Papers
arXiv:2404.00777

Privacy-preserving Optics for Enhancing Protection in Face De-identification

Published on Mar 31, 2024
Authors:
,
,
,

Abstract

A hardware-based face de-identification method is proposed to create a privacy-preserving image using an optical encoder, regression model, and anonymization framework, which generates a new face from a public dataset.

AI-generated summary

The modern surge in camera usage alongside widespread computer vision technology applications poses significant privacy and security concerns. Current artificial intelligence (AI) technologies aid in recognizing relevant events and assisting in daily tasks in homes, offices, hospitals, etc. The need to access or process personal information for these purposes raises privacy concerns. While software-level solutions like face de-identification provide a good privacy/utility trade-off, they present vulnerabilities to sniffing attacks. In this paper, we propose a hardware-level face de-identification method to solve this vulnerability. Specifically, our approach first learns an optical encoder along with a regression model to obtain a face heatmap while hiding the face identity from the source image. We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input. We validate our approach with extensive simulations and hardware experiments.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2404.00777 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2404.00777 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2404.00777 in a Space README.md to link it from this page.

Collections including this paper 1