Upload folder using huggingface_hub
Browse files- adapter_config.json +5 -5
- adapter_model.safetensors +1 -1
- optimizer.pt +1 -1
- rng_state.pth +1 -1
- scheduler.pt +1 -1
- trainer_state.json +799 -799
- training_args.bin +1 -1
adapter_config.json
CHANGED
|
@@ -29,13 +29,13 @@
|
|
| 29 |
"rank_pattern": {},
|
| 30 |
"revision": null,
|
| 31 |
"target_modules": [
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
"v_proj",
|
|
|
|
| 35 |
"down_proj",
|
| 36 |
-
"
|
| 37 |
-
"o_proj"
|
| 38 |
-
"q_proj"
|
| 39 |
],
|
| 40 |
"target_parameters": null,
|
| 41 |
"task_type": "CAUSAL_LM",
|
|
|
|
| 29 |
"rank_pattern": {},
|
| 30 |
"revision": null,
|
| 31 |
"target_modules": [
|
| 32 |
+
"up_proj",
|
| 33 |
+
"q_proj",
|
| 34 |
"v_proj",
|
| 35 |
+
"gate_proj",
|
| 36 |
"down_proj",
|
| 37 |
+
"k_proj",
|
| 38 |
+
"o_proj"
|
|
|
|
| 39 |
],
|
| 40 |
"target_parameters": null,
|
| 41 |
"task_type": "CAUSAL_LM",
|
adapter_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 167832240
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3db570fd27876879cc33103ca8933604745e61f4019c1d836c15c7fe2de9457
|
| 3 |
size 167832240
|
optimizer.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 85728342
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:beeda5e00e3f2a251a26931469526d6fefa8f6cc35fc3926826851fecb38c416
|
| 3 |
size 85728342
|
rng_state.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 14244
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa347da6099cd574f9473f1c0ead501ac849153b19f5aa7b33de856b2d1f19dc
|
| 3 |
size 14244
|
scheduler.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1064
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bea4c55977be70b1134031e6a8b57e36f8f593b2249c6d9d6b94a16db34cae2
|
| 3 |
size 1064
|
trainer_state.json
CHANGED
|
@@ -4,1154 +4,1154 @@
|
|
| 4 |
"best_model_checkpoint": null,
|
| 5 |
"epoch": 1.0,
|
| 6 |
"eval_steps": 115,
|
| 7 |
-
"global_step":
|
| 8 |
"is_hyper_param_search": false,
|
| 9 |
"is_local_process_zero": true,
|
| 10 |
"is_world_process_zero": true,
|
| 11 |
"log_history": [
|
| 12 |
{
|
| 13 |
-
"entropy": 1.
|
| 14 |
-
"epoch": 0.
|
| 15 |
-
"grad_norm":
|
| 16 |
"learning_rate": 8e-05,
|
| 17 |
-
"loss": 1.
|
| 18 |
-
"mean_token_accuracy": 0.
|
| 19 |
-
"num_tokens":
|
| 20 |
"step": 5
|
| 21 |
},
|
| 22 |
{
|
| 23 |
-
"entropy": 1.
|
| 24 |
-
"epoch": 0.
|
| 25 |
-
"grad_norm": 0.
|
| 26 |
"learning_rate": 0.00018,
|
| 27 |
-
"loss": 1.
|
| 28 |
-
"mean_token_accuracy": 0.
|
| 29 |
-
"num_tokens":
|
| 30 |
"step": 10
|
| 31 |
},
|
| 32 |
{
|
| 33 |
-
"entropy": 1.
|
| 34 |
-
"epoch": 0.
|
| 35 |
-
"grad_norm":
|
| 36 |
-
"learning_rate": 0.
|
| 37 |
-
"loss": 1.
|
| 38 |
-
"mean_token_accuracy": 0.
|
| 39 |
-
"num_tokens":
|
| 40 |
"step": 15
|
| 41 |
},
|
| 42 |
{
|
| 43 |
-
"entropy": 1.
|
| 44 |
-
"epoch": 0.
|
| 45 |
-
"grad_norm": 0.
|
| 46 |
-
"learning_rate": 0.
|
| 47 |
-
"loss": 1.
|
| 48 |
-
"mean_token_accuracy": 0.
|
| 49 |
-
"num_tokens":
|
| 50 |
"step": 20
|
| 51 |
},
|
| 52 |
{
|
| 53 |
-
"entropy": 1.
|
| 54 |
-
"epoch": 0.
|
| 55 |
-
"grad_norm":
|
| 56 |
-
"learning_rate": 0.
|
| 57 |
-
"loss": 1.
|
| 58 |
-
"mean_token_accuracy": 0.
|
| 59 |
-
"num_tokens":
|
| 60 |
"step": 25
|
| 61 |
},
|
| 62 |
{
|
| 63 |
-
"entropy": 1.
|
| 64 |
-
"epoch": 0.
|
| 65 |
-
"grad_norm": 0.
|
| 66 |
-
"learning_rate": 0.
|
| 67 |
-
"loss": 1.
|
| 68 |
-
"mean_token_accuracy": 0.
|
| 69 |
-
"num_tokens":
|
| 70 |
"step": 30
|
| 71 |
},
|
| 72 |
{
|
| 73 |
-
"entropy": 1.
|
| 74 |
-
"epoch": 0.
|
| 75 |
-
"grad_norm": 0.
|
| 76 |
-
"learning_rate": 0.
|
| 77 |
-
"loss": 1.
|
| 78 |
-
"mean_token_accuracy": 0.
|
| 79 |
-
"num_tokens":
|
| 80 |
"step": 35
|
| 81 |
},
|
| 82 |
{
|
| 83 |
-
"entropy": 1.
|
| 84 |
-
"epoch": 0.
|
| 85 |
-
"grad_norm": 0.
|
| 86 |
-
"learning_rate": 0.
|
| 87 |
-
"loss": 1.
|
| 88 |
-
"mean_token_accuracy": 0.
|
| 89 |
-
"num_tokens":
|
| 90 |
"step": 40
|
| 91 |
},
|
| 92 |
{
|
| 93 |
-
"entropy": 1.
|
| 94 |
-
"epoch": 0.
|
| 95 |
-
"grad_norm": 0.
|
| 96 |
-
"learning_rate": 0.
|
| 97 |
-
"loss": 1.
|
| 98 |
-
"mean_token_accuracy": 0.
|
| 99 |
-
"num_tokens":
|
| 100 |
"step": 45
|
| 101 |
},
|
| 102 |
{
|
| 103 |
-
"entropy": 1.
|
| 104 |
-
"epoch": 0.
|
| 105 |
-
"grad_norm": 0.
|
| 106 |
-
"learning_rate": 0.
|
| 107 |
-
"loss": 1.
|
| 108 |
-
"mean_token_accuracy": 0.
|
| 109 |
-
"num_tokens":
|
| 110 |
"step": 50
|
| 111 |
},
|
| 112 |
{
|
| 113 |
-
"entropy": 1.
|
| 114 |
-
"epoch": 0.
|
| 115 |
-
"grad_norm": 0.
|
| 116 |
-
"learning_rate": 0.
|
| 117 |
-
"loss": 1.
|
| 118 |
-
"mean_token_accuracy": 0.
|
| 119 |
-
"num_tokens":
|
| 120 |
"step": 55
|
| 121 |
},
|
| 122 |
{
|
| 123 |
-
"entropy": 1.
|
| 124 |
-
"epoch": 0.
|
| 125 |
-
"grad_norm": 0.
|
| 126 |
-
"learning_rate": 0.
|
| 127 |
-
"loss": 1.
|
| 128 |
-
"mean_token_accuracy": 0.
|
| 129 |
-
"num_tokens":
|
| 130 |
"step": 60
|
| 131 |
},
|
| 132 |
{
|
| 133 |
-
"entropy": 1.
|
| 134 |
-
"epoch": 0.
|
| 135 |
-
"grad_norm": 0.
|
| 136 |
-
"learning_rate": 0.
|
| 137 |
-
"loss": 1.
|
| 138 |
-
"mean_token_accuracy": 0.
|
| 139 |
-
"num_tokens":
|
| 140 |
"step": 65
|
| 141 |
},
|
| 142 |
{
|
| 143 |
-
"entropy": 1.
|
| 144 |
-
"epoch": 0.
|
| 145 |
-
"grad_norm": 0.
|
| 146 |
-
"learning_rate": 0.
|
| 147 |
-
"loss": 1.
|
| 148 |
-
"mean_token_accuracy": 0.
|
| 149 |
-
"num_tokens":
|
| 150 |
"step": 70
|
| 151 |
},
|
| 152 |
{
|
| 153 |
-
"entropy": 1.
|
| 154 |
-
"epoch": 0.
|
| 155 |
-
"grad_norm": 0.
|
| 156 |
-
"learning_rate": 0.
|
| 157 |
-
"loss":
|
| 158 |
-
"mean_token_accuracy": 0.
|
| 159 |
-
"num_tokens":
|
| 160 |
"step": 75
|
| 161 |
},
|
| 162 |
{
|
| 163 |
-
"entropy": 1.
|
| 164 |
-
"epoch": 0.
|
| 165 |
-
"grad_norm": 0.
|
| 166 |
-
"learning_rate": 0.
|
| 167 |
-
"loss":
|
| 168 |
-
"mean_token_accuracy": 0.
|
| 169 |
-
"num_tokens":
|
| 170 |
"step": 80
|
| 171 |
},
|
| 172 |
{
|
| 173 |
-
"entropy": 1.
|
| 174 |
-
"epoch": 0.
|
| 175 |
-
"grad_norm": 0.
|
| 176 |
-
"learning_rate": 0.
|
| 177 |
-
"loss": 1.
|
| 178 |
-
"mean_token_accuracy": 0.
|
| 179 |
-
"num_tokens":
|
| 180 |
"step": 85
|
| 181 |
},
|
| 182 |
{
|
| 183 |
-
"entropy": 1.
|
| 184 |
-
"epoch": 0.
|
| 185 |
-
"grad_norm": 0.
|
| 186 |
-
"learning_rate": 0.
|
| 187 |
-
"loss":
|
| 188 |
-
"mean_token_accuracy": 0.
|
| 189 |
-
"num_tokens":
|
| 190 |
"step": 90
|
| 191 |
},
|
| 192 |
{
|
| 193 |
-
"entropy": 1.
|
| 194 |
-
"epoch": 0.
|
| 195 |
-
"grad_norm": 0.
|
| 196 |
-
"learning_rate": 0.
|
| 197 |
-
"loss": 1.
|
| 198 |
-
"mean_token_accuracy": 0.
|
| 199 |
-
"num_tokens":
|
| 200 |
"step": 95
|
| 201 |
},
|
| 202 |
{
|
| 203 |
-
"entropy": 1.
|
| 204 |
-
"epoch": 0.
|
| 205 |
-
"grad_norm": 0.
|
| 206 |
-
"learning_rate": 0.
|
| 207 |
-
"loss":
|
| 208 |
-
"mean_token_accuracy": 0.
|
| 209 |
-
"num_tokens":
|
| 210 |
"step": 100
|
| 211 |
},
|
| 212 |
{
|
| 213 |
-
"entropy": 1.
|
| 214 |
-
"epoch": 0.
|
| 215 |
-
"grad_norm": 0.
|
| 216 |
-
"learning_rate": 0.
|
| 217 |
-
"loss":
|
| 218 |
-
"mean_token_accuracy": 0.
|
| 219 |
-
"num_tokens":
|
| 220 |
"step": 105
|
| 221 |
},
|
| 222 |
{
|
| 223 |
-
"entropy": 1.
|
| 224 |
-
"epoch": 0.
|
| 225 |
-
"grad_norm": 0.
|
| 226 |
-
"learning_rate": 0.
|
| 227 |
-
"loss":
|
| 228 |
-
"mean_token_accuracy": 0.
|
| 229 |
-
"num_tokens":
|
| 230 |
"step": 110
|
| 231 |
},
|
| 232 |
{
|
| 233 |
-
"entropy": 1.
|
| 234 |
-
"epoch": 0.
|
| 235 |
-
"grad_norm":
|
| 236 |
-
"learning_rate": 0.
|
| 237 |
-
"loss": 1.
|
| 238 |
-
"mean_token_accuracy": 0.
|
| 239 |
-
"num_tokens":
|
| 240 |
"step": 115
|
| 241 |
},
|
| 242 |
{
|
| 243 |
-
"entropy": 1.
|
| 244 |
-
"epoch": 0.
|
| 245 |
-
"grad_norm":
|
| 246 |
-
"learning_rate": 0.
|
| 247 |
-
"loss":
|
| 248 |
-
"mean_token_accuracy": 0.
|
| 249 |
-
"num_tokens":
|
| 250 |
"step": 120
|
| 251 |
},
|
| 252 |
{
|
| 253 |
-
"entropy": 1.
|
| 254 |
-
"epoch": 0.
|
| 255 |
-
"grad_norm": 0.
|
| 256 |
-
"learning_rate": 0.
|
| 257 |
-
"loss":
|
| 258 |
-
"mean_token_accuracy": 0.
|
| 259 |
-
"num_tokens":
|
| 260 |
"step": 125
|
| 261 |
},
|
| 262 |
{
|
| 263 |
-
"entropy": 1.
|
| 264 |
-
"epoch": 0.
|
| 265 |
-
"grad_norm": 0.
|
| 266 |
-
"learning_rate": 0.
|
| 267 |
-
"loss":
|
| 268 |
-
"mean_token_accuracy": 0.
|
| 269 |
-
"num_tokens":
|
| 270 |
"step": 130
|
| 271 |
},
|
| 272 |
{
|
| 273 |
-
"entropy": 1.
|
| 274 |
-
"epoch": 0.
|
| 275 |
-
"grad_norm": 0.
|
| 276 |
-
"learning_rate": 0.
|
| 277 |
-
"loss": 1.
|
| 278 |
-
"mean_token_accuracy": 0.
|
| 279 |
-
"num_tokens":
|
| 280 |
"step": 135
|
| 281 |
},
|
| 282 |
{
|
| 283 |
-
"entropy": 1.
|
| 284 |
-
"epoch": 0.
|
| 285 |
-
"grad_norm": 0.
|
| 286 |
-
"learning_rate": 0.
|
| 287 |
-
"loss":
|
| 288 |
-
"mean_token_accuracy": 0.
|
| 289 |
-
"num_tokens":
|
| 290 |
"step": 140
|
| 291 |
},
|
| 292 |
{
|
| 293 |
-
"entropy": 1.
|
| 294 |
-
"epoch": 0.
|
| 295 |
-
"grad_norm": 0.
|
| 296 |
-
"learning_rate": 0.
|
| 297 |
-
"loss":
|
| 298 |
-
"mean_token_accuracy": 0.
|
| 299 |
-
"num_tokens":
|
| 300 |
"step": 145
|
| 301 |
},
|
| 302 |
{
|
| 303 |
-
"entropy":
|
| 304 |
-
"epoch": 0.
|
| 305 |
-
"grad_norm": 0.
|
| 306 |
-
"learning_rate": 0.
|
| 307 |
-
"loss":
|
| 308 |
-
"mean_token_accuracy": 0.
|
| 309 |
-
"num_tokens":
|
| 310 |
"step": 150
|
| 311 |
},
|
| 312 |
{
|
| 313 |
-
"entropy": 1.
|
| 314 |
-
"epoch": 0.
|
| 315 |
-
"grad_norm": 0.
|
| 316 |
-
"learning_rate": 0.
|
| 317 |
-
"loss":
|
| 318 |
-
"mean_token_accuracy": 0.
|
| 319 |
-
"num_tokens":
|
| 320 |
"step": 155
|
| 321 |
},
|
| 322 |
{
|
| 323 |
-
"entropy": 1.
|
| 324 |
-
"epoch": 0.
|
| 325 |
-
"grad_norm": 0.
|
| 326 |
-
"learning_rate": 0.
|
| 327 |
-
"loss":
|
| 328 |
-
"mean_token_accuracy": 0.
|
| 329 |
-
"num_tokens":
|
| 330 |
"step": 160
|
| 331 |
},
|
| 332 |
{
|
| 333 |
-
"entropy": 1.
|
| 334 |
-
"epoch": 0.
|
| 335 |
-
"grad_norm": 0.
|
| 336 |
-
"learning_rate": 0.
|
| 337 |
-
"loss":
|
| 338 |
-
"mean_token_accuracy": 0.
|
| 339 |
-
"num_tokens":
|
| 340 |
"step": 165
|
| 341 |
},
|
| 342 |
{
|
| 343 |
-
"entropy": 1.
|
| 344 |
-
"epoch": 0.
|
| 345 |
-
"grad_norm": 0.
|
| 346 |
-
"learning_rate": 0.
|
| 347 |
-
"loss": 1.
|
| 348 |
-
"mean_token_accuracy": 0.
|
| 349 |
-
"num_tokens":
|
| 350 |
"step": 170
|
| 351 |
},
|
| 352 |
{
|
| 353 |
-
"entropy": 1.
|
| 354 |
-
"epoch": 0.
|
| 355 |
-
"grad_norm": 0.
|
| 356 |
-
"learning_rate": 0.
|
| 357 |
-
"loss": 1.
|
| 358 |
-
"mean_token_accuracy": 0.
|
| 359 |
-
"num_tokens":
|
| 360 |
"step": 175
|
| 361 |
},
|
| 362 |
{
|
| 363 |
-
"entropy":
|
| 364 |
-
"epoch": 0.
|
| 365 |
-
"grad_norm":
|
| 366 |
-
"learning_rate": 0.
|
| 367 |
-
"loss":
|
| 368 |
-
"mean_token_accuracy": 0.
|
| 369 |
-
"num_tokens":
|
| 370 |
"step": 180
|
| 371 |
},
|
| 372 |
{
|
| 373 |
-
"entropy": 1.
|
| 374 |
-
"epoch": 0.
|
| 375 |
-
"grad_norm":
|
| 376 |
-
"learning_rate": 0.
|
| 377 |
-
"loss": 1.
|
| 378 |
-
"mean_token_accuracy": 0.
|
| 379 |
-
"num_tokens":
|
| 380 |
"step": 185
|
| 381 |
},
|
| 382 |
{
|
| 383 |
-
"entropy": 1.
|
| 384 |
-
"epoch": 0.
|
| 385 |
-
"grad_norm": 0.
|
| 386 |
-
"learning_rate": 0.
|
| 387 |
-
"loss": 1.
|
| 388 |
-
"mean_token_accuracy": 0.
|
| 389 |
-
"num_tokens":
|
| 390 |
"step": 190
|
| 391 |
},
|
| 392 |
{
|
| 393 |
-
"entropy": 1.
|
| 394 |
-
"epoch": 0.
|
| 395 |
-
"grad_norm":
|
| 396 |
-
"learning_rate": 0.
|
| 397 |
-
"loss":
|
| 398 |
-
"mean_token_accuracy": 0.
|
| 399 |
-
"num_tokens":
|
| 400 |
"step": 195
|
| 401 |
},
|
| 402 |
{
|
| 403 |
-
"entropy": 1.
|
| 404 |
-
"epoch": 0.
|
| 405 |
-
"grad_norm": 0.
|
| 406 |
-
"learning_rate": 0.
|
| 407 |
-
"loss": 1.
|
| 408 |
-
"mean_token_accuracy": 0.
|
| 409 |
-
"num_tokens":
|
| 410 |
"step": 200
|
| 411 |
},
|
| 412 |
{
|
| 413 |
-
"entropy": 1.
|
| 414 |
-
"epoch": 0.
|
| 415 |
-
"grad_norm": 0.
|
| 416 |
-
"learning_rate": 0.
|
| 417 |
-
"loss":
|
| 418 |
-
"mean_token_accuracy": 0.
|
| 419 |
-
"num_tokens":
|
| 420 |
"step": 205
|
| 421 |
},
|
| 422 |
{
|
| 423 |
-
"entropy":
|
| 424 |
-
"epoch": 0.
|
| 425 |
-
"grad_norm": 0.
|
| 426 |
-
"learning_rate": 0.
|
| 427 |
-
"loss":
|
| 428 |
-
"mean_token_accuracy": 0.
|
| 429 |
-
"num_tokens":
|
| 430 |
"step": 210
|
| 431 |
},
|
| 432 |
{
|
| 433 |
-
"entropy": 1.
|
| 434 |
-
"epoch": 0.
|
| 435 |
-
"grad_norm": 0.
|
| 436 |
-
"learning_rate": 0.
|
| 437 |
-
"loss": 1.
|
| 438 |
-
"mean_token_accuracy": 0.
|
| 439 |
-
"num_tokens":
|
| 440 |
"step": 215
|
| 441 |
},
|
| 442 |
{
|
| 443 |
-
"entropy": 1.
|
| 444 |
-
"epoch": 0.
|
| 445 |
-
"grad_norm": 0.
|
| 446 |
-
"learning_rate": 0.
|
| 447 |
-
"loss":
|
| 448 |
-
"mean_token_accuracy": 0.
|
| 449 |
-
"num_tokens":
|
| 450 |
"step": 220
|
| 451 |
},
|
| 452 |
{
|
| 453 |
-
"entropy": 1.
|
| 454 |
-
"epoch": 0.
|
| 455 |
-
"grad_norm":
|
| 456 |
-
"learning_rate": 0.
|
| 457 |
-
"loss":
|
| 458 |
-
"mean_token_accuracy": 0.
|
| 459 |
-
"num_tokens":
|
| 460 |
"step": 225
|
| 461 |
},
|
| 462 |
{
|
| 463 |
-
"entropy":
|
| 464 |
-
"epoch": 0.
|
| 465 |
-
"grad_norm": 0.
|
| 466 |
-
"learning_rate": 0.
|
| 467 |
-
"loss":
|
| 468 |
-
"mean_token_accuracy": 0.
|
| 469 |
-
"num_tokens":
|
| 470 |
"step": 230
|
| 471 |
},
|
| 472 |
{
|
| 473 |
-
"entropy": 1.
|
| 474 |
-
"epoch": 0.
|
| 475 |
-
"grad_norm": 0.
|
| 476 |
-
"learning_rate": 0.
|
| 477 |
-
"loss":
|
| 478 |
-
"mean_token_accuracy": 0.
|
| 479 |
-
"num_tokens":
|
| 480 |
"step": 235
|
| 481 |
},
|
| 482 |
{
|
| 483 |
-
"entropy":
|
| 484 |
-
"epoch": 0.
|
| 485 |
-
"grad_norm": 0.
|
| 486 |
-
"learning_rate": 0.
|
| 487 |
-
"loss":
|
| 488 |
-
"mean_token_accuracy": 0.
|
| 489 |
-
"num_tokens":
|
| 490 |
"step": 240
|
| 491 |
},
|
| 492 |
{
|
| 493 |
-
"entropy": 1.
|
| 494 |
-
"epoch": 0.
|
| 495 |
-
"grad_norm": 0.
|
| 496 |
-
"learning_rate": 0.
|
| 497 |
-
"loss": 1.
|
| 498 |
-
"mean_token_accuracy": 0.
|
| 499 |
-
"num_tokens":
|
| 500 |
"step": 245
|
| 501 |
},
|
| 502 |
{
|
| 503 |
-
"entropy":
|
| 504 |
-
"epoch": 0.
|
| 505 |
-
"grad_norm": 0.
|
| 506 |
-
"learning_rate": 0.
|
| 507 |
-
"loss": 0.
|
| 508 |
-
"mean_token_accuracy": 0.
|
| 509 |
-
"num_tokens":
|
| 510 |
"step": 250
|
| 511 |
},
|
| 512 |
{
|
| 513 |
-
"entropy":
|
| 514 |
-
"epoch": 0.
|
| 515 |
-
"grad_norm": 0.
|
| 516 |
-
"learning_rate": 0.
|
| 517 |
-
"loss":
|
| 518 |
-
"mean_token_accuracy": 0.
|
| 519 |
-
"num_tokens":
|
| 520 |
"step": 255
|
| 521 |
},
|
| 522 |
{
|
| 523 |
-
"entropy":
|
| 524 |
-
"epoch": 0.
|
| 525 |
-
"grad_norm": 0.
|
| 526 |
-
"learning_rate": 0.
|
| 527 |
-
"loss": 1.
|
| 528 |
-
"mean_token_accuracy": 0.
|
| 529 |
-
"num_tokens":
|
| 530 |
"step": 260
|
| 531 |
},
|
| 532 |
{
|
| 533 |
-
"entropy":
|
| 534 |
-
"epoch": 0.
|
| 535 |
-
"grad_norm": 0.
|
| 536 |
-
"learning_rate": 0.
|
| 537 |
-
"loss": 0.
|
| 538 |
-
"mean_token_accuracy": 0.
|
| 539 |
-
"num_tokens":
|
| 540 |
"step": 265
|
| 541 |
},
|
| 542 |
{
|
| 543 |
-
"entropy": 1.
|
| 544 |
-
"epoch": 0.
|
| 545 |
-
"grad_norm": 0.
|
| 546 |
-
"learning_rate": 0.
|
| 547 |
-
"loss":
|
| 548 |
-
"mean_token_accuracy": 0.
|
| 549 |
-
"num_tokens":
|
| 550 |
"step": 270
|
| 551 |
},
|
| 552 |
{
|
| 553 |
-
"entropy": 1.
|
| 554 |
-
"epoch": 0.
|
| 555 |
-
"grad_norm": 0.
|
| 556 |
-
"learning_rate": 0.
|
| 557 |
-
"loss": 1.
|
| 558 |
-
"mean_token_accuracy": 0.
|
| 559 |
-
"num_tokens":
|
| 560 |
"step": 275
|
| 561 |
},
|
| 562 |
{
|
| 563 |
-
"entropy":
|
| 564 |
-
"epoch": 0.
|
| 565 |
-
"grad_norm": 0.
|
| 566 |
-
"learning_rate": 0.
|
| 567 |
-
"loss":
|
| 568 |
-
"mean_token_accuracy": 0.
|
| 569 |
-
"num_tokens":
|
| 570 |
"step": 280
|
| 571 |
},
|
| 572 |
{
|
| 573 |
-
"entropy":
|
| 574 |
-
"epoch": 0.
|
| 575 |
-
"grad_norm": 0.
|
| 576 |
-
"learning_rate": 0.
|
| 577 |
-
"loss":
|
| 578 |
-
"mean_token_accuracy": 0.
|
| 579 |
-
"num_tokens":
|
| 580 |
"step": 285
|
| 581 |
},
|
| 582 |
{
|
| 583 |
-
"entropy":
|
| 584 |
-
"epoch": 0.
|
| 585 |
-
"grad_norm": 0.
|
| 586 |
-
"learning_rate": 0.
|
| 587 |
-
"loss":
|
| 588 |
-
"mean_token_accuracy": 0.
|
| 589 |
-
"num_tokens":
|
| 590 |
"step": 290
|
| 591 |
},
|
| 592 |
{
|
| 593 |
-
"entropy":
|
| 594 |
-
"epoch": 0.
|
| 595 |
-
"grad_norm": 0.
|
| 596 |
-
"learning_rate": 9.
|
| 597 |
-
"loss":
|
| 598 |
-
"mean_token_accuracy": 0.
|
| 599 |
-
"num_tokens":
|
| 600 |
"step": 295
|
| 601 |
},
|
| 602 |
{
|
| 603 |
-
"entropy": 1.
|
| 604 |
-
"epoch": 0.
|
| 605 |
-
"grad_norm": 0.
|
| 606 |
-
"learning_rate": 9.
|
| 607 |
-
"loss":
|
| 608 |
-
"mean_token_accuracy": 0.
|
| 609 |
-
"num_tokens":
|
| 610 |
"step": 300
|
| 611 |
},
|
| 612 |
{
|
| 613 |
-
"entropy": 1.
|
| 614 |
-
"epoch": 0.
|
| 615 |
-
"grad_norm": 0.
|
| 616 |
-
"learning_rate": 9.
|
| 617 |
-
"loss":
|
| 618 |
-
"mean_token_accuracy": 0.
|
| 619 |
-
"num_tokens":
|
| 620 |
"step": 305
|
| 621 |
},
|
| 622 |
{
|
| 623 |
-
"entropy": 1.
|
| 624 |
-
"epoch": 0.
|
| 625 |
-
"grad_norm": 0.
|
| 626 |
-
"learning_rate": 9.
|
| 627 |
-
"loss": 0.
|
| 628 |
-
"mean_token_accuracy": 0.
