File size: 1,898 Bytes
dba0783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63e424
 
 
 
 
 
 
 
 
 
 
 
dba0783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
library_name: mlx
datasets:
- DavidAU/ST-TheNextGeneration
language:
- en
- fr
- zh
- de
tags:
- programming
- code generation
- code
- codeqwen
- moe
- coding
- coder
- qwen2
- chat
- qwen
- qwen-coder
- Qwen3-Coder-30B-A3B-Instruct
- Qwen3-30B-A3B
- mixture of experts
- 128 experts
- 8 active experts
- 1 million context
- qwen3
- finetune
- brainstorm 20x
- brainstorm
- optional thinking
- qwen3_moe
- unsloth
- mlx
base_model: DavidAU/Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG
pipeline_tag: text-generation
---

# Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG-qx64x-hi-mlx

This is a new-old-stock version of the model, with embeddings at 6 bit.

The original [Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG-qx64x-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG-qx64x-hi-mlx) is using 4 bit embeddings

```bash
Perplexity: 4.455 ± 0.031
Peak memory: 32.84 GB
```

Metrics coming soon. If this proves better than the qx64-hi, it will replace it in the catalog.

-G
This model [Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG-qx64x-hi-mlx](https://huggingface.co/Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG-qx64x-hi-mlx) was
converted to MLX format from [DavidAU/Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG](https://huggingface.co/DavidAU/Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG)
using mlx-lm version **0.28.3**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("Qwen3-Yoyo-V3-42B-A3B-Thinking-TOTAL-RECALL-ST-TNG-qx64x-hi-mlx")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```