|
|
--- |
|
|
library_name: vllm |
|
|
language: |
|
|
- en |
|
|
- fr |
|
|
- es |
|
|
- de |
|
|
- it |
|
|
- pt |
|
|
- nl |
|
|
- zh |
|
|
- ja |
|
|
- ko |
|
|
- ar |
|
|
license: apache-2.0 |
|
|
inference: false |
|
|
base_model: |
|
|
- mistralai/Ministral-3-8B-Base-2512 |
|
|
extra_gated_description: >- |
|
|
If you want to learn more about how we process your personal data, please read |
|
|
our <a href="https://mistral.ai/terms/">Privacy Policy</a>. |
|
|
tags: |
|
|
- mistral-common |
|
|
--- |
|
|
|
|
|
# Ministral 3 8B Instruct 2512 BF16 |
|
|
|
|
|
A balanced model in the Ministral 3 family, **Ministral 3 8B** is a powerful, efficient tiny language model with vision capabilities. |
|
|
|
|
|
This model is the instruct post-trained version, fine-tuned for instruction tasks, making it ideal for chat and instruction based use cases. |
|
|
|
|
|
The Ministral 3 family is designed for edge deployment, capable of running on a wide range of hardware. Ministral 3 8B can even be deployed locally, capable of fitting in 24GB of VRAM in BF16, and less than 12GB of RAM/VRAM when quantized. |
|
|
|
|
|
We provide a no-loss FP8 version [here](https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512), you can find other formats and quantizations in the [Ministral 3 - Additional Checkpoints](https://huggingface.co/collections/mistralai/ministral-3-additional-checkpoints) collection. |
|
|
|
|
|
## Key Features |
|
|
Ministral 3 8B consists of two main architectural components: |
|
|
- **8.4B Language Model** |
|
|
- **0.4B Vision Encoder** |
|
|
|
|
|
The Ministral 3 8B Instruct model offers the following capabilities: |
|
|
- **Vision**: Enables the model to analyze images and provide insights based on visual content, in addition to text. |
|
|
- **Multilingual**: Supports dozens of languages, including English, French, Spanish, German, Italian, Portuguese, Dutch, Chinese, Japanese, Korean, Arabic. |
|
|
- **System Prompt**: Maintains strong adherence and support for system prompts. |
|
|
- **Agentic**: Offers best-in-class agentic capabilities with native function calling and JSON outputting. |
|
|
- **Edge-Optimized**: Delivers best-in-class performance at a small scale, deployable anywhere. |
|
|
- **Apache 2.0 License**: Open-source license allowing usage and modification for both commercial and non-commercial purposes. |
|
|
- **Large Context Window**: Supports a 256k context window. |
|
|
|
|
|
### Use Cases |
|
|
Perfect for balanced performance in local or embedded systems, combining versatility with efficiency. |
|
|
- Chat interfaces in constrained environments |
|
|
- Local daily-driver AI assistant |
|
|
- Image/document description and understanding |
|
|
- Translation and content generation |
|
|
- Specialized agentic use cases |
|
|
- Fine-tuning and specialization |
|
|
- And more... |
|
|
|
|
|
Bringing advanced AI capabilities to resource-constrained environments. |
|
|
|
|
|
## Ministral 3 Family |
|
|
|
|
|
| Model Name | Type | Precision | Link | |
|
|
|--------------------------------|--------------------|-----------|------------------------------------------------------------------------------------------| |
|
|
| Ministral 3 3B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Base-2512) | |
|
|
| Ministral 3 3B Instruct 2512 | Instruct post-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512) | |
|
|
| Ministral 3 3B Reasoning 2512 | Reasoning capable | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Reasoning-2512) | |
|
|
| Ministral 3 8B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Base-2512) | |
|
|
