DSC_xlm-roberta-large-xnli_finetuned
This model is a fine-tuned version of joeddav/xlm-roberta-large-xnli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8773
- Accuracy: 0.7893
- F1 Macro: 0.7907
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
|---|---|---|---|---|---|
| 0.6578 | 1.0 | 350 | 0.6239 | 0.7821 | 0.7833 |
| 0.5212 | 2.0 | 700 | 0.6209 | 0.7664 | 0.7626 |
| 0.4303 | 3.0 | 1050 | 0.7122 | 0.7814 | 0.7837 |
| 0.2882 | 4.0 | 1400 | 0.8773 | 0.7893 | 0.7907 |
| 0.1891 | 5.0 | 1750 | 1.1875 | 0.7729 | 0.7740 |
| 0.2184 | 6.0 | 2100 | 1.3731 | 0.7571 | 0.7555 |
| 0.1176 | 7.0 | 2450 | 1.5050 | 0.7786 | 0.7782 |
| 0.1051 | 8.0 | 2800 | 1.6344 | 0.785 | 0.7846 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 3