JPRO: Automated Multimodal Jailbreaking via Multi-Agent Collaboration Framework
Abstract
JPRO, a multi-agent framework, automates jailbreaking of VLMs with high success rates, addressing limitations of existing methods and providing insights for improving model security.
The widespread application of large VLMs makes ensuring their secure deployment critical. While recent studies have demonstrated jailbreak attacks on VLMs, existing approaches are limited: they require either white-box access, restricting practicality, or rely on manually crafted patterns, leading to poor sample diversity and scalability. To address these gaps, we propose JPRO, a novel multi-agent collaborative framework designed for automated VLM jailbreaking. It effectively overcomes the shortcomings of prior methods in attack diversity and scalability. Through the coordinated action of four specialized agents and its two core modules: Tactic-Driven Seed Generation and Adaptive Optimization Loop, JPRO generates effective and diverse attack samples. Experimental results show that JPRO achieves over a 60\% attack success rate on multiple advanced VLMs, including GPT-4o, significantly outperforming existing methods. As a black-box attack approach, JPRO not only uncovers critical security vulnerabilities in multimodal models but also offers valuable insights for evaluating and enhancing VLM robustness.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper