RoadFusion: Latent Diffusion Model for Pavement Defect Detection
Abstract
RoadFusion addresses challenges in pavement defect detection using synthetic anomaly generation, dual-path feature adaptation, and a lightweight discriminator, achieving state-of-the-art performance on benchmark datasets.
Pavement defect detection faces critical challenges including limited annotated data, domain shift between training and deployment environments, and high variability in defect appearances across different road conditions. We propose RoadFusion, a framework that addresses these limitations through synthetic anomaly generation with dual-path feature adaptation. A latent diffusion model synthesizes diverse, realistic defects using text prompts and spatial masks, enabling effective training under data scarcity. Two separate feature adaptors specialize representations for normal and anomalous inputs, improving robustness to domain shift and defect variability. A lightweight discriminator learns to distinguish fine-grained defect patterns at the patch level. Evaluated on six benchmark datasets, RoadFusion achieves consistently strong performance across both classification and localization tasks, setting new state-of-the-art in multiple metrics relevant to real-world road inspection.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper