs_sin[:seq_len, :],
|
| 620 |
+
return_attn_weights=return_attn_weights,
|
| 621 |
+
is_causal=is_causal,
|
| 622 |
+
)
|
| 623 |
+
return last_hidden_state, attn_weights
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
class BacformerPreTrainedModel(PreTrainedModel):
|
| 627 |
+
"""An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models."""
|
| 628 |
+
|
| 629 |
+
config_class = BacformerConfig
|
| 630 |
+
base_model_prefix = "bacformer"
|
| 631 |
+
supports_gradient_checkpointing = True
|
| 632 |
+
_no_split_modules = ["BacformerEmbeddings", "BacformerTransformerLayer"]
|
| 633 |
+
|
| 634 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
| 635 |
+
def _init_weights(self, module):
|
| 636 |
+
"""Initialize the weights"""
|
| 637 |
+
if isinstance(module, nn.Linear):
|
| 638 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 639 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 640 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 641 |
+
if module.bias is not None:
|
| 642 |
+
module.bias.data.zero_()
|
| 643 |
+
elif isinstance(module, nn.Embedding):
|
| 644 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 645 |
+
if module.padding_idx is not None:
|
| 646 |
+
module.weight.data[module.padding_idx].zero_()
|
| 647 |
+
elif isinstance(module, nn.LayerNorm):
|
| 648 |
+
module.bias.data.zero_()
|
| 649 |
+
module.weight.data.fill_(1.0)
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
class BacformerModel(BacformerPreTrainedModel):
|
| 653 |
+
"""Bacformer model."""
|
| 654 |
+
|
| 655 |
+
def __init__(self, config: BacformerConfig, add_pooling_layer: bool = False):
|
| 656 |
+
super().__init__(config)
|
| 657 |
+
self.config = config
|
| 658 |
+
|
| 659 |
+
self.embeddings = BacformerEmbeddings(config)
|
| 660 |
+
self.encoder = BacformerEncoder(config)
|
| 661 |
+
|
| 662 |
+
self.pooler = BacformerPooler(config) if add_pooling_layer else None
|
| 663 |
+
|
| 664 |
+
# Initialize weights and apply final processing
|
| 665 |
+
self.post_init()
|
| 666 |
+
|
| 667 |
+
def forward(
|
| 668 |
+
self,
|
| 669 |
+
protein_embeddings: torch.Tensor = None,
|
| 670 |
+
special_tokens_mask: torch.Tensor = None,
|
| 671 |
+
token_type_ids: torch.Tensor = None,
|
| 672 |
+
attention_mask: torch.Tensor = None,
|
| 673 |
+
labels: torch.Tensor = None,
|
| 674 |
+
property_ids: torch.Tensor = None,
|
| 675 |
+
return_attn_weights: bool = False,
|
| 676 |
+
return_dict: Union[bool, None] = None,
|
| 677 |
+
is_causal: bool = False,
|
| 678 |
+
) -> Optional[BacformerModelOutput]:
|
| 679 |
+
"""Forward method for the model."""
|
| 680 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 681 |
+
# get embeddings
|
| 682 |
+
protein_embeddings = self.embeddings(
|
| 683 |
+
protein_embeddings=protein_embeddings,
|
| 684 |
+
labels=labels,
|
| 685 |
+
special_tokens_mask=special_tokens_mask,
|
| 686 |
+
token_type_ids=token_type_ids,
|
| 687 |
+
property_ids=property_ids,
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
# create 3D attention mask from 2D if not doing causal GM
|
| 691 |
+
if attention_mask is not None and not is_causal:
|
| 692 |
+
attention_mask = create_4d_from_2d_attn_mask(
|
| 693 |
+
attn_mask=attention_mask, num_attn_heads=self.config.num_attention_heads
|
| 694 |
+
).bool()
|
| 695 |
+
|
| 696 |
+
last_hidden_state, attentions = self.encoder(
|
| 697 |
+
hidden_states=protein_embeddings,
|
| 698 |
+
attention_mask=attention_mask,
|
| 699 |
+
return_attn_weights=return_attn_weights,
|
| 700 |
+
is_causal=is_causal,
|
| 701 |
+
)
|
| 702 |
+
pooler_output = (
|
| 703 |
+
self.pooler(hidden_states=last_hidden_state, padding_mask=attention_mask)
|
| 704 |
+
if self.pooler is not None
|
| 705 |
+
else None
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
if not return_dict:
|
| 709 |
+
return (last_hidden_state, pooler_output, attentions)
|
| 710 |
+
|
| 711 |
+
return BacformerModelOutput(
|
| 712 |
+
last_hidden_state=last_hidden_state,
|
| 713 |
+
pooler_output=pooler_output,
|
| 714 |
+
attentions=attentions,
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
class BacformerForCausalGM(BacformerPreTrainedModel):
|
| 719 |
+
"""Bacformer model with genomic modeling head on top"""
|
| 720 |
+
|
| 721 |
+
_tied_weights_keys = ["gm_head.decoder.weight"]
|
| 722 |
+
|
| 723 |
+
def __init__(self, config: BacformerConfig):
|
| 724 |
+
super().__init__(config)
|
| 725 |
+
self.config = config
|
| 726 |
+
|
| 727 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
| 728 |
+
self.gm_head = BacformerGMHead(config)
|
| 729 |
+
|
| 730 |
+
# Initialize weights
|
| 731 |
+
self.init_weights()
|
| 732 |
+
|
| 733 |
+
def forward(
|
| 734 |
+
self,
|
| 735 |
+
protein_embeddings: torch.Tensor,
|
| 736 |
+
special_tokens_mask: torch.Tensor,
|
| 737 |
+
labels: torch.Tensor = None,
|
| 738 |
+
token_type_ids: torch.Tensor = None,
|
| 739 |
+
attention_mask: torch.Tensor = None,
|
| 740 |
+
return_attn_weights: bool = None,
|
| 741 |
+
return_dict: Union[bool, None] = None,
|
| 742 |
+
) -> Optional[BacformerModelOutput]:
|
| 743 |
+
"""Forward method for the model."""