|
| 629 |
-
"num_tokens":
|
| 630 |
"step": 310
|
| 631 |
},
|
| 632 |
{
|
| 633 |
-
"entropy":
|
| 634 |
-
"epoch": 0.
|
| 635 |
-
"grad_norm": 0.
|
| 636 |
-
"learning_rate": 9.
|
| 637 |
-
"loss":
|
| 638 |
-
"mean_token_accuracy": 0.
|
| 639 |
-
"num_tokens":
|
| 640 |
"step": 315
|
| 641 |
},
|
| 642 |
{
|
| 643 |
-
"entropy":
|
| 644 |
-
"epoch": 0.
|
| 645 |
-
"grad_norm": 0.
|
| 646 |
-
"learning_rate": 9.
|
| 647 |
-
"loss":
|
| 648 |
-
"mean_token_accuracy": 0.
|
| 649 |
-
"num_tokens":
|
| 650 |
"step": 320
|
| 651 |
},
|
| 652 |
{
|
| 653 |
-
"entropy": 1.
|
| 654 |
-
"epoch": 0.
|
| 655 |
-
"grad_norm": 0.
|
| 656 |
-
"learning_rate": 8.
|
| 657 |
-
"loss":
|
| 658 |
-
"mean_token_accuracy": 0.
|
| 659 |
-
"num_tokens":
|
| 660 |
"step": 325
|
| 661 |
},
|
| 662 |
{
|
| 663 |
-
"entropy": 1.
|
| 664 |
-
"epoch": 0.
|
| 665 |
-
"grad_norm": 0.
|
| 666 |
-
"learning_rate": 8.
|
| 667 |
-
"loss":
|
| 668 |
-
"mean_token_accuracy": 0.
|
| 669 |
-
"num_tokens":
|
| 670 |
"step": 330
|
| 671 |
},
|
| 672 |
{
|
| 673 |
-
"entropy": 1.
|
| 674 |
-
"epoch": 0.
|
| 675 |
-
"grad_norm":
|
| 676 |
-
"learning_rate": 8.
|
| 677 |
-
"loss":
|
| 678 |
-
"mean_token_accuracy": 0.
|
| 679 |
-
"num_tokens":
|
| 680 |
"step": 335
|
| 681 |
},
|
| 682 |
{
|
| 683 |
-
"entropy": 1.
|
| 684 |
-
"epoch": 0.
|
| 685 |
-
"grad_norm": 0.
|
| 686 |
-
"learning_rate": 8.
|
| 687 |
-
"loss": 0.
|
| 688 |
-
"mean_token_accuracy": 0.
|
| 689 |
-
"num_tokens":
|
| 690 |
"step": 340
|
| 691 |
},
|
| 692 |
{
|
| 693 |
-
"entropy": 1.
|
| 694 |
-
"epoch": 0.
|
| 695 |
-
"grad_norm": 0.
|
| 696 |
-
"learning_rate": 8.
|
| 697 |
-
"loss":
|
| 698 |
-
"mean_token_accuracy": 0.
|
| 699 |
-
"num_tokens":
|
| 700 |
"step": 345
|
| 701 |
},
|
| 702 |
{
|
| 703 |
-
"entropy":
|
| 704 |
-
"epoch": 0.
|
| 705 |
-
"grad_norm": 0.
|
| 706 |
-
"learning_rate": 7.
|
| 707 |
-
"loss": 0.
|
| 708 |
-
"mean_token_accuracy": 0.
|
| 709 |
-
"num_tokens":
|
| 710 |
"step": 350
|
| 711 |
},
|
| 712 |
{
|
| 713 |
-
"entropy": 0.
|
| 714 |
-
"epoch": 0.
|
| 715 |
-
"grad_norm": 0.
|
| 716 |
-
"learning_rate": 7.
|
| 717 |
-
"loss": 0.
|
| 718 |
-
"mean_token_accuracy": 0.
|
| 719 |
-
"num_tokens":
|
| 720 |
"step": 355
|
| 721 |
},
|
| 722 |
{
|
| 723 |
-
"entropy": 1.
|
| 724 |
-
"epoch": 0.
|
| 725 |
-
"grad_norm": 0.
|
| 726 |
-
"learning_rate": 7.
|
| 727 |
-
"loss": 1.
|
| 728 |
-
"mean_token_accuracy": 0.
|
| 729 |
-
"num_tokens":
|
| 730 |
"step": 360
|
| 731 |
},
|
| 732 |
{
|
| 733 |
-
"entropy":
|
| 734 |
-
"epoch": 0.
|
| 735 |
-
"grad_norm": 0.
|
| 736 |
-
"learning_rate": 7.
|
| 737 |
-
"loss":
|
| 738 |
-
"mean_token_accuracy": 0.
|
| 739 |
-
"num_tokens":
|
| 740 |
"step": 365
|
| 741 |
},
|
| 742 |
{
|
| 743 |
-
"entropy":
|
| 744 |
-
"epoch": 0.
|
| 745 |
-
"grad_norm": 0.
|
| 746 |
-
"learning_rate": 7.
|
| 747 |
-
"loss": 0.
|
| 748 |
-
"mean_token_accuracy": 0.
|
| 749 |
-
"num_tokens":
|
| 750 |
"step": 370
|
| 751 |
},
|
| 752 |
{
|
| 753 |
-
"entropy":
|
| 754 |
-
"epoch": 0.
|
| 755 |
-
"grad_norm": 0.
|
| 756 |
-
"learning_rate": 7.
|
| 757 |
-
"loss":
|
| 758 |
-
"mean_token_accuracy": 0.
|
| 759 |
-
"num_tokens":
|
| 760 |
"step": 375
|
| 761 |
},
|
| 762 |
{
|
| 763 |
-
"entropy": 1.
|
| 764 |
-
"epoch": 0.
|
| 765 |
-
"grad_norm": 0.
|
| 766 |
-
"learning_rate": 6.
|
| 767 |
-
"loss": 0.
|
| 768 |
-
"mean_token_accuracy": 0.
|
| 769 |
-
"num_tokens":
|
| 770 |
"step": 380
|
| 771 |
},
|
| 772 |
{
|
| 773 |
-
"entropy":
|
| 774 |
-
"epoch": 0.
|
| 775 |
-
"grad_norm": 0.
|
| 776 |
-
"learning_rate": 6.
|
| 777 |
-
"loss":
|
| 778 |
-
"mean_token_accuracy": 0.
|
| 779 |
-
"num_tokens":
|
| 780 |
"step": 385
|
| 781 |
},
|
| 782 |
{
|
| 783 |
-
"entropy": 1.
|
| 784 |
-
"epoch": 0.
|
| 785 |
-
"grad_norm": 0.
|
| 786 |
-
"learning_rate": 6.
|
| 787 |
-
"loss":
|
| 788 |
-
"mean_token_accuracy": 0.
|
| 789 |
-
"num_tokens":
|
| 790 |
"step": 390
|
| 791 |
},
|
| 792 |
{
|
| 793 |
-
"entropy":
|
| 794 |
-
"epoch": 0.
|
| 795 |
-
"grad_norm": 0.
|
| 796 |
-
"learning_rate": 6.
|
| 797 |
-
"loss": 0.
|
| 798 |
-
"mean_token_accuracy": 0.
|
| 799 |
-
"num_tokens":
|
| 800 |
"step": 395
|
| 801 |
},
|
| 802 |
{
|
| 803 |
-
"entropy": 1.
|
| 804 |
-
"epoch": 0.
|
| 805 |
-
"grad_norm": 0.
|
| 806 |
-
"learning_rate": 6.
|
| 807 |
-
"loss":
|
| 808 |
-
"mean_token_accuracy": 0.
|
| 809 |
-
"num_tokens":
|
| 810 |
"step": 400
|
| 811 |
},
|
| 812 |
{
|
| 813 |
-
"entropy":
|
| 814 |
-
"epoch": 0.
|
| 815 |
-
"grad_norm": 0.
|
| 816 |
-
"learning_rate":
|
| 817 |
-
"loss":
|
| 818 |
-
"mean_token_accuracy": 0.
|
| 819 |
-
"num_tokens":
|
| 820 |
"step": 405
|
| 821 |
},
|
| 822 |
{
|
| 823 |
-
"entropy":
|
| 824 |
-
"epoch": 0.
|
| 825 |
-
"grad_norm": 0.
|
| 826 |
-
"learning_rate": 5.
|
| 827 |
-
"loss":
|
| 828 |
-
"mean_token_accuracy": 0.
|
| 829 |
-
"num_tokens":
|
| 830 |
"step": 410
|
| 831 |
},
|
| 832 |
{
|
| 833 |
-
"entropy": 0.
|
| 834 |
-
"epoch": 0.
|
| 835 |
-
"grad_norm": 0.
|
| 836 |
-
"learning_rate": 5.
|
| 837 |
-
"loss": 0.
|
| 838 |
-
"mean_token_accuracy": 0.
|
| 839 |
-
"num_tokens":
|
| 840 |
"step": 415
|
| 841 |
},
|
| 842 |
{
|
| 843 |
-
"entropy": 0.
|
| 844 |
-
"epoch": 0.
|
| 845 |
-
"grad_norm": 0.
|
| 846 |
-
"learning_rate": 5.
|
| 847 |
-
"loss": 0.
|
| 848 |
-
"mean_token_accuracy": 0.
|
| 849 |
-
"num_tokens":
|
| 850 |
"step": 420
|
| 851 |
},
|
| 852 |
{
|
| 853 |
-
"entropy":
|
| 854 |
-
"epoch": 0.
|
| 855 |
-
"grad_norm": 0.
|
| 856 |
-
"learning_rate": 5.
|
| 857 |
-
"loss": 0.
|
| 858 |
-
"mean_token_accuracy": 0.
|
| 859 |
-
"num_tokens":
|
| 860 |
"step": 425
|
| 861 |
},
|
| 862 |
{
|
| 863 |
-
"entropy": 1.
|
| 864 |
-
"epoch": 0.
|
| 865 |
-
"grad_norm": 0.
|
| 866 |
-
"learning_rate": 5.
|
| 867 |
-
"loss":
|
| 868 |
-
"mean_token_accuracy": 0.
|
| 869 |
-
"num_tokens":
|
| 870 |
"step": 430
|
| 871 |
},
|
| 872 |
{
|
| 873 |
-
"entropy": 0.
|
| 874 |
-
"epoch": 0.
|
| 875 |
-
"grad_norm": 0.
|
| 876 |
-
"learning_rate": 4.
|
| 877 |
-
"loss": 0.
|
| 878 |
-
"mean_token_accuracy": 0.
|
| 879 |
-
"num_tokens":
|
| 880 |
"step": 435
|
| 881 |
},
|
| 882 |
{
|
| 883 |
-
"entropy": 1.
|
| 884 |
-
"epoch": 0.
|
| 885 |
-
"grad_norm": 0.
|
| 886 |
-
"learning_rate": 4.
|
| 887 |
-
"loss": 1.
|
| 888 |
-
"mean_token_accuracy": 0.
|
| 889 |
-
"num_tokens":
|
| 890 |
"step": 440
|
| 891 |
},
|
| 892 |
{
|
| 893 |
-
"entropy": 0.
|
| 894 |
-
"epoch": 0.
|
| 895 |
-
"grad_norm": 0.
|
| 896 |
-
"learning_rate": 4.
|
| 897 |
-
"loss": 0.
|
| 898 |
-
"mean_token_accuracy": 0.
|
| 899 |
-
"num_tokens":
|
| 900 |
"step": 445
|
| 901 |
},
|
| 902 |
{
|
| 903 |
-
"entropy":
|
| 904 |
-
"epoch": 0.
|
| 905 |
-
"grad_norm": 0.
|
| 906 |
-
"learning_rate": 4.
|
| 907 |
-
"loss":
|
| 908 |
-
"mean_token_accuracy": 0.
|
| 909 |
-
"num_tokens":
|
| 910 |
"step": 450
|
| 911 |
},
|
| 912 |
{
|
| 913 |
-
"entropy":
|
| 914 |
-
"epoch": 0.
|
| 915 |
-
"grad_norm": 0.
|
| 916 |
-
"learning_rate": 4.
|
| 917 |
-
"loss":
|
| 918 |
-
"mean_token_accuracy": 0.
|
| 919 |
-
"num_tokens":
|
| 920 |
"step": 455
|
| 921 |
},
|
| 922 |
{
|
| 923 |
-
"entropy":
|
| 924 |
-
"epoch": 0.
|
| 925 |
-
"grad_norm": 0.
|
| 926 |
-
"learning_rate": 4.
|
| 927 |
-
"loss": 0.
|
| 928 |
-
"mean_token_accuracy": 0.
|
| 929 |
-
"num_tokens":
|
| 930 |
"step": 460
|
| 931 |
},
|
| 932 |
{
|
| 933 |
-
"entropy": 1.
|
| 934 |
-
"epoch": 0.
|
| 935 |
-
"grad_norm": 0.
|
| 936 |
-
"learning_rate": 3.
|
| 937 |
-
"loss":
|
| 938 |
-
"mean_token_accuracy": 0.
|
| 939 |
-
"num_tokens":
|
| 940 |
"step": 465
|
| 941 |
},
|
| 942 |
{
|
| 943 |
-
"entropy": 0.
|
| 944 |
-
"epoch": 0.
|
| 945 |
-
"grad_norm": 0.
|
| 946 |
-
"learning_rate": 3.
|
| 947 |
-
"loss": 0.
|
| 948 |
-
"mean_token_accuracy": 0.
|
| 949 |
-
"num_tokens":
|
| 950 |
"step": 470
|
| 951 |
},
|
| 952 |
{
|
| 953 |
-
"entropy": 1.
|
| 954 |
-
"epoch": 0.
|
| 955 |
-
"grad_norm": 0.
|
| 956 |
-
"learning_rate": 3.
|
| 957 |
-
"loss":
|
| 958 |
-
"mean_token_accuracy": 0.
|
| 959 |
-
"num_tokens":
|
| 960 |
"step": 475
|
| 961 |
},
|
| 962 |
{
|
| 963 |
-
"entropy": 0.
|
| 964 |
-
"epoch": 0.
|
| 965 |
-
"grad_norm": 0.
|
| 966 |
-
"learning_rate": 3.
|
| 967 |
-
"loss": 0.
|
| 968 |
-
"mean_token_accuracy": 0.
