DriftLite: Lightweight Drift Control for Inference-Time Scaling of Diffusion Models
Abstract
DriftLite, a lightweight particle-based method, optimally controls inference dynamics in diffusion models, reducing variance and improving sample quality without retraining.
We study inference-time scaling for diffusion models, where the goal is to adapt a pre-trained model to new target distributions without retraining. Existing guidance-based methods are simple but introduce bias, while particle-based corrections suffer from weight degeneracy and high computational cost. We introduce DriftLite, a lightweight, training-free particle-based approach that steers the inference dynamics on the fly with provably optimal stability control. DriftLite exploits a previously unexplored degree of freedom in the Fokker-Planck equation between the drift and particle potential, and yields two practical instantiations: Variance- and Energy-Controlling Guidance (VCG/ECG) for approximating the optimal drift with minimal overhead. Across Gaussian mixture models, particle systems, and large-scale protein-ligand co-folding problems, DriftLite consistently reduces variance and improves sample quality over pure guidance and sequential Monte Carlo baselines. These results highlight a principled, efficient route toward scalable inference-time adaptation of diffusion models.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper