--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M tags: - axolotl - generated_from_trainer model-index: - name: 7f8bab48-3ea0-4b73-b5ea-dfe9183daaf2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M bf16: true chat_template: llama3 dataloader_num_workers: 24 dataset_prepared_path: null datasets: - data_files: - 5b80cb3e3f6cb6d6_train_data.json ds_type: json format: custom path: /workspace/input_data/5b80cb3e3f6cb6d6_train_data.json type: field_input: outline field_instruction: topic field_output: markdown format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: true hub_model_id: nttx/7f8bab48-3ea0-4b73-b5ea-dfe9183daaf2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 3000 micro_batch_size: 2 mlflow_experiment_name: /tmp/5b80cb3e3f6cb6d6_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f8675f5c-3a6e-463d-b56c-c54c0872a08f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f8675f5c-3a6e-463d-b56c-c54c0872a08f warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 7f8bab48-3ea0-4b73-b5ea-dfe9183daaf2 This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0015 | 1 | 1.1010 | | 0.9411 | 0.2226 | 150 | 0.9269 | | 0.9052 | 0.4452 | 300 | 0.8922 | | 0.8705 | 0.6678 | 450 | 0.8678 | | 0.8544 | 0.8904 | 600 | 0.8514 | | 0.8167 | 1.1132 | 750 | 0.8398 | | 0.7961 | 1.3357 | 900 | 0.8281 | | 0.7965 | 1.5583 | 1050 | 0.8186 | | 0.7986 | 1.7809 | 1200 | 0.8100 | | 0.7548 | 2.0037 | 1350 | 0.8026 | | 0.7409 | 2.2263 | 1500 | 0.7998 | | 0.7508 | 2.4489 | 1650 | 0.7954 | | 0.7606 | 2.6715 | 1800 | 0.7908 | | 0.7366 | 2.8941 | 1950 | 0.7873 | | 0.7173 | 3.1169 | 2100 | 0.7872 | | 0.7294 | 3.3395 | 2250 | 0.7847 | | 0.7282 | 3.5620 | 2400 | 0.7835 | | 0.72 | 3.7846 | 2550 | 0.7826 | | 0.7085 | 4.0074 | 2700 | 0.7819 | | 0.7127 | 4.2300 | 2850 | 0.7822 | | 0.7119 | 4.4526 | 3000 | 0.7823 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1