# AstroPT Euclid VIS Model Pre-trained AstroPT model for single-band analysis using Euclid VIS imaging. ## Overview This is a pre-trained checkpoint for the **AstroPT** framework, trained on Euclid VIS band imaging from the Euclid Q1 dataset. **Citation**: Euclid Collaboration: Siudek, M et al. 2025 ([arXiv:2503.15312](https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract)) ## Quick Start ### Load Model ```python import torch from pathlib import Path # Load model checkpoint model_path = "astropt/090M/ckpt.pt" device = "cuda" if torch.cuda.is_available() else "cpu" # Load state dict checkpoint = torch.load(model_path, map_location=device) # Initialize your model architecture here # model.load_state_dict(checkpoint) ``` ### Inference ```python from datasets import load_dataset import torch # Load dataset dataset = load_dataset( "msiudek/astroPT_euclid_dataset", split="train_batch_1", streaming=True ) # Run inference model.eval() with torch.no_grad(): for sample in dataset: vis_image = sample['VIS_image'] # 224×224 vis_image = torch.tensor(vis_image, dtype=torch.float32) vis_image = vis_image.unsqueeze(0).unsqueeze(0) # [1, 1, 224, 224] # Get embeddings embeddings = model(vis_image) ``` ## Training Data - **Dataset**: [AstroPT Euclid Dataset](https://huggingface.co/datasets/msiudek/astroPT_euclid_dataset) - **VIS Band**: Euclid VIS (0.55–0.90 μm) ## Related Models - [AstroPT VIS+NISP Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_model): Multi-band (VIS + NISP) - [AstroPT VIS+NISP+SED Model](https://huggingface.co/msiudek/astroPT_euclid_VIS_NISP_SED_model): Multi-modal (imaging + photometry) ## Datasets - **Imaging**: [astroPT_euclid_dataset](https://huggingface.co/datasets/msiudek/astroPT_euclid_dataset) - **Metadata**: [astroPT_euclid_metadata](https://huggingface.co/datasets/msiudek/astroPT_euclid_metadata) ## Code & Documentation For inference code, training scripts, and tutorials, visit the **[AstroPT GitHub Repository](https://github.com/Smith42/astroPT)**. ## Citation ```bibtex @article{Siudek2025, title={AstroPT: Astronomical Physics Transformers for Multi-modal Learning}, author={Siudek, M and others}, journal={Euclid Collaboration}, eprint={2503.15312}, archivePrefix={arXiv}, year={2025}, url={https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract} } ``` ## License CC-BY-4.0 --- **Last Updated**: December 2025 **Model Version**: 1.0