|
| 744 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 745 |
+
return_attn_weights = (
|
| 746 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
outputs = self.bacformer(
|
| 750 |
+
protein_embeddings=protein_embeddings,
|
| 751 |
+
special_tokens_mask=special_tokens_mask,
|
| 752 |
+
token_type_ids=token_type_ids,
|
| 753 |
+
attention_mask=None, # attention mechanism handles the causal mask
|
| 754 |
+
return_attn_weights=return_attn_weights,
|
| 755 |
+
return_dict=return_dict,
|
| 756 |
+
is_causal=True,
|
| 757 |
+
)
|
| 758 |
+
last_hidden_state = outputs[0]
|
| 759 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
| 760 |
+
|
| 761 |
+
loss = None
|
| 762 |
+
if labels is not None:
|
| 763 |
+
labels = labels.to(prediction_scores.device)
|
| 764 |
+
|
| 765 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous().view(-1, prediction_scores.shape[-1])
|
| 766 |
+
labels = labels[:, 1:].contiguous().view(-1)
|
| 767 |
+
loss = cross_entropy(shifted_prediction_scores, labels)
|
| 768 |
+
|
| 769 |
+
if not return_dict:
|
| 770 |
+
return (
|
| 771 |
+
loss,
|
| 772 |
+
prediction_scores,
|
| 773 |
+
) + outputs
|
| 774 |
+
|
| 775 |
+
return BacformerModelOutput(
|
| 776 |
+
loss=loss,
|
| 777 |
+
logits=prediction_scores,
|
| 778 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 779 |
+
attentions=outputs.attentions,
|
| 780 |
+
)
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
class BacformerForMaskedGM(BacformerPreTrainedModel):
|
| 784 |
+
"""Bacformer model with genomic modeling head on top"""
|
| 785 |
+
|
| 786 |
+
_tied_weights_keys = ["gm_head.decoder.weight"]
|
| 787 |
+
|
| 788 |
+
def __init__(self, config: BacformerConfig):
|
| 789 |
+
super().__init__(config)
|
| 790 |
+
self.config = config
|
| 791 |
+
|
| 792 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
| 793 |
+
self.gm_head = BacformerGMHead(config)
|
| 794 |
+
|
| 795 |
+
# Initialize weights
|
| 796 |
+
self.init_weights()
|
| 797 |
+
|
| 798 |
+
def forward(
|
| 799 |
+
self,
|
| 800 |
+
protein_embeddings: torch.Tensor,
|
| 801 |
+
special_tokens_mask: torch.Tensor,
|
| 802 |
+
labels: torch.Tensor = None,
|
| 803 |
+
token_type_ids: torch.Tensor = None,
|
| 804 |
+
attention_mask: torch.Tensor = None,
|
| 805 |
+
return_attn_weights: bool = None,
|
| 806 |
+
return_dict: Union[bool, None] = None,
|
| 807 |
+
) -> Union[BacformerModelOutput, None]:
|
| 808 |
+
"""Forward method for the model."""
|
| 809 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 810 |
+
return_attn_weights = (
|
| 811 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
outputs = self.bacformer(
|
| 815 |
+
protein_embeddings=protein_embeddings,
|
| 816 |
+
special_tokens_mask=special_tokens_mask,
|
| 817 |
+
token_type_ids=token_type_ids,
|
| 818 |
+
attention_mask=attention_mask,
|
| 819 |
+
return_attn_weights=return_attn_weights,
|
| 820 |
+
return_dict=return_dict,
|
| 821 |
+
)
|
| 822 |
+
last_hidden_state = outputs[0]
|
| 823 |
+
|
| 824 |
+
# to speed up the forward pass, let's only consider the masked tokens
|
| 825 |
+
|
| 826 |
+
loss = None
|
| 827 |
+
if labels is not None:
|
| 828 |
+
# to speed up the forward pass, let's only consider the masked tokens
|
| 829 |
+
last_hidden_state = last_hidden_state[labels != -100]
|
| 830 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
| 831 |
+
labels = labels.to(prediction_scores.device)
|
| 832 |
+
|
| 833 |
+
### notes
|
| 834 |
+
# use the labels to get -100 for non-masked tokens
|
| 835 |
+
# do not use special_tokens_mask
|
| 836 |
+
# check how the labels are constructed
|
| 837 |
+
|
| 838 |
+
# only considering the masked tokens
|
| 839 |
+
labels = labels[labels != -100]
|
| 840 |
+
loss = cross_entropy(prediction_scores, labels)
|
| 841 |
+
else:
|
| 842 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
| 843 |
+
|
| 844 |
+
if not return_dict:
|
| 845 |
+
return (
|
| 846 |
+
loss,
|
| 847 |
+
prediction_scores,
|
| 848 |
+
) + outputs
|
| 849 |
+
|
| 850 |
+
return BacformerModelOutput(
|
| 851 |
+
loss=loss,
|
| 852 |
+
logits=prediction_scores,
|
| 853 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 854 |
+
attentions=outputs.attentions,
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
class BacformerForCausalProteinFamilyModeling(BacformerPreTrainedModel):
|
| 859 |
+
"""Bacformer model for causal modeling of protein families. Using protein family as tokens rather than protein embeddings"""
|
| 860 |
+
|
| 861 |
+
_tied_weights_keys = ["gm_head.decoder.weight"]
|
| 862 |
+
|
| 863 |
+
def __init__(
|
| 864 |
+
self,
|
| 865 |
+
config: BacformerConfig,
|
| 866 |
+
n_conditional_properties: int = None,
|
| 867 |
+
initialise_from_non_pfm_model: bool = False,
|
| 868 |
+
):
|
| 869 |
+
super().__init__(config)
|
| 870 |
+
self.config = config
|
| 871 |
+
self.cls_token_id = SPECIAL_TOKENS_DICT["CLS"]
|
| 872 |
+
|
| 873 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
| 874 |
+
self.gm_head = BacformerGMHead(config)
|
| 875 |
+
|
| 876 |
+
if initialise_from_non_pfm_model:
|
| 877 |
+
# Initialize weights
|
| 878 |
+
self.init_weights()
|
| 879 |
+
# overwrite the embeddings with the pretrained
|
| 880 |
+
# protein family embeddings from the decoder of the GM Head
|
| 881 |
+
self.bacformer.embeddings = BacformerProteinFamilyEmbeddings(
|
| 882 |
+
config,
|
| 883 |
+
protein_family_embeddings=self.gm_head.decoder.weight,
|
| 884 |
+
token_type_embeddings=self.bacformer.embeddings.token_type_embeddings.weight,
|
| 885 |
+
special_tokens_embeddings=self.bacformer.embeddings.special_tokens_embeddings.weight,
|
| 886 |
+
n_conditional_properties=n_conditional_properties,
|
| 887 |
+
)
|
| 888 |
+
else:
|
| 889 |
+
self.bacformer.embeddings = BacformerProteinFamilyEmbeddings(
|
| 890 |
+
config,
|
| 891 |
+
n_conditional_properties=n_conditional_properties,
|
| 892 |
+
)
|
| 893 |
+
self.init_weights()
|
| 894 |
+
|
| 895 |
+
def forward(
|
| 896 |
+
self,
|
| 897 |
+
labels: torch.Tensor = None,
|
| 898 |
+
special_tokens_mask: torch.Tensor = None,
|
| 899 |
+
token_type_ids: torch.Tensor = None,
|
| 900 |
+
property_ids: torch.Tensor = None,
|
| 901 |
+
return_attn_weights: bool = None,
|
| 902 |
+
return_dict: Union[bool, None] = None,
|
| 903 |
+
) -> Optional[BacformerModelOutput]:
|
| 904 |
+
"""Forward method for the model."""
|
| 905 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 906 |
+
return_attn_weights = (
|
| 907 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
outputs = self.bacformer(
|
| 911 |
+
protein_embeddings=None,
|
| 912 |
+
labels=labels,
|
| 913 |
+
special_tokens_mask=special_tokens_mask,
|
| 914 |
+
token_type_ids=token_type_ids,
|
| 915 |
+
property_ids=property_ids,
|
| 916 |
+
return_attn_weights=return_attn_weights,
|
| 917 |
+
return_dict=return_dict,
|
| 918 |
+
is_causal=True,
|
| 919 |
+
)
|
| 920 |
+
last_hidden_state = outputs[0]
|
| 921 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
| 922 |
+
|
| 923 |
+
loss = None
|
| 924 |
+
if labels is not None:
|
| 925 |
+
if property_ids is not None:
|
| 926 |
+
labels = torch.cat(
|
| 927 |
+
[
|
| 928 |
+
torch.tensor([-100], dtype=torch.long)
|
| 929 |
+
.unsqueeze(0)
|
| 930 |
+
.to(labels.device), # account for the property token
|
| 931 |
+
labels,
|
| 932 |
+
],
|
| 933 |
+
dim=1,
|
| 934 |
+
) # ignore index
|
| 935 |
+
labels = labels.to(prediction_scores.device)
|
| 936 |
+
|
| 937 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous().view(-1, prediction_scores.shape[-1])
|
| 938 |
+
labels = labels[:, 1:].contiguous().view(-1)
|
| 939 |
+
loss = cross_entropy(shifted_prediction_scores, labels)
|
| 940 |
+
|
| 941 |
+
if not return_dict:
|
| 942 |
+
return (
|
| 943 |
+
loss,
|
| 944 |
+
prediction_scores,
|
| 945 |
+
) + outputs
|
| 946 |
+
|
| 947 |
+
return BacformerModelOutput(
|
| 948 |
+
loss=loss,
|
| 949 |
+
logits=prediction_scores,
|
| 950 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 951 |
+
attentions=outputs.attentions,
|
| 952 |
+
)
|
| 953 |
+
|
| 954 |
+
def generate(
|
| 955 |
+
self,
|
| 956 |
+
protein_family_ids: torch.LongTensor,
|
| 957 |
+
special_tokens_mask: torch.LongTensor = None,
|
| 958 |
+
token_type_ids: torch.LongTensor = None,
|
| 959 |
+
max_length: int = 6000,
|
| 960 |
+
end_token_id: int = 50000,
|
| 961 |
+
do_sample: bool = False,
|
| 962 |
+
top_k: int = 50,
|
| 963 |
+
top_p: float = 1.0,
|
| 964 |
+
temperature: float = 1.0,
|
| 965 |
+
property_ids: torch.LongTensor = None,
|
| 966 |
+
return_last_hidden_states: bool = False,
|
| 967 |
+
):
|
| 968 |
+
"""
|
| 969 |
+
Generate a sequence of tokens autoregressively from a given prompt.
|
| 970 |
+
|
| 971 |
+
Args:
|
| 972 |
+
protein_family_ids (torch.LongTensor): Tensor of shape (batch, seq_len) with token indices.
|
| 973 |
+
max_length (int): Maximum length of the generated sequence (prompt + newly generated).
|
| 974 |
+
end_token_id (int, optional): Token ID signifying end-of-sequence (END).
|
| 975 |
+
If encountered, generation stops.
|
| 976 |
+
do_sample (bool): Whether to sample from the probability distribution (True)
|
| 977 |
+
or use greedy decoding (False).
|
| 978 |
+
top_k (int): If >0, use top-k filtering in sampling mode.
|
| 979 |
+
top_p (float): If <1.0, use nucleus (top-p) filtering in sampling mode.
|
| 980 |
+
temperature (float): Softmax temperature for scaling logits.
|
| 981 |
+
Higher => more random, lower => more deterministic.
|
| 982 |
+
return_last_hidden_states (bool): If True, return final hidden states as well.
|
| 983 |
+
|
| 984 |
+
Returns
|
| 985 |
+
-------
|
| 986 |
+
torch.LongTensor: The generated token sequence of shape (batch, final_seq_len).
|
| 987 |
+
(Optional) torch.FloatTensor: Final hidden states of shape (batch, final_seq_len, hidden_dim)
|
| 988 |
+
if `return_hidden_states=True`.
|
| 989 |
+
"""
|
| 990 |
+
# Default END token
|
| 991 |
+
if end_token_id is None:
|
| 992 |
+
end_token_id = getattr(self, "end_token_id", None)
|
| 993 |
+
|
| 994 |
+
# Switch to eval mode and move input to correct device
|
| 995 |
+
self.eval()
|
| 996 |
+
device = next(self.parameters()).device
|
| 997 |
+
protein_family_ids = protein_family_ids.to(device)
|
| 998 |
+
|
| 999 |
+
# create a special tokens mask if not provided
|
| 1000 |
+
if special_tokens_mask is None:
|
| 1001 |
+
# add a cls token at the beginning
|
| 1002 |
+
protein_family_ids = torch.cat(
|
| 1003 |
+
[torch.tensor([[-100]]).to(device), protein_family_ids],
|
| 1004 |
+
dim=1,
|
| 1005 |
+
)
|
| 1006 |
+
special_tokens_mask = [self.cls_token_id] + [self.config.prot_emb_token_id] * (
|
| 1007 |
+
protein_family_ids.shape[1] - 1
|
| 1008 |
+
)
|
| 1009 |
+
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.long).to(device)
|
| 1010 |
+
|
| 1011 |
+
# create a token type mask if not provided
|
| 1012 |
+
if token_type_ids is None:
|
| 1013 |
+
token_type_ids = torch.zeros_like(protein_family_ids)
|
| 1014 |
+
|
| 1015 |
+
# Prepare the initial sequence and define max new tokens
|
| 1016 |
+
generated = protein_family_ids.clone()
|
| 1017 |
+
batch_size, prompt_length = generated.shape
|
| 1018 |
+
max_new_tokens = max_length - prompt_length
|
| 1019 |
+
if max_new_tokens <= 0:
|
| 1020 |
+
max_new_tokens = 0
|
| 1021 |
+
|
| 1022 |
+
# Disable gradient calculations for generation
|
| 1023 |
+
with torch.no_grad():
|
| 1024 |
+
for _step in range(max_new_tokens):
|
| 1025 |
+
# Forward pass
|
| 1026 |
+
logits = self.forward(
|
| 1027 |
+
labels=generated,
|
| 1028 |
+
special_tokens_mask=special_tokens_mask,
|
| 1029 |
+
# assume it's all on one chromosome
|
| 1030 |
+
token_type_ids=token_type_ids,
|
| 1031 |
+
property_ids=property_ids,
|
| 1032 |
+
return_dict=True,
|
| 1033 |
+
).logits
|
| 1034 |
+
# Focus on the last token's logits
|
| 1035 |
+
next_token_logits = logits[:, -1, :] # (batch_size, vocab_size)
|
| 1036 |
+
|
| 1037 |
+
# Apply temperature
|
| 1038 |
+
if temperature != 1.0:
|
| 1039 |
+
next_token_logits = next_token_logits / temperature
|
| 1040 |
+
|
| 1041 |
+
# Sampling or greedy?
|
| 1042 |
+
if do_sample:
|
| 1043 |
+
# Top-k filter
|
| 1044 |
+
next_token_logits = top_k_filtering(next_token_logits, top_k=top_k)
|
| 1045 |
+
# Top-p filter
|
| 1046 |
+
next_token_logits = top_p_filtering(next_token_logits, top_p=top_p)
|
| 1047 |
+
|
| 1048 |
+
probs = softmax(next_token_logits, dim=-1)
|
| 1049 |
+
next_token_id = torch.multinomial(probs, num_samples=1)
|
| 1050 |
+
else:
|
| 1051 |
+
# Greedy decoding
|
| 1052 |
+
next_token_id = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
| 1053 |
+
|
| 1054 |
+
# Append predicted token
|
| 1055 |
+
generated = torch.cat([generated, next_token_id], dim=1)
|
| 1056 |
+
special_tokens_mask = torch.cat(
|
| 1057 |
+
[special_tokens_mask, torch.tensor([[self.config.prot_emb_token_id]]).to(generated.device)], dim=1
|
| 1058 |
+
)
|
| 1059 |
+
last_token_type_id = token_type_ids[:, -1].unsqueeze(1)
|
| 1060 |
+
token_type_ids = torch.cat([token_type_ids, last_token_type_id], dim=1)
|
| 1061 |
+
|
| 1062 |
+
# Check for END in all sequences
|
| 1063 |
+
if end_token_id is not None:
|
| 1064 |
+
if (next_token_id.squeeze(1) == end_token_id).all():
|
| 1065 |
+
# If every sequence ended, break early
|
| 1066 |
+
break
|
| 1067 |
+
|
| 1068 |
+
if not return_last_hidden_states:
|
| 1069 |
+
return generated
|
| 1070 |
+
|
| 1071 |
+
# Optionally compute final hidden states
|
| 1072 |
+
if return_last_hidden_states:
|
| 1073 |
+
last_hidden_state = self.forward(
|
| 1074 |
+
labels=generated,
|
| 1075 |
+
special_tokens_mask=special_tokens_mask,
|
| 1076 |
+
token_type_ids=token_type_ids,
|
| 1077 |
+
return_dict=True,
|
| 1078 |
+
).last_hidden_state
|
| 1079 |
+
|
| 1080 |
+
return generated, last_hidden_state
|
| 1081 |
+
|
| 1082 |
+
|
| 1083 |
+
class BacformerForMaskedGMWithContrastiveLoss(BacformerPreTrainedModel):
|
| 1084 |
+
"""Bacformer model with genomic modeling head on top"""
|
| 1085 |
+
|
| 1086 |
+
_tied_weights_keys = ["gm_head.decoder.weight"]
|
| 1087 |
+
|
| 1088 |
+
def __init__(self, config: BacformerConfig):
|
| 1089 |
+
super().__init__(config)
|
| 1090 |
+
self.config = config
|
| 1091 |
+
|
| 1092 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
| 1093 |
+
self.gm_head = BacformerGMHead(config)
|
| 1094 |
+
|
| 1095 |
+
# Initialize weights
|
| 1096 |
+
self.init_weights()
|
| 1097 |
+
|
| 1098 |
+
def forward(
|
| 1099 |
+
self,
|
| 1100 |
+
protein_embeddings: torch.Tensor,
|
| 1101 |
+
special_tokens_mask: torch.Tensor,
|
| 1102 |
+
labels: torch.Tensor = None,
|
| 1103 |
+
token_type_ids: torch.Tensor = None,
|
| 1104 |
+
attention_mask: torch.Tensor = None,
|
| 1105 |
+
return_attn_weights: bool = None,
|
| 1106 |
+
return_dict: Union[bool, None] = None,
|
| 1107 |
+
) -> Union[BacformerModelOutput, None]:
|
| 1108 |
+
"""Forward method for the model."""
|
| 1109 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 1110 |
+
return_attn_weights = (
|
| 1111 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
| 1112 |
+
)
|
| 1113 |
+
|
| 1114 |
+
outputs = self.bacformer(
|
| 1115 |
+
protein_embeddings=protein_embeddings,
|
| 1116 |
+
special_tokens_mask=special_tokens_mask,
|
| 1117 |
+
token_type_ids=token_type_ids,
|
| 1118 |
+
attention_mask=attention_mask,
|
| 1119 |
+
return_attn_weights=return_attn_weights,
|
| 1120 |
+
return_dict=return_dict,
|
| 1121 |
+
)
|
| 1122 |
+
last_hidden_state = outputs[0]
|
| 1123 |
+
|
| 1124 |
+
# to speed up the forward pass, let's only consider the masked tokens
|
| 1125 |
+
|
| 1126 |
+
loss = None
|
| 1127 |
+
if labels is not None:
|
| 1128 |
+
# contrastive loss
|
| 1129 |
+
contrastive_loss = compute_contrastive_loss(protein_embeddings, last_hidden_state, special_tokens_mask)
|
| 1130 |
+
# to speed up the forward pass, let's only consider the masked tokens
|
| 1131 |
+
last_hidden_state = last_hidden_state[labels != -100]
|
| 1132 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
| 1133 |
+
labels = labels.to(prediction_scores.device)
|
| 1134 |
+
|
| 1135 |
+
# only considering the masked tokens
|
| 1136 |
+
labels = labels[labels != -100]
|
| 1137 |
+
masked_loss = cross_entropy(prediction_scores, labels)
|
| 1138 |
+
loss = masked_loss + self.config.alpha_contrastive_loss * contrastive_loss
|
| 1139 |
+
else:
|
| 1140 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
| 1141 |
+
|
| 1142 |
+
if not return_dict:
|
| 1143 |
+
return (
|
| 1144 |
+
loss,
|
| 1145 |
+
prediction_scores,
|
| 1146 |
+
) + outputs
|
| 1147 |
+
|
| 1148 |
+
return BacformerModelOutput(
|
| 1149 |
+
loss=loss,
|
| 1150 |
+
logits=prediction_scores,
|
| 1151 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 1152 |
+
attentions=outputs.attentions,
|
| 1153 |
+
)
|
| 1154 |
+
|
| 1155 |
+
|
| 1156 |
+
class BacformerForProteinClassification(BacformerPreTrainedModel):
|
| 1157 |
+
"""Bacformer model with a classification head on top for protein classification tasks."""
|
| 1158 |
+
|
| 1159 |
+
def __init__(self, config: BacformerConfig, benchmark_esm: bool = False):
|
| 1160 |
+
super().__init__(config)
|
| 1161 |
+
self.config = config
|
| 1162 |
+
self.benchmark_esm = benchmark_esm
|
| 1163 |
+
|
| 1164 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
| 1165 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 1166 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1167 |
+
|
| 1168 |
+
# Initialize weights and apply final processing
|
| 1169 |
+
self.post_init()
|
| 1170 |
+
|
| 1171 |
+
def forward(
|
| 1172 |
+
self,
|
| 1173 |
+
protein_embeddings: torch.Tensor,
|
| 1174 |
+
special_tokens_mask: torch.Tensor,
|
| 1175 |
+
labels: torch.Tensor = None,
|
| 1176 |
+
token_type_ids: torch.Tensor = None,
|
| 1177 |
+
attention_mask: torch.Tensor = None,
|
| 1178 |
+
return_attn_weights: bool = None,
|
| 1179 |
+
return_dict: Union[bool, None] = None,
|
| 1180 |
+
) -> Optional[BacformerModelOutput]:
|
| 1181 |
+
"""Forward method for the model."""
|
| 1182 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 1183 |
+
return_attn_weights = (
|
| 1184 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
| 1185 |
+
)
|
| 1186 |
+
|
| 1187 |
+
if self.benchmark_esm:
|
| 1188 |
+
outputs = [protein_embeddings]
|
| 1189 |
+
else:
|
| 1190 |
+
outputs = self.bacformer(
|
| 1191 |
+
protein_embeddings=protein_embeddings,
|
| 1192 |
+
special_tokens_mask=special_tokens_mask,
|
| 1193 |
+
token_type_ids=token_type_ids,
|
| 1194 |
+
attention_mask=attention_mask,
|
| 1195 |
+
return_attn_weights=return_attn_weights,
|
| 1196 |
+
return_dict=return_dict,
|
| 1197 |
+
)
|
| 1198 |
+
|
| 1199 |
+
last_hidden_state = outputs[0]
|
| 1200 |
+
|
| 1201 |
+
last_hidden_state = self.dropout(last_hidden_state)
|
| 1202 |
+
logits = self.classifier(last_hidden_state)
|
| 1203 |
+
|
| 1204 |
+
loss = None
|
| 1205 |
+
if labels is not None:
|
| 1206 |
+
labels = labels.to(logits.device)
|
| 1207 |
+
|
| 1208 |
+
if self.config.problem_type == "regression":
|
| 1209 |
+
loss = mse_loss(logits, labels)
|
| 1210 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1211 |
+
loss = cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))
|
| 1212 |
+
elif (
|
| 1213 |
+
self.config.problem_type == "multi_label_classification"
|
| 1214 |
+
or self.config.problem_type == "binary_classification"
|
| 1215 |
+
):
|
| 1216 |
+
# remove the -100 labels from loss computation
|
| 1217 |
+
mask = torch.ones_like(labels.view(-1)) - (labels.view(-1) == -100.0).float()
|
| 1218 |
+
loss = binary_cross_entropy_with_logits(
|
| 1219 |
+
logits.view(-1), labels.view(-1).type_as(logits), reduction="none"
|
| 1220 |
+
)
|
| 1221 |
+
loss = (loss * mask).sum() / mask.sum()
|
| 1222 |
+
|
| 1223 |
+
if not return_dict:
|
| 1224 |
+
return (
|
| 1225 |
+
loss,
|
| 1226 |
+
None,
|
| 1227 |
+
logits,
|
| 1228 |
+
) # + outputs
|
| 1229 |
+
|
| 1230 |
+
return BacformerModelOutput(
|
| 1231 |
+
loss=loss,
|
| 1232 |
+
logits=logits,
|
| 1233 |
+
last_hidden_state=last_hidden_state,
|
| 1234 |
+
attentions=outputs.attentions,
|
| 1235 |
+
)
|
| 1236 |
+
|
| 1237 |
+
|
| 1238 |
+
class BacformerForGenomeClassification(BacformerPreTrainedModel):
|
| 1239 |
+
"""Bacformer model with a classification head on top for genome classification tasks."""
|
| 1240 |
+
|
| 1241 |
+
def __init__(self, config: BacformerConfig):
|
| 1242 |
+
super().__init__(config)
|
| 1243 |
+
self.config = config
|
| 1244 |
+
|
| 1245 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
| 1246 |
+
self.classifier = BacformerGenomeClassificationHead(config)
|
| 1247 |
+
|
| 1248 |
+
# Initialize weights and apply final processing
|
| 1249 |
+
self.post_init()
|
| 1250 |
+
|
| 1251 |
+
def forward(
|
| 1252 |
+
self,
|
| 1253 |
+
protein_embeddings: torch.Tensor,
|
| 1254 |
+
special_tokens_mask: torch.Tensor,
|
| 1255 |
+
labels: torch.Tensor = None,
|
| 1256 |
+
token_type_ids: torch.Tensor = None,
|
| 1257 |
+
attention_mask: torch.Tensor = None,
|
| 1258 |
+
return_attn_weights: bool = None,
|
| 1259 |
+
return_dict: Union[bool, None] = None,
|
| 1260 |
+
) -> Optional[BacformerModelOutput]:
|
| 1261 |
+
"""Forward method for the model."""