|
| 969 |
-
"num_tokens":
|
| 970 |
"step": 480
|
| 971 |
},
|
| 972 |
{
|
| 973 |
-
"entropy":
|
| 974 |
-
"epoch": 0.
|
| 975 |
-
"grad_norm": 0.
|
| 976 |
-
"learning_rate": 3.
|
| 977 |
-
"loss":
|
| 978 |
-
"mean_token_accuracy": 0.
|
| 979 |
-
"num_tokens":
|
| 980 |
"step": 485
|
| 981 |
},
|
| 982 |
{
|
| 983 |
-
"entropy":
|
| 984 |
-
"epoch": 0.
|
| 985 |
-
"grad_norm": 0.
|
| 986 |
-
"learning_rate": 2.
|
| 987 |
-
"loss": 0.
|
| 988 |
-
"mean_token_accuracy": 0.
|
| 989 |
-
"num_tokens":
|
| 990 |
"step": 490
|
| 991 |
},
|
| 992 |
{
|
| 993 |
-
"entropy": 0.
|
| 994 |
-
"epoch": 0.
|
| 995 |
-
"grad_norm":
|
| 996 |
-
"learning_rate": 2.
|
| 997 |
-
"loss": 0.
|
| 998 |
-
"mean_token_accuracy": 0.
|
| 999 |
-
"num_tokens":
|
| 1000 |
"step": 495
|
| 1001 |
},
|
| 1002 |
{
|
| 1003 |
-
"entropy":
|
| 1004 |
-
"epoch": 0.
|
| 1005 |
-
"grad_norm": 0.
|
| 1006 |
-
"learning_rate": 2.
|
| 1007 |
-
"loss":
|
| 1008 |
-
"mean_token_accuracy": 0.
|
| 1009 |
-
"num_tokens":
|
| 1010 |
"step": 500
|
| 1011 |
},
|
| 1012 |
{
|
| 1013 |
-
"entropy": 0.
|
| 1014 |
-
"epoch": 0.
|
| 1015 |
-
"grad_norm": 0.
|
| 1016 |
-
"learning_rate": 2.
|
| 1017 |
-
"loss": 0.
|
| 1018 |
-
"mean_token_accuracy": 0.
|
| 1019 |
-
"num_tokens":
|
| 1020 |
"step": 505
|
| 1021 |
},
|
| 1022 |
{
|
| 1023 |
-
"entropy": 1.
|
| 1024 |
-
"epoch": 0.
|
| 1025 |
-
"grad_norm": 0.
|
| 1026 |
-
"learning_rate": 2.
|
| 1027 |
-
"loss":
|
| 1028 |
-
"mean_token_accuracy": 0.
|
| 1029 |
-
"num_tokens":
|
| 1030 |
"step": 510
|
| 1031 |
},
|
| 1032 |
{
|
| 1033 |
-
"entropy":
|
| 1034 |
-
"epoch": 0.
|
| 1035 |
-
"grad_norm":
|
| 1036 |
-
"learning_rate": 2.
|
| 1037 |
-
"loss": 0.
|
| 1038 |
-
"mean_token_accuracy": 0.
|
| 1039 |
-
"num_tokens":
|
| 1040 |
"step": 515
|
| 1041 |
},
|
| 1042 |
{
|
| 1043 |
-
"entropy":
|
| 1044 |
-
"epoch": 0.
|
| 1045 |
-
"grad_norm":
|
| 1046 |
-
"learning_rate": 1.
|
| 1047 |
-
"loss":
|
| 1048 |
-
"mean_token_accuracy": 0.
|
| 1049 |
-
"num_tokens":
|
| 1050 |
"step": 520
|
| 1051 |
},
|
| 1052 |
{
|
| 1053 |
-
"entropy": 0.
|
| 1054 |
-
"epoch": 0.
|
| 1055 |
-
"grad_norm": 0.
|
| 1056 |
-
"learning_rate": 1.
|
| 1057 |
-
"loss": 0.
|
| 1058 |
-
"mean_token_accuracy": 0.
|
| 1059 |
-
"num_tokens":
|
| 1060 |
"step": 525
|
| 1061 |
},
|
| 1062 |
{
|
| 1063 |
-
"entropy": 0.
|
| 1064 |
-
"epoch": 0.
|
| 1065 |
-
"grad_norm": 0.
|
| 1066 |
-
"learning_rate": 1.
|
| 1067 |
-
"loss": 0.
|
| 1068 |
-
"mean_token_accuracy": 0.
|
| 1069 |
-
"num_tokens":
|
| 1070 |
"step": 530
|
| 1071 |
},
|
| 1072 |
{
|
| 1073 |
-
"entropy":
|
| 1074 |
-
"epoch": 0.
|
| 1075 |
-
"grad_norm":
|
| 1076 |
-
"learning_rate": 1.
|
| 1077 |
-
"loss": 0.
|
| 1078 |
-
"mean_token_accuracy": 0.
|
| 1079 |
-
"num_tokens":
|
| 1080 |
"step": 535
|
| 1081 |
},
|
| 1082 |
{
|
| 1083 |
-
"entropy":
|
| 1084 |
-
"epoch": 0.
|
| 1085 |
-
"grad_norm": 0.
|
| 1086 |
-
"learning_rate": 1.
|
| 1087 |
-
"loss": 0.
|
| 1088 |
-
"mean_token_accuracy": 0.
|
| 1089 |
-
"num_tokens":
|
| 1090 |
"step": 540
|
| 1091 |
},
|
| 1092 |
{
|
| 1093 |
-
"entropy": 1.
|
| 1094 |
-
"epoch": 0.
|
| 1095 |
-
"grad_norm": 0.
|
| 1096 |
-
"learning_rate":
|
| 1097 |
-
"loss": 0.
|
| 1098 |
-
"mean_token_accuracy": 0.
|
| 1099 |
-
"num_tokens":
|
| 1100 |
"step": 545
|
| 1101 |
},
|
| 1102 |
{
|
| 1103 |
-
"entropy":
|
| 1104 |
-
"epoch": 0.
|
| 1105 |
-
"grad_norm": 0.
|
| 1106 |
-
"learning_rate": 8.
|
| 1107 |
-
"loss":
|
| 1108 |
-
"mean_token_accuracy": 0.
|
| 1109 |
-
"num_tokens":
|
| 1110 |
"step": 550
|
| 1111 |
},
|
| 1112 |
{
|
| 1113 |
-
"entropy":
|
| 1114 |
-
"epoch": 0.
|
| 1115 |
-
"grad_norm": 0.
|
| 1116 |
-
"learning_rate": 6.
|
| 1117 |
-
"loss": 0.
|
| 1118 |
-
"mean_token_accuracy": 0.
|
| 1119 |
-
"num_tokens":
|
| 1120 |
"step": 555
|
| 1121 |
},
|
| 1122 |
{
|
| 1123 |
-
"entropy":
|
| 1124 |
-
"epoch": 0.
|
| 1125 |
-
"grad_norm": 0.
|
| 1126 |
-
"learning_rate": 4.
|
| 1127 |
-
"loss":
|
| 1128 |
-
"mean_token_accuracy": 0.
|
| 1129 |
-
"num_tokens":
|
| 1130 |
"step": 560
|
| 1131 |
},
|
| 1132 |
{
|
| 1133 |
-
"entropy": 0.
|
| 1134 |
-
"epoch": 0.
|
| 1135 |
-
"grad_norm":
|
| 1136 |
-
"learning_rate":
|
| 1137 |
-
"loss": 0.
|
| 1138 |
-
"mean_token_accuracy": 0.
|
| 1139 |
-
"num_tokens":
|
| 1140 |
"step": 565
|
| 1141 |
},
|
| 1142 |
{
|
| 1143 |
-
"entropy":
|
| 1144 |
-
"epoch": 0.
|
| 1145 |
-
"grad_norm": 0.
|
| 1146 |
-
"learning_rate": 1.
|
| 1147 |
-
"loss":
|
| 1148 |
-
"mean_token_accuracy": 0.
|
| 1149 |
-
"num_tokens":
|
| 1150 |
"step": 570
|
| 1151 |
}
|
| 1152 |
],
|
| 1153 |
"logging_steps": 5,
|
| 1154 |
-
"max_steps":
|
| 1155 |
"num_input_tokens_seen": 0,
|
| 1156 |
"num_train_epochs": 1,
|
| 1157 |
"save_steps": 500,
|
|
@@ -1167,7 +1167,7 @@
|
|
| 1167 |
"attributes": {}
|
| 1168 |
}
|
| 1169 |
},
|
| 1170 |
-
"total_flos": 2.
|
| 1171 |
"train_batch_size": 1,
|
| 1172 |
"trial_name": null,
|
| 1173 |
"trial_params": null
|
|
|
|
| 4 |
"best_model_checkpoint": null,
|
| 5 |
"epoch": 1.0,
|
| 6 |
"eval_steps": 115,
|
| 7 |
+
"global_step": 573,
|
| 8 |
"is_hyper_param_search": false,
|
| 9 |
"is_local_process_zero": true,
|
| 10 |
"is_world_process_zero": true,
|
| 11 |
"log_history": [
|
| 12 |
{
|
| 13 |
+
"entropy": 1.333236712217331,
|
| 14 |
+
"epoch": 0.008726003490401396,
|
| 15 |
+
"grad_norm": 1.05680251121521,
|
| 16 |
"learning_rate": 8e-05,
|
| 17 |
+
"loss": 1.3485,
|
| 18 |
+
"mean_token_accuracy": 0.6778763651847839,
|
| 19 |
+
"num_tokens": 4689.0,
|
| 20 |
"step": 5
|
| 21 |
},
|
| 22 |
{
|
| 23 |
+
"entropy": 1.3305357813835144,
|
| 24 |
+
"epoch": 0.017452006980802792,
|
| 25 |
+
"grad_norm": 0.872683584690094,
|
| 26 |
"learning_rate": 0.00018,
|
| 27 |
+
"loss": 1.2321,
|
| 28 |
+
"mean_token_accuracy": 0.6924330353736877,
|
| 29 |
+
"num_tokens": 9076.0,
|
| 30 |
"step": 10
|
| 31 |
},
|
| 32 |
{
|
| 33 |
+
"entropy": 1.1033322036266326,
|
| 34 |
+
"epoch": 0.02617801047120419,
|
| 35 |
+
"grad_norm": 0.7987897992134094,
|
| 36 |
+
"learning_rate": 0.0001985790408525755,
|
| 37 |
+
"loss": 1.0149,
|
| 38 |
+
"mean_token_accuracy": 0.7376092612743378,
|
| 39 |
+
"num_tokens": 13468.0,
|
| 40 |
"step": 15
|
| 41 |
},
|
| 42 |
{
|
| 43 |
+
"entropy": 1.3769255757331849,
|
| 44 |
+
"epoch": 0.034904013961605584,
|
| 45 |
+
"grad_norm": 0.5818138718605042,
|
| 46 |
+
"learning_rate": 0.00019680284191829486,
|
| 47 |
+
"loss": 1.3507,
|
| 48 |
+
"mean_token_accuracy": 0.6773534297943116,
|
| 49 |
+
"num_tokens": 19687.0,
|
| 50 |
"step": 20
|
| 51 |
},
|
| 52 |
{
|
| 53 |
+
"entropy": 1.3704544663429261,
|
| 54 |
+
"epoch": 0.04363001745200698,
|
| 55 |
+
"grad_norm": 0.7997947335243225,
|
| 56 |
+
"learning_rate": 0.00019502664298401423,
|
| 57 |
+
"loss": 1.2011,
|
| 58 |
+
"mean_token_accuracy": 0.7000263512134552,
|
| 59 |
+
"num_tokens": 25321.0,
|
| 60 |
"step": 25
|
| 61 |
},
|
| 62 |
{
|
| 63 |
+
"entropy": 1.1999043464660644,
|
| 64 |
+
"epoch": 0.05235602094240838,
|
| 65 |
+
"grad_norm": 0.7836564779281616,
|
| 66 |
+
"learning_rate": 0.00019325044404973357,
|
| 67 |
+
"loss": 1.1702,
|
| 68 |
+
"mean_token_accuracy": 0.7157157480716705,
|
| 69 |
+
"num_tokens": 29969.0,
|
| 70 |
"step": 30
|
| 71 |
},
|
| 72 |
{
|
| 73 |
+
"entropy": 1.1485023498535156,
|
| 74 |
+
"epoch": 0.06108202443280977,
|
| 75 |
+
"grad_norm": 0.8341999650001526,
|
| 76 |
+
"learning_rate": 0.00019147424511545294,
|
| 77 |
+
"loss": 1.0127,
|
| 78 |
+
"mean_token_accuracy": 0.736984384059906,
|
| 79 |
+
"num_tokens": 34779.0,
|
| 80 |
"step": 35
|
| 81 |
},
|
| 82 |
{
|
| 83 |
+
"entropy": 1.175552135705948,
|
| 84 |
+
"epoch": 0.06980802792321117,
|
| 85 |
+
"grad_norm": 0.8367146849632263,
|
| 86 |
+
"learning_rate": 0.0001896980461811723,
|
| 87 |
+
"loss": 1.081,
|
| 88 |
+
"mean_token_accuracy": 0.7145774185657501,
|
| 89 |
+
"num_tokens": 40454.0,
|
| 90 |
"step": 40
|
| 91 |
},
|
| 92 |
{
|
| 93 |
+
"entropy": 1.2580669283866883,
|
| 94 |
+
"epoch": 0.07853403141361257,
|
| 95 |
+
"grad_norm": 0.7274704575538635,
|
| 96 |
+
"learning_rate": 0.00018792184724689167,
|
| 97 |
+
"loss": 1.1622,
|
| 98 |
+
"mean_token_accuracy": 0.7037679016590118,
|
| 99 |
+
"num_tokens": 45435.0,
|
| 100 |
"step": 45
|
| 101 |
},
|
| 102 |
{
|
| 103 |
+
"entropy": 1.3289404153823852,
|
| 104 |
+
"epoch": 0.08726003490401396,
|
| 105 |
+
"grad_norm": 0.9459134936332703,
|
| 106 |
+
"learning_rate": 0.00018614564831261103,
|
| 107 |
+
"loss": 1.2887,
|
| 108 |
+
"mean_token_accuracy": 0.7032808780670166,
|
| 109 |
+
"num_tokens": 50161.0,
|
| 110 |
"step": 50
|
| 111 |
},
|
| 112 |
{
|
| 113 |
+
"entropy": 1.206754869222641,
|
| 114 |
+
"epoch": 0.09598603839441536,
|
| 115 |
+
"grad_norm": 0.8248263001441956,
|
| 116 |
+
"learning_rate": 0.00018436944937833037,
|
| 117 |
+
"loss": 1.0185,
|
| 118 |
+
"mean_token_accuracy": 0.7304032206535339,
|
| 119 |
+
"num_tokens": 55082.0,
|
| 120 |
"step": 55
|
| 121 |
},
|
| 122 |
{
|
| 123 |
+
"entropy": 1.3467580556869507,
|
| 124 |
+
"epoch": 0.10471204188481675,
|
| 125 |
+
"grad_norm": 0.7025023698806763,
|
| 126 |
+
"learning_rate": 0.00018259325044404974,
|
| 127 |
