Generalizing the No-U-Turn Sampler to Riemannian Manifolds
Abstract
The paper examines the dynamical foundation of the No U-Turn Sampler and extends its principles to Riemannian Manifold Hamiltonian Monte Carlo.
Hamiltonian Monte Carlo provides efficient Markov transitions at the expense of introducing two free parameters: a step size and total integration time. Because the step size controls discretization error it can be readily tuned to achieve certain accuracy criteria, but the total integration time is left unconstrained. Recently Hoffman and Gelman proposed a criterion for tuning the integration time in certain systems with their No U-Turn Sampler, or NUTS. In this paper I investigate the dynamical basis for the success of NUTS and generalize it to Riemannian Manifold Hamiltonian Monte Carlo.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper