Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- merge
|
| 5 |
+
- mergekit
|
| 6 |
+
- lazymergekit
|
| 7 |
+
- fblgit/UNA-TheBeagle-7b-v1
|
| 8 |
+
- argilla/distilabeled-Marcoro14-7B-slerp
|
| 9 |
+
- dpo
|
| 10 |
+
- rlhf
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+

|
| 14 |
+
|
| 15 |
+
# NeuralBeagle14-7B
|
| 16 |
+
|
| 17 |
+
**Update 01/16/24: NeuralBeagle14-7B is probably the best 7B model you can find. π**
|
| 18 |
+
|
| 19 |
+
NeuralBeagle14-7B is a DPO fine-tune of [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) using the [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference dataset and my DPO notebook from [this article](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac).
|
| 20 |
+
|
| 21 |
+
Thanks [Argilla](https://huggingface.co/argilla) for providing the dataset and the training recipe [here](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp). πͺ
|
| 22 |
+
|
| 23 |
+
## π Evaluation
|
| 24 |
+
|
| 25 |
+
The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. It is the best 7B model to date.
|
| 26 |
+
|
| 27 |
+
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|
| 28 |
+
|---|---:|---:|---:|---:|---:|
|
| 29 |
+
| [**mlabonne/NeuralBeagle14-7B**](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [π](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | **60.25** | **46.06** | **76.77** | **70.32** | **47.86** |
|
| 30 |
+
| [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) [π](https://gist.github.com/mlabonne/f5a5bf8c0827bbec2f05b97cc62d642c) | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 |
|
| 31 |
+
| [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [π](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
|
| 32 |
+
| [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp) [π](https://gist.github.com/mlabonne/9082c4e59f4d3f3543c5eda3f4807040) | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 |
|
| 33 |
+
| [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) [π](https://gist.github.com/mlabonne/b31572a4711c945a4827e7242cfc4b9d) | 58.4 | 44.59 | 76.17 | 65.94 | 46.9 |
|
| 34 |
+
| [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) [π](https://gist.github.com/mlabonne/1afab87b543b0717ec08722cf086dcc3) | 53.71 | 44.17 | 73.72 | 52.53 | 44.4 |
|
| 35 |
+
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
|
| 36 |
+
|
| 37 |
+
You can find the complete benchmark on [YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
|
| 38 |
+
|
| 39 |
+
It's also on top of the Open LLM Leaderboard:
|
| 40 |
+
|
| 41 |
+

|
| 42 |
+
|
| 43 |
+
Compared to Beagle14, there's no improvement in this benchmark. This might be due to an unlucky run, but I think I might be overexploiting argilla/distilabel-intel-orca-dpo-pairs at this point. Another preference dataset could improve it even further. Note that the Beagle models perform better than Turdus, which is purposely contaminated on Winogrande (very high score).
|
| 44 |
+
|
| 45 |
+
## π» Usage
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
!pip install -qU transformers accelerate
|
| 49 |
+
|
| 50 |
+
from transformers import AutoTokenizer
|
| 51 |
+
import transformers
|
| 52 |
+
import torch
|
| 53 |
+
|
| 54 |
+
model = "mlabonne/NeuralBeagle14-7B"
|
| 55 |
+
messages = [{"role": "user", "content": "What is a large language model?"}]
|
| 56 |
+
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
| 58 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 59 |
+
pipeline = transformers.pipeline(
|
| 60 |
+
"text-generation",
|
| 61 |
+
model=model,
|
| 62 |
+
torch_dtype=torch.float16,
|
| 63 |
+
device_map="auto",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
| 67 |
+
print(outputs[0]["generated_text"])
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
<p align="center">
|
| 71 |
+
<a href="https://github.com/argilla-io/distilabel">
|
| 72 |
+
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
|
| 73 |
+
</a>
|
| 74 |
+
</p>
|