Abstract
The Busy Beaver value $S(5)$ is determined to be 47,176,870 through formal verification using the Coq proof assistant, marking the first such determination in over 40 years.
We prove that S(5) = 47,176,870 using the Coq proof assistant. The Busy Beaver value S(n) is the maximum number of steps that an n-state 2-symbol Turing machine can perform from the all-zero tape before halting, and S was historically introduced by Tibor Radó in 1962 as one of the simplest examples of an uncomputable function. The proof enumerates 181,385,789 Turing machines with 5 states and, for each machine, decides whether it halts or not. Our result marks the first determination of a new Busy Beaver value in over 40 years and the first Busy Beaver value ever to be formally verified, attesting to the effectiveness of massively collaborative online research (bbchallenge.org).
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper