Diversity Over Scale: Whole-Slide Image Variety Enables H&E Foundation Model Training with Fewer Patches
Abstract
Athena, a histopathology foundation model trained on a diverse set of tissue patches rather than sheer volume, achieves state-of-the-art performance on various benchmarks.
Rapid progress in computational pathology is increasingly driven by vision foundation models pretrained on vast histopathology datasets. While recent efforts have prioritized training on an ever-larger amount of patches, we take an alternative approach focused on data diversity. Our foundation model, Athena, was initialized from a pretrained model and trained on just 115 million tissue patches, several times fewer than recent histopathology foundation models. Rather than relying on patch volume or complex sampling heuristics, we maximize data diversity by randomly selecting only a moderate number of patches per whole-slide image from our diverse internal repository, which spans multiple countries, institutions, and scanner types. Evaluated on a single patch-level benchmark and four slide-level downstream tasks (two molecular and two morphological), Athena approaches the state-of-the-art and even surpasses several models trained on substantially larger datasets. This indicates that diversity across whole-slide images, rather than patch quantity alone, drives learning in histopathology foundation models.
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper