--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: DSC_xlm-roberta-large_finetuned results: [] --- # DSC_xlm-roberta-large_finetuned This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0981 - Accuracy: 0.35 - F1 Macro: 0.1728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 1.1194 | 1.0 | 350 | 1.1025 | 0.3293 | 0.1651 | | 1.1063 | 2.0 | 700 | 1.0981 | 0.35 | 0.1728 | | 1.1026 | 3.0 | 1050 | 1.0987 | 0.35 | 0.1728 | | 1.1043 | 4.0 | 1400 | 1.0986 | 0.35 | 0.1728 | | 1.1023 | 5.0 | 1750 | 1.1013 | 0.35 | 0.1728 | | 1.1025 | 6.0 | 2100 | 1.0996 | 0.3293 | 0.1651 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2