Upload load_data.py with huggingface_hub
Browse files- load_data.py +109 -0
load_data.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from collections import defaultdict
|
| 3 |
+
import json
|
| 4 |
+
import re
|
| 5 |
+
import random
|
| 6 |
+
|
| 7 |
+
folder = "data/"
|
| 8 |
+
system_message = "You are a medical diagnosis classifier. Given a description of symptoms, provide ONLY the name of the most likely diagnosis. Do not include explanations, reasoning, or additional text."
|
| 9 |
+
|
| 10 |
+
# Load and shuffle the dataset
|
| 11 |
+
dataset = load_dataset("sajjadhadi/disease-diagnosis-dataset", split="train")
|
| 12 |
+
dataset = dataset.shuffle(seed=42)
|
| 13 |
+
|
| 14 |
+
# Function to clean symptom text into a standardized format
|
| 15 |
+
def clean_symptom_text(text):
|
| 16 |
+
pattern = r'(?:patient reported the following symptoms:|symptoms include:?)?\s*(.*?)(?:\s*(?:may indicate|based on these symptoms|what disease may the patient have\?|what is the most likely diagnosis\?).*)'
|
| 17 |
+
match = re.search(pattern, text, re.IGNORECASE)
|
| 18 |
+
if match:
|
| 19 |
+
symptoms = match.group(1).strip()
|
| 20 |
+
symptoms = re.sub(r'\s*,\s*', ', ', symptoms).rstrip(',')
|
| 21 |
+
return f"{symptoms}"
|
| 22 |
+
return text
|
| 23 |
+
|
| 24 |
+
# Group samples by diagnosis
|
| 25 |
+
diagnosis_to_samples = defaultdict(list)
|
| 26 |
+
for i, sample in enumerate(dataset):
|
| 27 |
+
diagnosis_to_samples[sample["diagnosis"]].append(i)
|
| 28 |
+
|
| 29 |
+
# TODO: @Tingzhen important Select top 50 diagnoses with at least MIN_SAMPLES
|
| 30 |
+
TARGET_SAMPLES = 300
|
| 31 |
+
MIN_SAMPLES = 75
|
| 32 |
+
|
| 33 |
+
top_diagnoses = [diag for diag, indices in sorted(diagnosis_to_samples.items(),
|
| 34 |
+
key=lambda x: len(x[1]), reverse=True)
|
| 35 |
+
if len(indices) >= MIN_SAMPLES][:MIN_SAMPLES]
|
| 36 |
+
|
| 37 |
+
print(top_diagnoses)
|
| 38 |
+
# Balance the dataset: ensure TARGET_SAMPLES per diagnosis
|
| 39 |
+
balanced_indices = []
|
| 40 |
+
for diag in top_diagnoses:
|
| 41 |
+
indices = diagnosis_to_samples[diag]
|
| 42 |
+
if len(indices) >= TARGET_SAMPLES:
|
| 43 |
+
# Cap at TARGET_SAMPLES
|
| 44 |
+
selected_indices = indices[:TARGET_SAMPLES]
|
| 45 |
+
else:
|
| 46 |
+
# Oversample to reach TARGET_SAMPLES
|
| 47 |
+
selected_indices = indices * (TARGET_SAMPLES // len(indices)) # Repeat full set
|
| 48 |
+
remaining = TARGET_SAMPLES % len(indices) # Add remaining
|
| 49 |
+
selected_indices.extend(random.sample(indices, remaining)) # Randomly sample extras
|
| 50 |
+
balanced_indices.extend(selected_indices)
|
| 51 |
+
|
| 52 |
+
# Create balanced dataset
|
| 53 |
+
balanced_dataset = dataset.select(balanced_indices)
|
| 54 |
+
print(f"Original dataset size: {len(dataset)}, Balanced dataset size: {len(balanced_indices)}")
|
| 55 |
+
print(f"Number of unique diagnoses: {len(top_diagnoses)}")
|
| 56 |
+
|
| 57 |
+
# Create train/test/validation splits
|
| 58 |
+
splits = balanced_dataset.train_test_split(test_size=0.2, seed=42)
|
| 59 |
+
test_valid_splits = splits['test'].train_test_split(test_size=0.5, seed=42)
|
| 60 |
+
|
| 61 |
+
# Function to convert samples to required format and save as JSONL
|
| 62 |
+
def save_as_jsonl(dataset, filename):
|
| 63 |
+
with open(filename, 'w') as file:
|
| 64 |
+
for sample in dataset:
|
| 65 |
+
cleaned_text = clean_symptom_text(sample["text"])
|
| 66 |
+
conversation = {
|
| 67 |
+
"messages": [
|
| 68 |
+
{"role": "system", "content": system_message},
|
| 69 |
+
{"role": "user", "content": cleaned_text},
|
| 70 |
+
{"role": "assistant", "content": sample["diagnosis"]}
|
| 71 |
+
]
|
| 72 |
+
}
|
| 73 |
+
file.write(json.dumps(conversation) + '\n')
|
| 74 |
+
|
| 75 |
+
# Save datasets
|
| 76 |
+
save_as_jsonl(splits["train"], folder + "train.jsonl")
|
| 77 |
+
save_as_jsonl(test_valid_splits["train"], folder + "test.jsonl")
|
| 78 |
+
save_as_jsonl(test_valid_splits["test"], folder + "valid.jsonl")
|
| 79 |
+
|
| 80 |
+
# Print statistics
|
| 81 |
+
print("Dataset splits:")
|
| 82 |
+
print(f" Train: {len(splits['train'])}")
|
| 83 |
+
print(f" Test: {len(test_valid_splits['train'])}")
|
| 84 |
+
print(f" Validation: {len(test_valid_splits['test'])}")
|
| 85 |
+
|
| 86 |
+
# Sample validation
|
| 87 |
+
print("\nSample validation:")
|
| 88 |
+
with open(folder + "train.jsonl", 'r') as file:
|
| 89 |
+
for i, line in enumerate(file):
|
| 90 |
+
if i >= 3:
|
| 91 |
+
break
|
| 92 |
+
example = json.loads(line)
|
| 93 |
+
print(f"Example {i+1}:")
|
| 94 |
+
print(f" System: {example['messages'][0]['content']}")
|
| 95 |
+
print(f" User: {example['messages'][1]['content']}")
|
| 96 |
+
print(f" Assistant: {example['messages'][2]['content']}")
|
| 97 |
+
print()
|
| 98 |
+
|
| 99 |
+
# Check class distribution in training set
|
| 100 |
+
class_counts = defaultdict(int)
|
| 101 |
+
with open(folder + "train.jsonl", 'r') as file:
|
| 102 |
+
for line in file:
|
| 103 |
+
example = json.loads(line)
|
| 104 |
+
diagnosis = example['messages'][2]['content']
|
| 105 |
+
class_counts[diagnosis] += 1
|
| 106 |
+
|
| 107 |
+
print("\nClass distribution in training set:")
|
| 108 |
+
for diagnosis, count in sorted(class_counts.items(), key=lambda x: x[1], reverse=True)[:10]:
|
| 109 |
+
print(f" {diagnosis}: {count}")
|