+
"loss": 1.3245,
|
| 128 |
+
"mean_token_accuracy": 0.6774280846118927,
|
| 129 |
+
"num_tokens": 61109.0,
|
| 130 |
"step": 60
|
| 131 |
},
|
| 132 |
{
|
| 133 |
+
"entropy": 1.1657752752304078,
|
| 134 |
+
"epoch": 0.11343804537521815,
|
| 135 |
+
"grad_norm": 0.7866821885108948,
|
| 136 |
+
"learning_rate": 0.0001808170515097691,
|
| 137 |
+
"loss": 1.0342,
|
| 138 |
+
"mean_token_accuracy": 0.7379155635833741,
|
| 139 |
+
"num_tokens": 65130.0,
|
| 140 |
"step": 65
|
| 141 |
},
|
| 142 |
{
|
| 143 |
+
"entropy": 1.3768277764320374,
|
| 144 |
+
"epoch": 0.12216404886561955,
|
| 145 |
+
"grad_norm": 0.6452690958976746,
|
| 146 |
+
"learning_rate": 0.00017904085257548847,
|
| 147 |
+
"loss": 1.3499,
|
| 148 |
+
"mean_token_accuracy": 0.6878371357917785,
|
| 149 |
+
"num_tokens": 71720.0,
|
| 150 |
"step": 70
|
| 151 |
},
|
| 152 |
{
|
| 153 |
+
"entropy": 1.2285258889198303,
|
| 154 |
+
"epoch": 0.13089005235602094,
|
| 155 |
+
"grad_norm": 0.8868134617805481,
|
| 156 |
+
"learning_rate": 0.00017726465364120784,
|
| 157 |
+
"loss": 1.1203,
|
| 158 |
+
"mean_token_accuracy": 0.7103672683238983,
|
| 159 |
+
"num_tokens": 76475.0,
|
| 160 |
"step": 75
|
| 161 |
},
|
| 162 |
{
|
| 163 |
+
"entropy": 1.142468798160553,
|
| 164 |
+
"epoch": 0.13961605584642234,
|
| 165 |
+
"grad_norm": 0.7537686228752136,
|
| 166 |
+
"learning_rate": 0.00017548845470692718,
|
| 167 |
+
"loss": 1.0207,
|
| 168 |
+
"mean_token_accuracy": 0.7329977452754974,
|
| 169 |
+
"num_tokens": 82239.0,
|
| 170 |
"step": 80
|
| 171 |
},
|
| 172 |
{
|
| 173 |
+
"entropy": 1.30864217877388,
|
| 174 |
+
"epoch": 0.14834205933682373,
|
| 175 |
+
"grad_norm": 0.9109086394309998,
|
| 176 |
+
"learning_rate": 0.00017371225577264654,
|
| 177 |
+
"loss": 1.2256,
|
| 178 |
+
"mean_token_accuracy": 0.6924388945102692,
|
| 179 |
+
"num_tokens": 86033.0,
|
| 180 |
"step": 85
|
| 181 |
},
|
| 182 |
{
|
| 183 |
+
"entropy": 1.279932165145874,
|
| 184 |
+
"epoch": 0.15706806282722513,
|
| 185 |
+
"grad_norm": 0.7983659505844116,
|
| 186 |
+
"learning_rate": 0.0001719360568383659,
|
| 187 |
+
"loss": 1.1764,
|
| 188 |
+
"mean_token_accuracy": 0.7101370930671692,
|
| 189 |
+
"num_tokens": 90170.0,
|
| 190 |
"step": 90
|
| 191 |
},
|
| 192 |
{
|
| 193 |
+
"entropy": 1.1692178070545196,
|
| 194 |
+
"epoch": 0.16579406631762653,
|
| 195 |
+
"grad_norm": 0.8946067690849304,
|
| 196 |
+
"learning_rate": 0.00017015985790408525,
|
| 197 |
+
"loss": 1.0826,
|
| 198 |
+
"mean_token_accuracy": 0.7317939043045044,
|
| 199 |
+
"num_tokens": 95473.0,
|
| 200 |
"step": 95
|
| 201 |
},
|
| 202 |
{
|
| 203 |
+
"entropy": 1.025848913192749,
|
| 204 |
+
"epoch": 0.17452006980802792,
|
| 205 |
+
"grad_norm": 0.8327645063400269,
|
| 206 |
+
"learning_rate": 0.00016838365896980464,
|
| 207 |
+
"loss": 0.9294,
|
| 208 |
+
"mean_token_accuracy": 0.7514408528804779,
|
| 209 |
+
"num_tokens": 99423.0,
|
| 210 |
"step": 100
|
| 211 |
},
|
| 212 |
{
|
| 213 |
+
"entropy": 1.0799501717090607,
|
| 214 |
+
"epoch": 0.18324607329842932,
|
| 215 |
+
"grad_norm": 0.7194784283638,
|
| 216 |
+
"learning_rate": 0.00016660746003552398,
|
| 217 |
+
"loss": 1.0222,
|
| 218 |
+
"mean_token_accuracy": 0.7337860226631164,
|
| 219 |
+
"num_tokens": 104249.0,
|
| 220 |
"step": 105
|
| 221 |
},
|
| 222 |
{
|
| 223 |
+
"entropy": 1.1033223390579223,
|
| 224 |
+
"epoch": 0.19197207678883071,
|
| 225 |
+
"grad_norm": 0.7712328433990479,
|
| 226 |
+
"learning_rate": 0.00016483126110124335,
|
| 227 |
+
"loss": 0.9856,
|
| 228 |
+
"mean_token_accuracy": 0.7449049592018128,
|
| 229 |
+
"num_tokens": 109205.0,
|
| 230 |
"step": 110
|
| 231 |
},
|
| 232 |
{
|
| 233 |
+
"entropy": 1.1388230919837952,
|
| 234 |
+
"epoch": 0.2006980802792321,
|
| 235 |
+
"grad_norm": 0.6309220194816589,
|
| 236 |
+
"learning_rate": 0.00016305506216696272,
|
| 237 |
+
"loss": 1.1354,
|
| 238 |
+
"mean_token_accuracy": 0.724005150794983,
|
| 239 |
+
"num_tokens": 115207.0,
|
| 240 |
"step": 115
|
| 241 |
},
|
| 242 |
{
|
| 243 |
+
"entropy": 1.0293731987476349,
|
| 244 |
+
"epoch": 0.2094240837696335,
|
| 245 |
+
"grad_norm": 1.0027621984481812,
|
| 246 |
+
"learning_rate": 0.00016127886323268206,
|
| 247 |
+
"loss": 0.9218,
|
| 248 |
+
"mean_token_accuracy": 0.7559137165546417,
|
| 249 |
+
"num_tokens": 120323.0,
|
| 250 |
"step": 120
|
| 251 |
},
|
| 252 |
{
|
| 253 |
+
"entropy": 1.1900119483470917,
|
| 254 |
+
"epoch": 0.2181500872600349,
|
| 255 |
+
"grad_norm": 0.8019612431526184,
|
| 256 |
+
"learning_rate": 0.00015950266429840145,
|
| 257 |
+
"loss": 1.106,
|
| 258 |
+
"mean_token_accuracy": 0.7178053438663483,
|
| 259 |
+
"num_tokens": 125253.0,
|
| 260 |
"step": 125
|
| 261 |
},
|
| 262 |
{
|
| 263 |
+
"entropy": 1.0218496084213258,
|
| 264 |
+
"epoch": 0.2268760907504363,
|
| 265 |
+
"grad_norm": 0.699367105960846,
|
| 266 |
+
"learning_rate": 0.0001577264653641208,
|
| 267 |
+
"loss": 0.931,
|
| 268 |
+
"mean_token_accuracy": 0.7488141357898712,
|
| 269 |
+
"num_tokens": 130360.0,
|
| 270 |
"step": 130
|
| 271 |
},
|
| 272 |
{
|
| 273 |
+
"entropy": 1.1080122888088226,
|
| 274 |
+
"epoch": 0.2356020942408377,
|
| 275 |
+
"grad_norm": 0.7124127745628357,
|
| 276 |
+
"learning_rate": 0.00015595026642984015,
|
| 277 |
+
"loss": 1.0557,
|
| 278 |
+
"mean_token_accuracy": 0.7226514399051667,
|
| 279 |
+
"num_tokens": 135538.0,
|
| 280 |
"step": 135
|
| 281 |
},
|
| 282 |
{
|
| 283 |
+
"entropy": 1.173432421684265,
|
| 284 |
+
"epoch": 0.2443280977312391,
|
| 285 |
+
"grad_norm": 0.794236421585083,
|
| 286 |
+
"learning_rate": 0.00015417406749555952,
|
| 287 |
+
"loss": 1.056,
|
| 288 |
+
"mean_token_accuracy": 0.7334702372550964,
|
| 289 |
+
"num_tokens": 140532.0,
|
| 290 |
"step": 140
|
| 291 |
},
|
| 292 |
{
|
| 293 |
+
"entropy": 1.0574114263057708,
|
| 294 |
+
"epoch": 0.2530541012216405,
|
| 295 |
+
"grad_norm": 0.6696324944496155,
|
| 296 |
+
"learning_rate": 0.00015239786856127886,
|
| 297 |
+
"loss": 0.9361,
|
| 298 |
+
"mean_token_accuracy": 0.7482443630695343,
|
| 299 |
+
"num_tokens": 145908.0,
|
| 300 |
"step": 145
|
| 301 |
},
|
| 302 |
{
|
| 303 |
+
"entropy": 1.086327201128006,
|
| 304 |
+
"epoch": 0.2617801047120419,
|
| 305 |
+
"grad_norm": 0.5255310535430908,
|
| 306 |
+
"learning_rate": 0.00015062166962699825,
|
| 307 |
+
"loss": 1.0768,
|
| 308 |
+
"mean_token_accuracy": 0.7292326390743256,
|
| 309 |
+
"num_tokens": 151148.0,
|
| 310 |
"step": 150
|
| 311 |
},
|
| 312 |
{
|
| 313 |
+
"entropy": 1.092069786787033,
|
| 314 |
+
"epoch": 0.2705061082024433,
|
| 315 |
+
"grad_norm": 0.6275709271430969,
|
| 316 |
+
"learning_rate": 0.0001488454706927176,
|
| 317 |
+
"loss": 1.0778,
|
| 318 |
+
"mean_token_accuracy": 0.7255069613456726,
|
| 319 |
+
"num_tokens": 157506.0,
|
| 320 |
"step": 155
|
| 321 |
},
|
| 322 |
{
|
| 323 |
+
"entropy": 1.1596343219280243,
|
| 324 |
+
"epoch": 0.2792321116928447,
|
| 325 |
+
"grad_norm": 0.9472619295120239,
|
| 326 |
+
"learning_rate": 0.00014706927175843693,
|
| 327 |
+
"loss": 1.1003,
|
| 328 |
+
"mean_token_accuracy": 0.7315803647041321,
|
| 329 |
+
"num_tokens": 162992.0,
|
| 330 |
"step": 160
|
| 331 |
},
|
| 332 |
{
|
| 333 |
+
"entropy": 1.0481273233890533,
|
| 334 |
+
"epoch": 0.2879581151832461,
|
| 335 |
+
"grad_norm": 0.6921494007110596,
|
| 336 |
+
"learning_rate": 0.00014529307282415633,
|
| 337 |
+
"loss": 0.8895,
|
| 338 |
+
"mean_token_accuracy": 0.7529896676540375,
|
| 339 |
+
"num_tokens": 167640.0,
|
| 340 |
"step": 165
|
| 341 |
},
|
| 342 |
{
|
| 343 |
+
"entropy": 1.0518691539764404,
|
| 344 |
+
"epoch": 0.29668411867364747,
|
| 345 |
+
"grad_norm": 0.6654248237609863,
|
| 346 |
+
"learning_rate": 0.00014351687388987566,
|
| 347 |
+
"loss": 1.018,
|
| 348 |
+
"mean_token_accuracy": 0.7503870785236358,
|
| 349 |
+
"num_tokens": 173423.0,
|
| 350 |
"step": 170
|
| 351 |
},
|
| 352 |
{
|
| 353 |
+
"entropy": 1.1176642417907714,
|
| 354 |
+
"epoch": 0.3054101221640489,
|
| 355 |
+
"grad_norm": 0.7743102312088013,
|
| 356 |
+
"learning_rate": 0.00014174067495559503,
|
| 357 |
+
"loss": 1.0807,
|
| 358 |
+
"mean_token_accuracy": 0.7225248873233795,
|
| 359 |
+
"num_tokens": 178986.0,
|
| 360 |
"step": 175
|
| 361 |
},
|
| 362 |
{
|
| 363 |
+
"entropy": 0.9516431629657746,
|
| 364 |
+
"epoch": 0.31413612565445026,
|
| 365 |
+
"grad_norm": 1.0389933586120605,
|
| 366 |
+
"learning_rate": 0.0001399644760213144,
|
| 367 |
+
"loss": 0.8189,
|
| 368 |
+
"mean_token_accuracy": 0.7752299129962921,
|
| 369 |
+
"num_tokens": 183459.0,
|
| 370 |
"step": 180
|
| 371 |
},
|
| 372 |
{
|
| 373 |
+
"entropy": 1.1684755861759186,
|
| 374 |
+
"epoch": 0.3228621291448517,
|
| 375 |
+
"grad_norm": 1.4807476997375488,
|
| 376 |
+
"learning_rate": 0.00013818827708703374,
|
| 377 |
+
"loss": 1.1822,
|
| 378 |
+
"mean_token_accuracy": 0.7197710394859314,
|
| 379 |
+
"num_tokens": 187614.0,
|
| 380 |
"step": 185
|
| 381 |
},
|
| 382 |
{
|
| 383 |
+
"entropy": 1.099220609664917,
|
| 384 |
+
"epoch": 0.33158813263525305,
|
| 385 |
+
"grad_norm": 0.7266477346420288,
|
| 386 |
+
"learning_rate": 0.00013641207815275313,
|
| 387 |
+
"loss": 1.0095,
|
| 388 |
+
