Update README.md
Browse files
README.md
CHANGED
|
@@ -13,15 +13,20 @@ tags:
|
|
| 13 |
license: apache-2.0
|
| 14 |
---
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
## Conversion of [t5-small](https://huggingface.co/t5-small)
|
| 19 |
|
| 20 |
## Model description
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
##
|
| 25 |
|
| 26 |
You can use this model with Transformers *pipeline*.
|
| 27 |
|
|
@@ -30,8 +35,7 @@ from transformers import AutoTokenizer, pipeline
|
|
| 30 |
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained("optimum/t5-small")
|
| 32 |
model = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
|
| 33 |
-
translator = pipeline("
|
| 34 |
-
|
| 35 |
-
results = translator(example)
|
| 36 |
print(results)
|
| 37 |
```
|
|
|
|
| 13 |
license: apache-2.0
|
| 14 |
---
|
| 15 |
|
| 16 |
+
## [t5-small](https://huggingface.co/t5-small) exported to the ONNX format
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## Model description
|
| 19 |
|
| 20 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#t5) is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.
|
| 21 |
+
|
| 22 |
+
For more information, please take a look at the original paper.
|
| 23 |
+
|
| 24 |
+
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
|
| 25 |
+
|
| 26 |
+
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
|
| 27 |
+
|
| 28 |
|
| 29 |
+
## Usage example
|
| 30 |
|
| 31 |
You can use this model with Transformers *pipeline*.
|
| 32 |
|
|
|
|
| 35 |
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
| 36 |
tokenizer = AutoTokenizer.from_pretrained("optimum/t5-small")
|
| 37 |
model = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
|
| 38 |
+
translator = pipeline("translation_en_to_fr", model=model, tokenizer=tokenizer)
|
| 39 |
+
results = translator("My name is Eustache and I have a pet raccoon")
|
|
|
|
| 40 |
print(results)
|
| 41 |
```
|