File size: 2,377 Bytes
5cf374f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# Deployment Guide for Educational Research Methods Chatbot
This guide provides instructions for deploying the Educational Research Methods Chatbot as a permanent website.
## Prerequisites
- Docker and Docker Compose installed on the host machine
- An OpenAI API key for Command R+ access
- A server or cloud provider for hosting the containerized application
## Deployment Options
### Option 1: Deploy to a Cloud Provider (Recommended)
1. **Set up a cloud instance**:
- AWS EC2
- Google Cloud Compute Engine
- DigitalOcean Droplet
- Azure Virtual Machine
2. **Install Docker and Docker Compose on the instance**
3. **Upload the application files to the instance**
4. **Set environment variables**:
```
export OPENAI_API_KEY=your_api_key_here
```
5. **Build and start the containers**:
```
cd research_methods_chatbot
docker-compose -f deployment/docker-compose.yml up -d
```
6. **Configure a domain name** (optional):
- Purchase a domain name from a registrar
- Point the domain to your server's IP address
- Set up SSL with Let's Encrypt
### Option 2: Deploy to a Static Hosting Service
For a simpler deployment with limited functionality:
1. **Modify the frontend to use a separate API endpoint**
2. **Deploy the frontend to a static hosting service** (GitHub Pages, Netlify, Vercel)
3. **Deploy the backend to a serverless platform** (AWS Lambda, Google Cloud Functions)
## Maintenance
- **Monitoring**: Set up monitoring for the application to ensure it remains operational
- **Updates**: Periodically update dependencies and the LLM model
- **Backups**: Regularly backup any persistent data
## Security Considerations
- **API Key**: Keep your OpenAI API key secure
- **Rate Limiting**: Implement rate limiting to prevent abuse
- **Input Validation**: Ensure all user inputs are properly validated
## Scaling
If the application receives high traffic:
1. **Horizontal Scaling**: Deploy multiple instances behind a load balancer
2. **Caching**: Implement caching for common queries
3. **Database Optimization**: Optimize the vector database for faster retrieval
## Troubleshooting
- **Container Issues**: Check Docker logs with `docker logs container_name`
- **API Errors**: Verify your OpenAI API key is valid and has sufficient credits
- **Performance Problems**: Monitor resource usage and scale as needed
|