"mean_token_accuracy": 0.7297711133956909,
|
| 389 |
+
"num_tokens": 192316.0,
|
| 390 |
"step": 190
|
| 391 |
},
|
| 392 |
{
|
| 393 |
+
"entropy": 1.0837588012218475,
|
| 394 |
+
"epoch": 0.3403141361256545,
|
| 395 |
+
"grad_norm": 0.696660041809082,
|
| 396 |
+
"learning_rate": 0.00013463587921847247,
|
| 397 |
+
"loss": 0.9739,
|
| 398 |
+
"mean_token_accuracy": 0.7354932248592376,
|
| 399 |
+
"num_tokens": 197728.0,
|
| 400 |
"step": 195
|
| 401 |
},
|
| 402 |
{
|
| 403 |
+
"entropy": 1.1696858763694764,
|
| 404 |
+
"epoch": 0.34904013961605584,
|
| 405 |
+
"grad_norm": 0.5466914772987366,
|
| 406 |
+
"learning_rate": 0.00013285968028419184,
|
| 407 |
+
"loss": 1.1444,
|
| 408 |
+
"mean_token_accuracy": 0.7138558447360992,
|
| 409 |
+
"num_tokens": 204502.0,
|
| 410 |
"step": 200
|
| 411 |
},
|
| 412 |
{
|
| 413 |
+
"entropy": 1.147382140159607,
|
| 414 |
+
"epoch": 0.35776614310645727,
|
| 415 |
+
"grad_norm": 0.8311446905136108,
|
| 416 |
+
"learning_rate": 0.0001310834813499112,
|
| 417 |
+
"loss": 1.1093,
|
| 418 |
+
"mean_token_accuracy": 0.7309025764465332,
|
| 419 |
+
"num_tokens": 209069.0,
|
| 420 |
"step": 205
|
| 421 |
},
|
| 422 |
{
|
| 423 |
+
"entropy": 1.2201330184936523,
|
| 424 |
+
"epoch": 0.36649214659685864,
|
| 425 |
+
"grad_norm": 0.6816751956939697,
|
| 426 |
+
"learning_rate": 0.00012930728241563054,
|
| 427 |
+
"loss": 1.2094,
|
| 428 |
+
"mean_token_accuracy": 0.7130683898925781,
|
| 429 |
+
"num_tokens": 214185.0,
|
| 430 |
"step": 210
|
| 431 |
},
|
| 432 |
{
|
| 433 |
+
"entropy": 1.152731454372406,
|
| 434 |
+
"epoch": 0.37521815008726006,
|
| 435 |
+
"grad_norm": 0.6387792825698853,
|
| 436 |
+
"learning_rate": 0.00012753108348134993,
|
| 437 |
+
"loss": 1.0565,
|
| 438 |
+
"mean_token_accuracy": 0.7268509924411773,
|
| 439 |
+
"num_tokens": 219312.0,
|
| 440 |
"step": 215
|
| 441 |
},
|
| 442 |
{
|
| 443 |
+
"entropy": 1.1504864931106566,
|
| 444 |
+
"epoch": 0.38394415357766143,
|
| 445 |
+
"grad_norm": 0.7773131728172302,
|
| 446 |
+
"learning_rate": 0.00012575488454706927,
|
| 447 |
+
"loss": 1.0913,
|
| 448 |
+
"mean_token_accuracy": 0.7241075754165649,
|
| 449 |
+
"num_tokens": 225616.0,
|
| 450 |
"step": 220
|
| 451 |
},
|
| 452 |
{
|
| 453 |
+
"entropy": 1.0282553434371948,
|
| 454 |
+
"epoch": 0.39267015706806285,
|
| 455 |
+
"grad_norm": 0.8763700723648071,
|
| 456 |
+
"learning_rate": 0.00012397868561278864,
|
| 457 |
+
"loss": 0.9342,
|
| 458 |
+
"mean_token_accuracy": 0.7502905786037445,
|
| 459 |
+
"num_tokens": 230696.0,
|
| 460 |
"step": 225
|
| 461 |
},
|
| 462 |
{
|
| 463 |
+
"entropy": 1.0895283699035645,
|
| 464 |
+
"epoch": 0.4013961605584642,
|
| 465 |
+
"grad_norm": 0.8293470740318298,
|
| 466 |
+
"learning_rate": 0.000122202486678508,
|
| 467 |
+
"loss": 1.067,
|
| 468 |
+
"mean_token_accuracy": 0.7364717125892639,
|
| 469 |
+
"num_tokens": 236685.0,
|
| 470 |
"step": 230
|
| 471 |
},
|
| 472 |
{
|
| 473 |
+
"entropy": 1.172694307565689,
|
| 474 |
+
"epoch": 0.41012216404886565,
|
| 475 |
+
"grad_norm": 0.8818181753158569,
|
| 476 |
+
"learning_rate": 0.00012042628774422735,
|
| 477 |
+
"loss": 1.0149,
|
| 478 |
+
"mean_token_accuracy": 0.7262615323066711,
|
| 479 |
+
"num_tokens": 241211.0,
|
| 480 |
"step": 235
|
| 481 |
},
|
| 482 |
{
|
| 483 |
+
"entropy": 1.2173514723777772,
|
| 484 |
+
"epoch": 0.418848167539267,
|
| 485 |
+
"grad_norm": 0.5635867714881897,
|
| 486 |
+
"learning_rate": 0.00011865008880994673,
|
| 487 |
+
"loss": 1.1783,
|
| 488 |
+
"mean_token_accuracy": 0.7147055625915527,
|
| 489 |
+
"num_tokens": 246360.0,
|
| 490 |
"step": 240
|
| 491 |
},
|
| 492 |
{
|
| 493 |
+
"entropy": 1.188833224773407,
|
| 494 |
+
"epoch": 0.42757417102966844,
|
| 495 |
+
"grad_norm": 0.6060160398483276,
|
| 496 |
+
"learning_rate": 0.00011687388987566608,
|
| 497 |
+
"loss": 1.1545,
|
| 498 |
+
"mean_token_accuracy": 0.717083477973938,
|
| 499 |
+
"num_tokens": 252717.0,
|
| 500 |
"step": 245
|
| 501 |
},
|
| 502 |
{
|
| 503 |
+
"entropy": 1.0905582129955291,
|
| 504 |
+
"epoch": 0.4363001745200698,
|
| 505 |
+
"grad_norm": 0.6812947988510132,
|
| 506 |
+
"learning_rate": 0.00011509769094138544,
|
| 507 |
+
"loss": 0.9922,
|
| 508 |
+
"mean_token_accuracy": 0.7299255549907684,
|
| 509 |
+
"num_tokens": 257249.0,
|
| 510 |
"step": 250
|
| 511 |
},
|
| 512 |
{
|
| 513 |
+
"entropy": 0.8695837318897247,
|
| 514 |
+
"epoch": 0.44502617801047123,
|
| 515 |
+
"grad_norm": 0.8577454090118408,
|
| 516 |
+
"learning_rate": 0.0001133214920071048,
|
| 517 |
+
"loss": 0.8209,
|
| 518 |
+
"mean_token_accuracy": 0.7762204229831695,
|
| 519 |
+
"num_tokens": 262381.0,
|
| 520 |
"step": 255
|
| 521 |
},
|
| 522 |
{
|
| 523 |
+
"entropy": 0.9932888269424438,
|
| 524 |
+
"epoch": 0.4537521815008726,
|
| 525 |
+
"grad_norm": 0.697665810585022,
|
| 526 |
+
"learning_rate": 0.00011154529307282415,
|
| 527 |
+
"loss": 1.0232,
|
| 528 |
+
"mean_token_accuracy": 0.7427519500255585,
|
| 529 |
+
"num_tokens": 267410.0,
|
| 530 |
"step": 260
|
| 531 |
},
|
| 532 |
{
|
| 533 |
+
"entropy": 0.8414939880371094,
|
| 534 |
+
"epoch": 0.462478184991274,
|
| 535 |
+
"grad_norm": 0.789999783039093,
|
| 536 |
+
"learning_rate": 0.00010976909413854353,
|
| 537 |
+
"loss": 0.7225,
|
| 538 |
+
"mean_token_accuracy": 0.7937956035137177,
|
| 539 |
+
"num_tokens": 272109.0,
|
| 540 |
"step": 265
|
| 541 |
},
|
| 542 |
{
|
| 543 |
+
"entropy": 1.0776531934738158,
|
| 544 |
+
"epoch": 0.4712041884816754,
|
| 545 |
+
"grad_norm": 0.6461851000785828,
|
| 546 |
+
"learning_rate": 0.00010799289520426288,
|
| 547 |
+
"loss": 1.0389,
|
| 548 |
+
"mean_token_accuracy": 0.7343196094036102,
|
| 549 |
+
"num_tokens": 276623.0,
|
| 550 |
"step": 270
|
| 551 |
},
|
| 552 |
{
|
| 553 |
+
"entropy": 1.1227709293365478,
|
| 554 |
+
"epoch": 0.4799301919720768,
|
| 555 |
+
"grad_norm": 0.6017542481422424,
|
| 556 |
+
"learning_rate": 0.00010621669626998225,
|
| 557 |
+
"loss": 1.0346,
|
| 558 |
+
"mean_token_accuracy": 0.7320161819458008,
|
| 559 |
+
"num_tokens": 283256.0,
|
| 560 |
"step": 275
|
| 561 |
},
|
| 562 |
{
|
| 563 |
+
"entropy": 0.9767000675201416,
|
| 564 |
+
"epoch": 0.4886561954624782,
|
| 565 |
+
"grad_norm": 0.7064502835273743,
|
| 566 |
+
"learning_rate": 0.0001044404973357016,
|
| 567 |
+
"loss": 0.9051,
|
| 568 |
+
"mean_token_accuracy": 0.7693962216377258,
|
| 569 |
+
"num_tokens": 288780.0,
|
| 570 |
"step": 280
|
| 571 |
},
|
| 572 |
{
|
| 573 |
+
"entropy": 0.9595549941062927,
|
| 574 |
+
"epoch": 0.4973821989528796,
|
| 575 |
+
"grad_norm": 0.7622601985931396,
|
| 576 |
+
"learning_rate": 0.00010266429840142096,
|
| 577 |
+
"loss": 0.8922,
|
| 578 |
+
"mean_token_accuracy": 0.767174756526947,
|
| 579 |
+
"num_tokens": 293775.0,
|
| 580 |
"step": 285
|
| 581 |
},
|
| 582 |
{
|
| 583 |
+
"entropy": 0.9456490218639374,
|
| 584 |
+
"epoch": 0.506108202443281,
|
| 585 |
+
"grad_norm": 0.7910531163215637,
|
| 586 |
+
"learning_rate": 0.00010088809946714034,
|
| 587 |
+
"loss": 0.8845,
|
| 588 |
+
"mean_token_accuracy": 0.7625713229179383,
|
| 589 |
+
"num_tokens": 299667.0,
|
| 590 |
"step": 290
|
| 591 |
},
|
| 592 |
{
|
| 593 |
+
"entropy": 0.9972454011440277,
|
| 594 |
+
"epoch": 0.5148342059336823,
|
| 595 |
+
"grad_norm": 0.8077422976493835,
|
| 596 |
+
"learning_rate": 9.911190053285967e-05,
|
| 597 |
+
"loss": 0.9629,
|
| 598 |
+
"mean_token_accuracy": 0.7550196409225464,
|
| 599 |
+
"num_tokens": 304401.0,
|
| 600 |
"step": 295
|
| 601 |
},
|
| 602 |
{
|
| 603 |
+
"entropy": 1.0132270872592926,
|
| 604 |
+
"epoch": 0.5235602094240838,
|
| 605 |
+
"grad_norm": 0.5776278972625732,
|
| 606 |
+
"learning_rate": 9.733570159857904e-05,
|
| 607 |
+
"loss": 0.9083,
|
| 608 |
+
"mean_token_accuracy": 0.7645319044589997,
|
| 609 |
+
"num_tokens": 310983.0,
|
| 610 |
"step": 300
|
| 611 |
},
|
| 612 |
{
|
| 613 |
+
"entropy": 1.1321196973323822,
|
| 614 |
+
"epoch": 0.5322862129144852,
|
| 615 |
+
"grad_norm": 0.765808641910553,
|
| 616 |
+
"learning_rate": 9.555950266429841e-05,
|
| 617 |
+
"loss": 1.0364,
|
| 618 |
+
"mean_token_accuracy": 0.7226320803165436,
|
| 619 |
+
"num_tokens": 315721.0,
|
| 620 |
"step": 305
|
| 621 |
},
|
| 622 |
{
|
| 623 |
+
"entropy": 1.0132107377052306,
|
| 624 |
+
"epoch": 0.5410122164048866,
|
| 625 |
+
"grad_norm": 0.5765398144721985,
|
| 626 |
+
"learning_rate": 9.378330373001777e-05,
|
| 627 |
+
"loss": 0.9858,
|
| 628 |
+
"mean_token_accuracy": 0.7562039911746978,
|
| 629 |
+
"num_tokens": 321834.0,
|
| 630 |
"step": 310
|
| 631 |
},
|
| 632 |
{
|
| 633 |
+
"entropy": 1.097977089881897,
|
| 634 |
+
"epoch": 0.5497382198952879,
|
| 635 |
+
"grad_norm": 0.7264753580093384,
|
| 636 |
+
"learning_rate": 9.200710479573713e-05,
|
| 637 |
+
"loss": 1.0686,
|
| 638 |
+
"mean_token_accuracy": 0.7291842579841614,
|
| 639 |
+
"num_tokens": 327063.0,
|
| 640 |
"step": 315
|
| 641 |
},
|
| 642 |
{
|
| 643 |
+
"entropy": 1.2174109816551208,
|
| 644 |
+
"epoch": 0.5584642233856894,
|
| 645 |
+
"grad_norm": 0.7541456818580627,
|
| 646 |
+
"learning_rate": 9.023090586145648e-05,
|
| 647 |
+
"loss": 1.1817,
|
| 648 |
+
"mean_token_accuracy": 0.7097965478897095,
|
| 649 |
