mradermacher commited on
Commit
7fcebb8
·
verified ·
1 Parent(s): c7ed9f2

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md CHANGED
@@ -1,3 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
@@ -7,3 +31,62 @@
7
  <!-- ### quants_skip: -->
8
  <!-- ### skip_mmproj: -->
9
  weighted/imatrix quants of https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512-BF16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Ministral-3-8B-Instruct-2512-BF16
3
+ language:
4
+ - en
5
+ - fr
6
+ - es
7
+ - de
8
+ - it
9
+ - pt
10
+ - nl
11
+ - zh
12
+ - ja
13
+ - ko
14
+ - ar
15
+ library_name: transformers
16
+ license: apache-2.0
17
+ mradermacher:
18
+ readme_rev: 1
19
+ quantized_by: mradermacher
20
+ tags:
21
+ - mistral-common
22
+ ---
23
+ ## About
24
+
25
  <!-- ### quantize_version: 2 -->
26
  <!-- ### output_tensor_quantised: 1 -->
27
  <!-- ### convert_type: hf -->
 
31
  <!-- ### quants_skip: -->
32
  <!-- ### skip_mmproj: -->
33
  weighted/imatrix quants of https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512-BF16
34
+
35
+ <!-- provided-files -->
36
+
37
+ ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Ministral-3-8B-Instruct-2512-BF16-i1-GGUF).***
38
+
39
+ static quants are available at https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-GGUF
40
+
41
+ **This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-GGUF).**
42
+ ## Usage
43
+
44
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
45
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
46
+ more details, including on how to concatenate multi-part files.
47
+
48
+ ## Provided Quants
49
+
50
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
51
+
52
+ | Link | Type | Size/GB | Notes |
53
+ |:-----|:-----|--------:|:------|
54
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
55
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-IQ1_M.gguf) | i1-IQ1_M | 2.4 | mostly desperate |
56
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.6 | |
57
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.8 | |
58
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-IQ2_M.gguf) | i1-IQ2_M | 3.2 | |
59
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.2 | very low quality |
60
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q2_K.gguf) | i1-Q2_K | 3.5 | IQ3_XXS probably better |
61
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.6 | lower quality |
62
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.0 | IQ3_XS probably better |
63
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-IQ3_M.gguf) | i1-IQ3_M | 4.1 | |
64
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.3 | IQ3_S probably better |
65
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.7 | IQ3_M probably better |
66
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.8 | |
67
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-IQ4_NL.gguf) | i1-IQ4_NL | 5.0 | prefer IQ4_XS |
68
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q4_K_S.gguf) | i1-Q4_K_S | 5.1 | optimal size/speed/quality |
69
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.3 | fast, recommended |
70
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q5_K_S.gguf) | i1-Q5_K_S | 6.0 | |
71
+ | [GGUF](https://huggingface.co/mradermacher/Ministral-3-8B-Instruct-2512-BF16-i1-GGUF/resolve/main/Ministral-3-8B-Instruct-2512-BF16.i1-Q6_K.gguf) | i1-Q6_K | 7.1 | practically like static Q6_K |
72
+
73
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
74
+ types (lower is better):
75
+
76
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
77
+
78
+ And here are Artefact2's thoughts on the matter:
79
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
80
+
81
+ ## FAQ / Model Request
82
+
83
+ See https://huggingface.co/mradermacher/model_requests for some answers to
84
+ questions you might have and/or if you want some other model quantized.
85
+
86
+ ## Thanks
87
+
88
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
89
+ me use its servers and providing upgrades to my workstation to enable
90
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
91
+
92
+ <!-- end -->