|
| 1262 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 1263 |
+
return_attn_weights = (
|
| 1264 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
| 1265 |
+
)
|
| 1266 |
+
|
| 1267 |
+
outputs = self.bacformer(
|
| 1268 |
+
protein_embeddings=protein_embeddings,
|
| 1269 |
+
special_tokens_mask=special_tokens_mask,
|
| 1270 |
+
token_type_ids=token_type_ids,
|
| 1271 |
+
attention_mask=attention_mask,
|
| 1272 |
+
return_attn_weights=return_attn_weights,
|
| 1273 |
+
return_dict=return_dict,
|
| 1274 |
+
)
|
| 1275 |
+
last_hidden_state = outputs[0]
|
| 1276 |
+
logits = self.classifier(last_hidden_state, attention_mask)
|
| 1277 |
+
|
| 1278 |
+
loss = None
|
| 1279 |
+
if labels is not None:
|
| 1280 |
+
labels = labels.to(logits.device)
|
| 1281 |
+
|
| 1282 |
+
if self.config.problem_type == "regression":
|
| 1283 |
+
loss = mse_loss(logits.view(-1), labels.view(-1))
|
| 1284 |
+
elif self.config.problem_type == "binary_classification":
|
| 1285 |
+
loss = binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
|
| 1286 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1287 |
+
loss = cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))
|
| 1288 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1289 |
+
loss = binary_cross_entropy_with_logits(logits, labels)
|
| 1290 |
+
|
| 1291 |
+
if not return_dict:
|
| 1292 |
+
return (
|
| 1293 |
+
loss,
|
| 1294 |
+
None,
|
| 1295 |
+
logits,
|
| 1296 |
+
)
|
| 1297 |
+
|
| 1298 |
+
return BacformerModelOutput(
|
| 1299 |
+
loss=loss,
|
| 1300 |
+
logits=logits,
|
| 1301 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 1302 |
+
attentions=outputs.attentions,
|
| 1303 |
+
)
|
| 1304 |
+
|
| 1305 |
+
|
| 1306 |
+
class BacformerForProteinProteinInteraction(BacformerPreTrainedModel):
|
| 1307 |
+
"""Bacformer model with a protein-protein interaction head on top."""
|
| 1308 |
+
|
| 1309 |
+
def __init__(self, config: BacformerConfig, benchmark_esm: bool = False):
|
| 1310 |
+
super().__init__(config)
|
| 1311 |
+
self.config = config
|
| 1312 |
+
self.benchmark_esm = benchmark_esm
|
| 1313 |
+
print("Benchmark ESM:", self.benchmark_esm)
|
| 1314 |
+
self.return_attn_weights = config.return_attn_weights
|
| 1315 |
+
|
| 1316 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
| 1317 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 1318 |
+
self.dense = nn.Sequential(
|
| 1319 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1320 |
+
nn.GELU(),
|
| 1321 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps),
|
| 1322 |
+
nn.Dropout(0.2),
|
| 1323 |
+
)
|
| 1324 |
+
self.ppi_head = BacformerProteinProteinInteractionHead(
|
| 1325 |
+
in_features=config.hidden_size, prot_emb_idx=config.prot_emb_token_id
|
| 1326 |
+
)
|
| 1327 |
+
|
| 1328 |
+
# Initialize weights and apply final processing
|
| 1329 |
+
self.post_init()
|
| 1330 |
+
|
| 1331 |
+
def forward(
|
| 1332 |
+
self,
|
| 1333 |
+
protein_embeddings: torch.Tensor,
|
| 1334 |
+
special_tokens_mask: torch.Tensor,
|
| 1335 |
+
labels: torch.Tensor = None,
|
| 1336 |
+
token_type_ids: torch.Tensor = None,
|
| 1337 |
+
attention_mask: torch.Tensor = None,
|
| 1338 |
+
return_attn_weights: bool = None,
|
| 1339 |
+
return_dict: Union[bool, None] = None,
|
| 1340 |
+
) -> Union[OrderedDict, None]: # TODO: change it from token classifier output
|
| 1341 |
+
"""Forward method for the model."""
|
| 1342 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 1343 |
+
|
| 1344 |
+
if self.benchmark_esm:
|
| 1345 |
+
last_hidden_state = protein_embeddings.squeeze(0)[1:-2, :]
|
| 1346 |
+
else:
|
| 1347 |
+
outputs = self.bacformer(
|
| 1348 |
+
protein_embeddings=protein_embeddings,
|
| 1349 |
+
special_tokens_mask=special_tokens_mask,
|
| 1350 |
+
token_type_ids=token_type_ids,
|
| 1351 |
+
attention_mask=attention_mask,
|
| 1352 |
+
return_attn_weights=False,
|
| 1353 |
+
return_dict=True,
|
| 1354 |
+
)
|
| 1355 |
+
last_hidden_state = outputs.last_hidden_state.squeeze(0)[1:-2, :]
|
| 1356 |
+
|
| 1357 |
+
assert labels.shape[0] == 1, "Batch size should be 1 for protein-protein interaction task"
|
| 1358 |
+
|
| 1359 |
+
last_hidden_state = self.dense(self.dropout(last_hidden_state))
|
| 1360 |
+
last_hidden_state = torch.cat([last_hidden_state[labels[:, 0]], last_hidden_state[labels[:, 1]]], dim=0).mean(
|
| 1361 |
+
dim=0
|
| 1362 |
+
)
|
| 1363 |
+
logits = self.ppi_head(last_hidden_state)
|
| 1364 |
+
|
| 1365 |
+
loss = binary_cross_entropy_with_logits(logits, labels[:, 2].type_as(logits).squeeze(0))
|
| 1366 |
+
|
| 1367 |
+
if not return_dict:
|
| 1368 |
+
return (
|
| 1369 |
+
loss,
|
| 1370 |
+
logits,
|
| 1371 |
+
)
|
| 1372 |
+
|
| 1373 |
+
return BacformerModelOutput(
|
| 1374 |
+
loss=loss,
|
| 1375 |
+
logits=logits,
|
| 1376 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 1377 |
+
attentions=outputs.attentions,
|
| 1378 |
+
)
|
| 1379 |
+
|
| 1380 |
+
|
| 1381 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
| 1382 |
+
class BacformerPooler(nn.Module):
|
| 1383 |
+
"""Pooler for Bacformer model."""