+
"num_tokens": 332900.0,
|
| 650 |
"step": 320
|
| 651 |
},
|
| 652 |
{
|
| 653 |
+
"entropy": 1.0044541895389556,
|
| 654 |
+
"epoch": 0.5671902268760908,
|
| 655 |
+
"grad_norm": 0.5834890604019165,
|
| 656 |
+
"learning_rate": 8.845470692717585e-05,
|
| 657 |
+
"loss": 0.9467,
|
| 658 |
+
"mean_token_accuracy": 0.7500465452671051,
|
| 659 |
+
"num_tokens": 337508.0,
|
| 660 |
"step": 325
|
| 661 |
},
|
| 662 |
{
|
| 663 |
+
"entropy": 1.0295350253582,
|
| 664 |
+
"epoch": 0.5759162303664922,
|
| 665 |
+
"grad_norm": 0.8909983038902283,
|
| 666 |
+
"learning_rate": 8.667850799289521e-05,
|
| 667 |
+
"loss": 0.9113,
|
| 668 |
+
"mean_token_accuracy": 0.7476867496967315,
|
| 669 |
+
"num_tokens": 342644.0,
|
| 670 |
"step": 330
|
| 671 |
},
|
| 672 |
{
|
| 673 |
+
"entropy": 1.0791299104690553,
|
| 674 |
+
"epoch": 0.5846422338568935,
|
| 675 |
+
"grad_norm": 1.0385737419128418,
|
| 676 |
+
"learning_rate": 8.490230905861456e-05,
|
| 677 |
+
"loss": 1.1175,
|
| 678 |
+
"mean_token_accuracy": 0.7305109918117523,
|
| 679 |
+
"num_tokens": 347547.0,
|
| 680 |
"step": 335
|
| 681 |
},
|
| 682 |
{
|
| 683 |
+
"entropy": 1.0213176369667054,
|
| 684 |
+
"epoch": 0.5933682373472949,
|
| 685 |
+
"grad_norm": 0.943204402923584,
|
| 686 |
+
"learning_rate": 8.312611012433393e-05,
|
| 687 |
+
"loss": 0.9055,
|
| 688 |
+
"mean_token_accuracy": 0.7596513092517853,
|
| 689 |
+
"num_tokens": 351932.0,
|
| 690 |
"step": 340
|
| 691 |
},
|
| 692 |
{
|
| 693 |
+
"entropy": 1.0257258594036103,
|
| 694 |
+
"epoch": 0.6020942408376964,
|
| 695 |
+
"grad_norm": 0.7949322462081909,
|
| 696 |
+
"learning_rate": 8.134991119005328e-05,
|
| 697 |
+
"loss": 0.9098,
|
| 698 |
+
"mean_token_accuracy": 0.7553630173206329,
|
| 699 |
+
"num_tokens": 357045.0,
|
| 700 |
"step": 345
|
| 701 |
},
|
| 702 |
{
|
| 703 |
+
"entropy": 1.0372248589992523,
|
| 704 |
+
"epoch": 0.6108202443280978,
|
| 705 |
+
"grad_norm": 0.8405324220657349,
|
| 706 |
+
"learning_rate": 7.957371225577265e-05,
|
| 707 |
+
"loss": 0.9929,
|
| 708 |
+
"mean_token_accuracy": 0.7452831089496612,
|
| 709 |
+
"num_tokens": 362284.0,
|
| 710 |
"step": 350
|
| 711 |
},
|
| 712 |
{
|
| 713 |
+
"entropy": 0.9565088748931885,
|
| 714 |
+
"epoch": 0.6195462478184991,
|
| 715 |
+
"grad_norm": 0.6379778981208801,
|
| 716 |
+
"learning_rate": 7.779751332149202e-05,
|
| 717 |
+
"loss": 0.9219,
|
| 718 |
+
"mean_token_accuracy": 0.7565369844436646,
|
| 719 |
+
"num_tokens": 367217.0,
|
| 720 |
"step": 355
|
| 721 |
},
|
| 722 |
{
|
| 723 |
+
"entropy": 1.0628814578056336,
|
| 724 |
+
"epoch": 0.6282722513089005,
|
| 725 |
+
"grad_norm": 0.6335421204566956,
|
| 726 |
+
"learning_rate": 7.602131438721137e-05,
|
| 727 |
+
"loss": 1.0041,
|
| 728 |
+
"mean_token_accuracy": 0.7395376443862915,
|
| 729 |
+
"num_tokens": 372678.0,
|
| 730 |
"step": 360
|
| 731 |
},
|
| 732 |
{
|
| 733 |
+
"entropy": 0.9448712587356567,
|
| 734 |
+
"epoch": 0.6369982547993019,
|
| 735 |
+
"grad_norm": 0.737162172794342,
|
| 736 |
+
"learning_rate": 7.424511545293074e-05,
|
| 737 |
+
"loss": 0.8211,
|
| 738 |
+
"mean_token_accuracy": 0.771143788099289,
|
| 739 |
+
"num_tokens": 377750.0,
|
| 740 |
"step": 365
|
| 741 |
},
|
| 742 |
{
|
| 743 |
+
"entropy": 0.9797238111495972,
|
| 744 |
+
"epoch": 0.6457242582897034,
|
| 745 |
+
"grad_norm": 0.5577957034111023,
|
| 746 |
+
"learning_rate": 7.246891651865009e-05,
|
| 747 |
+
"loss": 0.9415,
|
| 748 |
+
"mean_token_accuracy": 0.7499814212322236,
|
| 749 |
+
"num_tokens": 383406.0,
|
| 750 |
"step": 370
|
| 751 |
},
|
| 752 |
{
|
| 753 |
+
"entropy": 1.1891680419445039,
|
| 754 |
+
"epoch": 0.6544502617801047,
|
| 755 |
+
"grad_norm": 0.48097750544548035,
|
| 756 |
+
"learning_rate": 7.069271758436945e-05,
|
| 757 |
+
"loss": 1.1327,
|
| 758 |
+
"mean_token_accuracy": 0.7193056166172027,
|
| 759 |
+
"num_tokens": 389696.0,
|
| 760 |
"step": 375
|
| 761 |
},
|
| 762 |
{
|
| 763 |
+
"entropy": 1.0238433182239532,
|
| 764 |
+
"epoch": 0.6631762652705061,
|
| 765 |
+
"grad_norm": 0.5823986530303955,
|
| 766 |
+
"learning_rate": 6.891651865008881e-05,
|
| 767 |
+
"loss": 0.9708,
|
| 768 |
+
"mean_token_accuracy": 0.7535522282123566,
|
| 769 |
+
"num_tokens": 394688.0,
|
| 770 |
"step": 380
|
| 771 |
},
|
| 772 |
{
|
| 773 |
+
"entropy": 1.162860244512558,
|
| 774 |
+
"epoch": 0.6719022687609075,
|
| 775 |
+
"grad_norm": 0.6299170255661011,
|
| 776 |
+
"learning_rate": 6.714031971580817e-05,
|
| 777 |
+
"loss": 1.1866,
|
| 778 |
+
"mean_token_accuracy": 0.710206264257431,
|
| 779 |
+
"num_tokens": 400319.0,
|
| 780 |
"step": 385
|
| 781 |
},
|
| 782 |
{
|
| 783 |
+
"entropy": 1.0206872344017028,
|
| 784 |
+
"epoch": 0.680628272251309,
|
| 785 |
+
"grad_norm": 0.7722362875938416,
|
| 786 |
+
"learning_rate": 6.536412078152754e-05,
|
| 787 |
+
"loss": 0.9289,
|
| 788 |
+
"mean_token_accuracy": 0.7554251432418824,
|
| 789 |
+
"num_tokens": 404918.0,
|
| 790 |
"step": 390
|
| 791 |
},
|
| 792 |
{
|
| 793 |
+
"entropy": 1.0980794131755829,
|
| 794 |
+
"epoch": 0.6893542757417103,
|
| 795 |
+
"grad_norm": 0.9234552979469299,
|
| 796 |
+
"learning_rate": 6.358792184724689e-05,
|
| 797 |
+
"loss": 0.9551,
|
| 798 |
+
"mean_token_accuracy": 0.7426558673381806,
|
| 799 |
+
"num_tokens": 410635.0,
|
| 800 |
"step": 395
|
| 801 |
},
|
| 802 |
{
|
| 803 |
+
"entropy": 1.0166767477989196,
|
| 804 |
+
"epoch": 0.6980802792321117,
|
| 805 |
+
"grad_norm": 0.9343558549880981,
|
| 806 |
+
"learning_rate": 6.181172291296625e-05,
|
| 807 |
+
"loss": 0.9624,
|
| 808 |
+
"mean_token_accuracy": 0.7539155185222626,
|
| 809 |
+
"num_tokens": 415005.0,
|
| 810 |
"step": 400
|
| 811 |
},
|
| 812 |
{
|
| 813 |
+
"entropy": 1.0832793176174165,
|
| 814 |
+
"epoch": 0.7068062827225131,
|
| 815 |
+
"grad_norm": 0.7815644145011902,
|
| 816 |
+
"learning_rate": 6.003552397868561e-05,
|
| 817 |
+
"loss": 1.0316,
|
| 818 |
+
"mean_token_accuracy": 0.7289174854755401,
|
| 819 |
+
"num_tokens": 419347.0,
|
| 820 |
"step": 405
|
| 821 |
},
|
| 822 |
{
|
| 823 |
+
"entropy": 1.0699054658412934,
|
| 824 |
+
"epoch": 0.7155322862129145,
|
| 825 |
+
"grad_norm": 0.7760159373283386,
|
| 826 |
+
"learning_rate": 5.825932504440498e-05,
|
| 827 |
+
"loss": 1.0357,
|
| 828 |
+
"mean_token_accuracy": 0.7321902751922608,
|
| 829 |
+
"num_tokens": 424588.0,
|
| 830 |
"step": 410
|
| 831 |
},
|
| 832 |
{
|
| 833 |
+
"entropy": 0.966323298215866,
|
| 834 |
+
"epoch": 0.7242582897033158,
|
| 835 |
+
"grad_norm": 0.805746853351593,
|
| 836 |
+
"learning_rate": 5.648312611012434e-05,
|
| 837 |
+
"loss": 0.9306,
|
| 838 |
+
"mean_token_accuracy": 0.7569182515144348,
|
| 839 |
+
"num_tokens": 428943.0,
|
| 840 |
"step": 415
|
| 841 |
},
|
| 842 |
{
|
| 843 |
+
"entropy": 0.9721911072731018,
|
| 844 |
+
"epoch": 0.7329842931937173,
|
| 845 |
+
"grad_norm": 0.6620533466339111,
|
| 846 |
+
"learning_rate": 5.470692717584369e-05,
|
| 847 |
+
"loss": 0.9465,
|
| 848 |
+
"mean_token_accuracy": 0.7597197592258453,
|
| 849 |
+
"num_tokens": 435326.0,
|
| 850 |
"step": 420
|
| 851 |
},
|
| 852 |
{
|
| 853 |
+
"entropy": 0.9292757451534271,
|
| 854 |
+
"epoch": 0.7417102966841187,
|
| 855 |
+
"grad_norm": 0.7177068591117859,
|
| 856 |
+
"learning_rate": 5.293072824156306e-05,
|
| 857 |
+
"loss": 0.858,
|
| 858 |
+
"mean_token_accuracy": 0.7738080501556397,
|
| 859 |
+
"num_tokens": 441702.0,
|
| 860 |
"step": 425
|
| 861 |
},
|
| 862 |
{
|
| 863 |
+
"entropy": 1.0638712823390961,
|
| 864 |
+
"epoch": 0.7504363001745201,
|
| 865 |
+
"grad_norm": 0.5912255048751831,
|
| 866 |
+
"learning_rate": 5.115452930728242e-05,
|
| 867 |
+
"loss": 1.0654,
|
| 868 |
+
"mean_token_accuracy": 0.747636479139328,
|
| 869 |
+
"num_tokens": 446862.0,
|
| 870 |
"step": 430
|
| 871 |
},
|
| 872 |
{
|
| 873 |
+
"entropy": 0.9203409194946289,
|
| 874 |
+
"epoch": 0.7591623036649214,
|
| 875 |
+
"grad_norm": 0.8877400159835815,
|
| 876 |
+
"learning_rate": 4.9378330373001777e-05,
|
| 877 |
+
"loss": 0.8225,
|
| 878 |
+
"mean_token_accuracy": 0.7788766026496887,
|
| 879 |
+
"num_tokens": 451024.0,
|
| 880 |
"step": 435
|
| 881 |
},
|
| 882 |
{
|
| 883 |
+
"entropy": 1.0310194969177247,
|
| 884 |
+
"epoch": 0.7678883071553229,
|
| 885 |
+
"grad_norm": 0.593137800693512,
|
| 886 |
+
"learning_rate": 4.7602131438721136e-05,
|
| 887 |
+
"loss": 1.0058,
|
| 888 |
+
"mean_token_accuracy": 0.7474644720554352,
|
| 889 |
+
"num_tokens": 457528.0,
|
| 890 |
"step": 440
|
| 891 |
},
|
| 892 |
{
|
| 893 |
+
"entropy": 0.9218507647514343,
|
| 894 |
+
"epoch": 0.7766143106457243,
|
| 895 |
+
"grad_norm": 0.8034109473228455,
|
| 896 |
+
"learning_rate": 4.58259325044405e-05,
|
| 897 |
+
"loss": 0.8161,
|
| 898 |
+
"mean_token_accuracy": 0.773482757806778,
|
| 899 |
+
"num_tokens": 462267.0,
|
| 900 |
"step": 445
|
| 901 |
},
|
| 902 |
{
|
| 903 |
+
"entropy": 1.0368493318557739,
|
| 904 |
+
"epoch": 0.7853403141361257,
|
| 905 |
+
"grad_norm": 0.9129230380058289,
|
| 906 |
+
"learning_rate": 4.404973357015986e-05,
|
| 907 |
+
"loss": 1.0042,
|
| 908 |
+
"mean_token_accuracy": 0.7518712699413299,
|
| 909 |
+
"num_tokens": 467337.0,
|
| 910 |
"step": 450
|
| 911 |
