Update README.md
Browse files
README.md
CHANGED
|
@@ -12,15 +12,39 @@ tags:
|
|
| 12 |
---
|
| 13 |
|
| 14 |
|
| 15 |
-
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
from sentence_transformers import CrossEncoder
|
|
|
|
|
|
|
| 18 |
model = CrossEncoder('oddadmix/arabic-reranker', max_length=512)
|
| 19 |
|
|
|
|
| 20 |
Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟'
|
| 21 |
Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض'
|
| 22 |
Paragraph2 = 'الذكاء الاصطناعي يستخدم في تحسين الإنتاجية في الصناعات'
|
| 23 |
|
|
|
|
| 24 |
scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)])
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
|
| 15 |
+
# Arabic Reranker Model
|
| 16 |
|
| 17 |
+
This is an Arabic reranker model, fine-tuned from the [Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2](https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2), which itself is based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). The model is designed to perform reranking tasks by scoring and ordering text options based on their relevance to a given query, specifically optimized for Arabic text.
|
| 18 |
+
|
| 19 |
+
This model was trained on a synthetic dataset of Arabic triplets generated using large language models (LLMs). It was refined using a scoring technique, making it ideal for ranking tasks in Arabic Natural Language Processing (NLP).
|
| 20 |
+
|
| 21 |
+
## Model Use
|
| 22 |
+
|
| 23 |
+
This model is well-suited for Arabic text reranking tasks, including:
|
| 24 |
+
- Information retrieval and document ranking
|
| 25 |
+
- Search engine results reranking
|
| 26 |
+
- Question-answering tasks requiring ranked answer choices
|
| 27 |
+
|
| 28 |
+
## Example Usage
|
| 29 |
+
|
| 30 |
+
Below is an example of how to use the model with the `sentence_transformers` library to rerank paragraphs based on relevance to a query.
|
| 31 |
+
|
| 32 |
+
### Code Example
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
from sentence_transformers import CrossEncoder
|
| 36 |
+
|
| 37 |
+
# Load the model
|
| 38 |
model = CrossEncoder('oddadmix/arabic-reranker', max_length=512)
|
| 39 |
|
| 40 |
+
# Define the query and candidate paragraphs
|
| 41 |
Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟'
|
| 42 |
Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض'
|
| 43 |
Paragraph2 = 'الذكاء الاصطناعي يستخدم في تحسين الإنتاجية في الصناعات'
|
| 44 |
|
| 45 |
+
# Score the paragraphs based on relevance to the query
|
| 46 |
scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)])
|
| 47 |
|
| 48 |
+
# Output scores
|
| 49 |
+
print("Score for Paragraph 1:", scores[0])
|
| 50 |
+
print("Score for Paragraph 2:", scores[1])
|