| **Ministral 3 8B Instruct 2512** | **Instruct post-trained** | **BF16** | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512) | |
|
|
| Ministral 3 8B Reasoning 2512 | Reasoning capable | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Reasoning-2512) | |
|
|
| Ministral 3 14B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Base-2512) | |
|
|
| Ministral 3 14B Instruct 2512 | Instruct post-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512) | |
|
|
| Ministral 3 14B Reasoning 2512 | Reasoning capable | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512) | |
|
|
|
|
|
Other formats available [here](https://huggingface.co/collections/mistralai/ministral-3-additional-checkpoints). |
|
|
|
|
|
## Benchmark Results |
|
|
|
|
|
We compare Ministral 3 to similar sized models. |
|
|
|
|
|
### Reasoning |
|
|
|
|
|
| Model | AIME25 | AIME24 | GPQA Diamond | LiveCodeBench | |
|
|
|---------------------------|-------------|-------------|--------------|---------------| |
|
|
| **Ministral 3 14B** | <u>0.850</u>| <u>0.898</u>| <u>0.712</u> | <u>0.646</u> | |
|
|
| Qwen3-14B (Thinking) | 0.737 | 0.837 | 0.663 | 0.593 | |
|
|
| | | | | | |
|
|
| **Ministral 3 8B** | 0.787 | <u>0.860</u>| 0.668 | <u>0.616</u> | |
|
|
| Qwen3-VL-8B-Thinking | <u>0.798</u>| <u>0.860</u>| <u>0.671</u> | 0.580 | |
|
|
| | | | | | |
|
|
| **Ministral 3 3B** | <u>0.721</u>| <u>0.775</u>| 0.534 | <u>0.548</u> | |
|
|
| Qwen3-VL-4B-Thinking | 0.697 | 0.729 | <u>0.601</u> | 0.513 | |
|
|
|
|
|
### Instruct |
|
|
|
|
|
| Model | Arena Hard | WildBench | MATH Maj@1 | MM MTBench | |
|
|
|---------------------------|-------------|------------|-------------|------------------| |
|
|
| **Ministral 3 14B** | <u>0.551</u>| <u>68.5</u>| <u>0.904</u>| <u>8.49</u> | |
|
|
| Qwen3 14B (Non-Thinking) | 0.427 | 65.1 | 0.870 | NOT MULTIMODAL | |
|
|
| Gemma3-12B-Instruct | 0.436 | 63.2 | 0.854 | 6.70 | |
|
|
| | | | | | |
|
|
| **Ministral 3 8B** | 0.509 | <u>66.8</u>| 0.876 | <u>8.08</u> | |
|
|
| Qwen3-VL-8B-Instruct | <u>0.528</u>| 66.3 | <u>0.946</u>| 8.00 | |
|
|
| | | | | | |
|
|
| **Ministral 3 3B** | 0.305 | <u>56.8</u>| 0.830 | 7.83 | |
|
|
| Qwen3-VL-4B-Instruct | <u>0.438</u>| <u>56.8</u>| <u>0.900</u>| <u>8.01</u> | |
|
|
| Qwen3-VL-2B-Instruct | 0.163 | 42.2 | 0.786 | 6.36 | |
|
|
| Gemma3-4B-Instruct | 0.318 | 49.1 | 0.759 | 5.23 | |
|
|
|
|
|
### Base |
|
|
|
|
|
| Model | Multilingual MMLU | MATH CoT 2-Shot | AGIEval 5-shot | MMLU Redux 5-shot | MMLU 5-shot | TriviaQA 5-shot | |
|
|
|---------------------|-------------------|-----------------|----------------|-------------------|-------------|-----------------| |
|
|
| **Ministral 3 14B** | 0.742 | <u>0.676</u> | 0.648 | 0.820 | 0.794 | 0.749 | |
|
|
| Qwen3 14B Base | <u>0.754</u> | 0.620 | <u>0.661</u> | <u>0.837</u> | <u>0.804</u>| 0.703 | |
|
|
| Gemma 3 12B Base | 0.690 | 0.487 | 0.587 | 0.766 | 0.745 | <u>0.788</u> | |
|
|
| | | | | | | | |
|
|
| **Ministral 3 8B** | <u>0.706</u> | <u>0.626</u> | 0.591 | 0.793 | <u>0.761</u>| <u>0.681</u> | |
|
|
| Qwen 3 8B Base | 0.700 | 0.576 | <u>0.596</u> | <u>0.794</u> | 0.760 | 0.639 | |
|
|
| | | | | | | | |
|
|
| **Ministral 3 3B** | 0.652 | <u>0.601</u> | 0.511 | 0.735 | 0.707 | 0.592 | |
|
|
| Qwen 3 4B Base | <u>0.677</u> | 0.405 | <u>0.570</u> | <u>0.759</u> | <u>0.713</u>| 0.530 | |
|
|
| Gemma 3 4B Base | 0.516 | 0.294 | 0.430 | 0.626 | 0.589 | <u>0.640</u> | |
|
|
|
|
|
## License |
|
|
|
|
|
This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0.txt). |
|
|
|
|
|
*You must not use this model in a manner that infringes, misappropriates, or otherwise violates any third party’s rights, including intellectual property rights.* |