|
| 1384 |
+
|
| 1385 |
+
def __init__(self, config: BacformerConfig):
|
| 1386 |
+
super().__init__()
|
| 1387 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1388 |
+
self.activation = nn.Tanh()
|
| 1389 |
+
|
| 1390 |
+
def forward(self, hidden_states: torch.Tensor, padding_mask: torch.Tensor = None) -> torch.Tensor:
|
| 1391 |
+
"""Forward method for the pooler."""
|
| 1392 |
+
# We "pool" the model by taking the mean of non-padding tokens
|
| 1393 |
+
padding_mask = padding_mask.to(hidden_states.device) if padding_mask is not None else None
|
| 1394 |
+
if padding_mask is not None:
|
| 1395 |
+
mean_hidden_states = torch.einsum("ijk,ij->ik", hidden_states, padding_mask) / padding_mask.sum(
|
| 1396 |
+
1
|
| 1397 |
+
).unsqueeze(1)
|
| 1398 |
+
else:
|
| 1399 |
+
mean_hidden_states = hidden_states.mean(dim=1)
|
| 1400 |
+
pooled_output = self.dense(mean_hidden_states)
|
| 1401 |
+
pooled_output = self.activation(pooled_output)
|
| 1402 |
+
return pooled_output
|
| 1403 |
+
|
| 1404 |
+
|
| 1405 |
+
class BacformerGMHead(nn.Module):
|
| 1406 |
+
"""Bacformer Head for genomic modeling."""
|
| 1407 |
+
|
| 1408 |
+
def __init__(self, config):
|
| 1409 |
+
super().__init__()
|
| 1410 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1411 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1412 |
+
|
| 1413 |
+
# add 1 to the condfig.protein_clusters_vocab_size to account for the end token
|
| 1414 |
+
self.decoder = nn.Linear(config.hidden_size, config.protein_clusters_vocab_size + 1, bias=False)
|
| 1415 |
+
self.bias = nn.Parameter(torch.zeros(config.protein_clusters_vocab_size + 1))
|
| 1416 |
+
|
| 1417 |
+
def forward(self, features, **kwargs):
|
| 1418 |
+
"""Forward method for the head."""
|
| 1419 |
+
x = self.dense(features)
|
| 1420 |
+
x = gelu(x)
|
| 1421 |
+
x = self.layer_norm(x)
|
| 1422 |
+
|
| 1423 |
+
# project back to nr of labels with bias
|
| 1424 |
+
x = self.decoder(x) + self.bias
|
| 1425 |
+
return x
|
| 1426 |
+
|
| 1427 |
+
|
| 1428 |
+
class BacformerGenomeClassificationHead(nn.Module):
|
| 1429 |
+
"""Head for genome-level classification tasks."""
|
| 1430 |
+
|
| 1431 |
+
def __init__(self, config: BacformerConfig):
|
| 1432 |
+
super().__init__()
|
| 1433 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 1434 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
| 1435 |
+
|
| 1436 |
+
def forward(self, features: torch.Tensor, padding_mask: torch.Tensor, **kwargs):
|
| 1437 |
+
"""Forward method for the head."""
|
| 1438 |
+
if padding_mask is not None:
|
| 1439 |
+
x = torch.einsum("ijk,ij->ik", features, padding_mask) / padding_mask.sum(1).unsqueeze(1)
|
| 1440 |
+
else:
|
| 1441 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 1442 |
+
x = self.dropout(x)
|
| 1443 |
+
x = self.out_proj(x)
|
| 1444 |
+
return x
|
| 1445 |
+
|
| 1446 |
+
|
| 1447 |
+
class BacformerProteinProteinInteractionHead(nn.Module):
|
| 1448 |
+
"""Head for protein-protein interaction task at a genome level."""
|
| 1449 |
+
|
| 1450 |
+
def __init__(self, in_features: int, prot_emb_idx: int = 4, bias: bool = True):
|
| 1451 |
+
super().__init__()
|
| 1452 |
+
self.in_features = in_features
|
| 1453 |
+
self.prot_emb_idx = prot_emb_idx
|
| 1454 |
+
self.dropout = nn.Dropout(0.2)
|
| 1455 |
+
self.linear = nn.Linear(in_features, 1, bias=bias)
|
| 1456 |
+
|
| 1457 |
+
def forward(
|
| 1458 |
+
self, hidden_states: torch.Tensor
|
| 1459 |
+
) -> torch.Tensor: # special_tokens_mask: torch.Tensor, attentions: torch.Tensor):
|
| 1460 |
+
"""Forward method for the head."""
|
| 1461 |
+
return self.linear(self.dropout(hidden_states)).squeeze(-1)
|