},
|
| 912 |
{
|
| 913 |
+
"entropy": 0.8776600241661072,
|
| 914 |
+
"epoch": 0.794066317626527,
|
| 915 |
+
"grad_norm": 0.5392698645591736,
|
| 916 |
+
"learning_rate": 4.227353463587922e-05,
|
| 917 |
+
"loss": 0.7964,
|
| 918 |
+
"mean_token_accuracy": 0.773613715171814,
|
| 919 |
+
"num_tokens": 472361.0,
|
| 920 |
"step": 455
|
| 921 |
},
|
| 922 |
{
|
| 923 |
+
"entropy": 0.9013674080371856,
|
| 924 |
+
"epoch": 0.8027923211169284,
|
| 925 |
+
"grad_norm": 0.731060266494751,
|
| 926 |
+
"learning_rate": 4.049733570159858e-05,
|
| 927 |
+
"loss": 0.9098,
|
| 928 |
+
"mean_token_accuracy": 0.7663923025131225,
|
| 929 |
+
"num_tokens": 477324.0,
|
| 930 |
"step": 460
|
| 931 |
},
|
| 932 |
{
|
| 933 |
+
"entropy": 1.0141965687274932,
|
| 934 |
+
"epoch": 0.8115183246073299,
|
| 935 |
+
"grad_norm": 0.6941847205162048,
|
| 936 |
+
"learning_rate": 3.872113676731794e-05,
|
| 937 |
+
"loss": 1.0052,
|
| 938 |
+
"mean_token_accuracy": 0.747931432723999,
|
| 939 |
+
"num_tokens": 483192.0,
|
| 940 |
"step": 465
|
| 941 |
},
|
| 942 |
{
|
| 943 |
+
"entropy": 0.9370434999465942,
|
| 944 |
+
"epoch": 0.8202443280977313,
|
| 945 |
+
"grad_norm": 0.7024611830711365,
|
| 946 |
+
"learning_rate": 3.69449378330373e-05,
|
| 947 |
+
"loss": 0.9472,
|
| 948 |
+
"mean_token_accuracy": 0.7648843646049499,
|
| 949 |
+
"num_tokens": 488771.0,
|
| 950 |
"step": 470
|
| 951 |
},
|
| 952 |
{
|
| 953 |
+
"entropy": 1.2138389825820923,
|
| 954 |
+
"epoch": 0.8289703315881326,
|
| 955 |
+
"grad_norm": 0.6181853413581848,
|
| 956 |
+
"learning_rate": 3.516873889875667e-05,
|
| 957 |
+
"loss": 1.1913,
|
| 958 |
+
"mean_token_accuracy": 0.7199933648109436,
|
| 959 |
+
"num_tokens": 495594.0,
|
| 960 |
"step": 475
|
| 961 |
},
|
| 962 |
{
|
| 963 |
+
"entropy": 0.9946802318096161,
|
| 964 |
+
"epoch": 0.837696335078534,
|
| 965 |
+
"grad_norm": 0.8392300009727478,
|
| 966 |
+
"learning_rate": 3.339253996447602e-05,
|
| 967 |
+
"loss": 0.8846,
|
| 968 |
+
"mean_token_accuracy": 0.7601681053638458,
|
| 969 |
+
"num_tokens": 501431.0,
|
| 970 |
"step": 480
|
| 971 |
},
|
| 972 |
{
|
| 973 |
+
"entropy": 1.0851561069488525,
|
| 974 |
+
"epoch": 0.8464223385689355,
|
| 975 |
+
"grad_norm": 0.7538084983825684,
|
| 976 |
+
"learning_rate": 3.1616341030195386e-05,
|
| 977 |
+
"loss": 1.0112,
|
| 978 |
+
"mean_token_accuracy": 0.7339279770851135,
|
| 979 |
+
"num_tokens": 506603.0,
|
| 980 |
"step": 485
|
| 981 |
},
|
| 982 |
{
|
| 983 |
+
"entropy": 0.9791876435279846,
|
| 984 |
+
"epoch": 0.8551483420593369,
|
| 985 |
+
"grad_norm": 0.6512478590011597,
|
| 986 |
+
"learning_rate": 2.9840142095914742e-05,
|
| 987 |
+
"loss": 0.9047,
|
| 988 |
+
"mean_token_accuracy": 0.7637781441211701,
|
| 989 |
+
"num_tokens": 511657.0,
|
| 990 |
"step": 490
|
| 991 |
},
|
| 992 |
{
|
| 993 |
+
"entropy": 0.8807009816169739,
|
| 994 |
+
"epoch": 0.8638743455497382,
|
| 995 |
+
"grad_norm": 1.0381275415420532,
|
| 996 |
+
"learning_rate": 2.8063943161634105e-05,
|
| 997 |
+
"loss": 0.7989,
|
| 998 |
+
"mean_token_accuracy": 0.778300940990448,
|
| 999 |
+
"num_tokens": 516346.0,
|
| 1000 |
"step": 495
|
| 1001 |
},
|
| 1002 |
{
|
| 1003 |
+
"entropy": 0.9706099390983581,
|
| 1004 |
+
"epoch": 0.8726003490401396,
|
| 1005 |
+
"grad_norm": 0.7503977417945862,
|
| 1006 |
+
"learning_rate": 2.6287744227353468e-05,
|
| 1007 |
+
"loss": 0.8633,
|
| 1008 |
+
"mean_token_accuracy": 0.7602749288082122,
|
| 1009 |
+
"num_tokens": 521118.0,
|
| 1010 |
"step": 500
|
| 1011 |
},
|
| 1012 |
{
|
| 1013 |
+
"entropy": 0.9830702662467956,
|
| 1014 |
+
"epoch": 0.881326352530541,
|
| 1015 |
+
"grad_norm": 0.7824010252952576,
|
| 1016 |
+
"learning_rate": 2.4511545293072824e-05,
|
| 1017 |
+
"loss": 0.8701,
|
| 1018 |
+
"mean_token_accuracy": 0.7697367370128632,
|
| 1019 |
+
"num_tokens": 525785.0,
|
| 1020 |
"step": 505
|
| 1021 |
},
|
| 1022 |
{
|
| 1023 |
+
"entropy": 1.0895603597164154,
|
| 1024 |
+
"epoch": 0.8900523560209425,
|
| 1025 |
+
"grad_norm": 0.6201509237289429,
|
| 1026 |
+
"learning_rate": 2.2735346358792187e-05,
|
| 1027 |
+
"loss": 0.999,
|
| 1028 |
+
"mean_token_accuracy": 0.7415844857692718,
|
| 1029 |
+
"num_tokens": 531296.0,
|
| 1030 |
"step": 510
|
| 1031 |
},
|
| 1032 |
{
|
| 1033 |
+
"entropy": 1.0094242215156555,
|
| 1034 |
+
"epoch": 0.8987783595113438,
|
| 1035 |
+
"grad_norm": 0.6755935549736023,
|
| 1036 |
+
"learning_rate": 2.0959147424511547e-05,
|
| 1037 |
+
"loss": 0.9283,
|
| 1038 |
+
"mean_token_accuracy": 0.7551429510116577,
|
| 1039 |
+
"num_tokens": 536703.0,
|
| 1040 |
"step": 515
|
| 1041 |
},
|
| 1042 |
{
|
| 1043 |
+
"entropy": 0.9846092760562897,
|
| 1044 |
+
"epoch": 0.9075043630017452,
|
| 1045 |
+
"grad_norm": 1.0709046125411987,
|
| 1046 |
+
"learning_rate": 1.9182948490230906e-05,
|
| 1047 |
+
"loss": 0.9426,
|
| 1048 |
+
"mean_token_accuracy": 0.7431533575057984,
|
| 1049 |
+
"num_tokens": 541044.0,
|
| 1050 |
"step": 520
|
| 1051 |
},
|
| 1052 |
{
|
| 1053 |
+
"entropy": 0.9527219116687775,
|
| 1054 |
+
"epoch": 0.9162303664921466,
|
| 1055 |
+
"grad_norm": 0.6978484392166138,
|
| 1056 |
+
"learning_rate": 1.7406749555950266e-05,
|
| 1057 |
+
"loss": 0.8911,
|
| 1058 |
+
"mean_token_accuracy": 0.7653971970081329,
|
| 1059 |
+
"num_tokens": 546836.0,
|
| 1060 |
"step": 525
|
| 1061 |
},
|
| 1062 |
{
|
| 1063 |
+
"entropy": 0.8855733275413513,
|
| 1064 |
+
"epoch": 0.924956369982548,
|
| 1065 |
+
"grad_norm": 0.9127820134162903,
|
| 1066 |
+
"learning_rate": 1.563055062166963e-05,
|
| 1067 |
+
"loss": 0.8139,
|
| 1068 |
+
"mean_token_accuracy": 0.7775610208511352,
|
| 1069 |
+
"num_tokens": 551666.0,
|
| 1070 |
"step": 530
|
| 1071 |
},
|
| 1072 |
{
|
| 1073 |
+
"entropy": 0.9590709805488586,
|
| 1074 |
+
"epoch": 0.9336823734729494,
|
| 1075 |
+
"grad_norm": 0.7010323405265808,
|
| 1076 |
+
"learning_rate": 1.3854351687388988e-05,
|
| 1077 |
+
"loss": 0.9334,
|
| 1078 |
+
"mean_token_accuracy": 0.759455144405365,
|
| 1079 |
+
"num_tokens": 556932.0,
|
| 1080 |
"step": 535
|
| 1081 |
},
|
| 1082 |
{
|
| 1083 |
+
"entropy": 0.9646609544754028,
|
| 1084 |
+
"epoch": 0.9424083769633508,
|
| 1085 |
+
"grad_norm": 0.5711817145347595,
|
| 1086 |
+
"learning_rate": 1.2078152753108348e-05,
|
| 1087 |
+
"loss": 0.9678,
|
| 1088 |
+
"mean_token_accuracy": 0.7603480279445648,
|
| 1089 |
+
"num_tokens": 562608.0,
|
| 1090 |
"step": 540
|
| 1091 |
},
|
| 1092 |
{
|
| 1093 |
+
"entropy": 1.0106851994991302,
|
| 1094 |
+
"epoch": 0.9511343804537522,
|
| 1095 |
+
"grad_norm": 0.7159616947174072,
|
| 1096 |
+
"learning_rate": 1.030195381882771e-05,
|
| 1097 |
+
"loss": 0.9285,
|
| 1098 |
+
"mean_token_accuracy": 0.7571455597877502,
|
| 1099 |
+
"num_tokens": 568591.0,
|
| 1100 |
"step": 545
|
| 1101 |
},
|
| 1102 |
{
|
| 1103 |
+
"entropy": 1.0865988105535507,
|
| 1104 |
+
"epoch": 0.9598603839441536,
|
| 1105 |
+
"grad_norm": 0.7819423079490662,
|
| 1106 |
+
"learning_rate": 8.52575488454707e-06,
|
| 1107 |
+
"loss": 1.1628,
|
| 1108 |
+
"mean_token_accuracy": 0.7484253525733948,
|
| 1109 |
+
"num_tokens": 572932.0,
|
| 1110 |
"step": 550
|
| 1111 |
},
|
| 1112 |
{
|
| 1113 |
+
"entropy": 0.8808701932430267,
|
| 1114 |
+
"epoch": 0.9685863874345549,
|
| 1115 |
+
"grad_norm": 0.6782775521278381,
|
| 1116 |
+
"learning_rate": 6.74955595026643e-06,
|
| 1117 |
+
"loss": 0.7661,
|
| 1118 |
+
"mean_token_accuracy": 0.7774575710296631,
|
| 1119 |
+
"num_tokens": 577818.0,
|
| 1120 |
"step": 555
|
| 1121 |
},
|
| 1122 |
{
|
| 1123 |
+
"entropy": 0.9287233471870422,
|
| 1124 |
+
"epoch": 0.9773123909249564,
|
| 1125 |
+
"grad_norm": 0.8206584453582764,
|
| 1126 |
+
"learning_rate": 4.973357015985791e-06,
|
| 1127 |
+
"loss": 0.7572,
|
| 1128 |
+
"mean_token_accuracy": 0.7789205074310303,
|
| 1129 |
+
"num_tokens": 581899.0,
|
| 1130 |
"step": 560
|
| 1131 |
},
|
| 1132 |
{
|
| 1133 |
+
"entropy": 0.8616821765899658,
|
| 1134 |
+
"epoch": 0.9860383944153578,
|
| 1135 |
+
"grad_norm": 0.6403858661651611,
|
| 1136 |
+
"learning_rate": 3.197158081705151e-06,
|
| 1137 |
+
"loss": 0.7855,
|
| 1138 |
+
"mean_token_accuracy": 0.7908896625041961,
|
| 1139 |
+
"num_tokens": 587864.0,
|
| 1140 |
"step": 565
|
| 1141 |
},
|
| 1142 |
{
|
| 1143 |
+
"entropy": 1.0378393054008483,
|
| 1144 |
+
"epoch": 0.9947643979057592,
|
| 1145 |
+
"grad_norm": 0.7347800731658936,
|
| 1146 |
+
"learning_rate": 1.4209591474245117e-06,
|
| 1147 |
+
"loss": 1.0399,
|
| 1148 |
+
"mean_token_accuracy": 0.7526734173297882,
|
| 1149 |
+
"num_tokens": 592990.0,
|
| 1150 |
"step": 570
|
| 1151 |
}
|
| 1152 |
],
|
| 1153 |
"logging_steps": 5,
|
| 1154 |
+
"max_steps": 573,
|
| 1155 |
"num_input_tokens_seen": 0,
|
| 1156 |
"num_train_epochs": 1,
|
| 1157 |
"save_steps": 500,
|
|
|
|
| 1167 |
"attributes": {}
|
| 1168 |
}
|
| 1169 |
},
|
| 1170 |
+
"total_flos": 2.6952641846870016e+16,
|
| 1171 |
"train_batch_size": 1,
|
| 1172 |
"trial_name": null,
|
| 1173 |
"trial_params": null
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 5816
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d49ed87fd1007ddba65a781a7a824d4db6222aa26b1008b2e988302b8cec8fab
|
| 3 |
size 5816
|