new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 14

Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization

The emergence of large Vision Language Models (VLMs) has broadened the scope and capabilities of single-modal Large Language Models (LLMs) by integrating visual modalities, thereby unlocking transformative cross-modal applications in a variety of real-world scenarios. Despite their impressive performance, VLMs are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies. Building on the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs, recent advancements have focused on applying direct preference optimization (DPO) on carefully curated datasets to mitigate these issues. Yet, such approaches typically introduce preference signals in a brute-force manner, neglecting the crucial role of visual information in the alignment process. In this paper, we introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset, effectively incorporating both textual and visual preference signals. We further introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning. Our experimental results demonstrate that Re-Align not only mitigates hallucinations more effectively than previous methods but also yields significant performance gains in general visual question-answering (VQA) tasks. Moreover, we show that Re-Align maintains robustness and scalability across a wide range of VLM sizes and architectures. This work represents a significant step forward in aligning multimodal LLMs, paving the way for more reliable and effective cross-modal applications. We release all the code in https://github.com/taco-group/Re-Align.

  • 8 authors
·
Feb 18

Trust Region Preference Approximation: A simple and stable reinforcement learning algorithm for LLM reasoning

Recently, Large Language Models (LLMs) have rapidly evolved, approaching Artificial General Intelligence (AGI) while benefiting from large-scale reinforcement learning to enhance Human Alignment (HA) and Reasoning. Recent reward-based optimization algorithms, such as Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO) have achieved significant performance on reasoning tasks, whereas preference-based optimization algorithms such as Direct Preference Optimization (DPO) significantly improve the performance of LLMs on human alignment. However, despite the strong performance of reward-based optimization methods in alignment tasks , they remain vulnerable to reward hacking. Furthermore, preference-based algorithms (such as Online DPO) haven't yet matched the performance of reward-based optimization algorithms (like PPO) on reasoning tasks, making their exploration in this specific area still a worthwhile pursuit. Motivated by these challenges, we propose the Trust Region Preference Approximation (TRPA) algorithm, which integrates rule-based optimization with preference-based optimization for reasoning tasks. As a preference-based algorithm, TRPA naturally eliminates the reward hacking issue. TRPA constructs preference levels using predefined rules, forms corresponding preference pairs, and leverages a novel optimization algorithm for RL training with a theoretical monotonic improvement guarantee. Experimental results demonstrate that TRPA not only achieves competitive performance on reasoning tasks but also exhibits robust stability. The code of this paper are released and updating on https://github.com/XueruiSu/Trust-Region-Preference-Approximation.git.

  • 10 authors
·
Apr 6

A Technical Survey of Reinforcement Learning Techniques for Large Language Models

Reinforcement Learning (RL) has emerged as a transformative approach for aligning and enhancing Large Language Models (LLMs), addressing critical challenges in instruction following, ethical alignment, and reasoning capabilities. This survey offers a comprehensive foundation on the integration of RL with language models, highlighting prominent algorithms such as Proximal Policy Optimization (PPO), Q-Learning, and Actor-Critic methods. Additionally, it provides an extensive technical overview of RL techniques specifically tailored for LLMs, including foundational methods like Reinforcement Learning from Human Feedback (RLHF) and AI Feedback (RLAIF), as well as advanced strategies such as Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO). We systematically analyze their applications across domains, i.e., from code generation to tool-augmented reasoning. We also present a comparative taxonomy based on reward modeling, feedback mechanisms, and optimization strategies. Our evaluation highlights key trends. RLHF remains dominant for alignment, and outcome-based RL such as RLVR significantly improves stepwise reasoning. However, persistent challenges such as reward hacking, computational costs, and scalable feedback collection underscore the need for continued innovation. We further discuss emerging directions, including hybrid RL algorithms, verifier-guided training, and multi-objective alignment frameworks. This survey serves as a roadmap for researchers advancing RL-driven LLM development, balancing capability enhancement with safety and scalability.

  • 2 authors
·
Jul 5

ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding

Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.

  • 8 authors
·
Jun 2

Learning to Align, Aligning to Learn: A Unified Approach for Self-Optimized Alignment

Alignment methodologies have emerged as a critical pathway for enhancing language model alignment capabilities. While SFT (supervised fine-tuning) accelerates convergence through direct token-level loss intervention, its efficacy is constrained by offline policy trajectory. In contrast, RL(reinforcement learning) facilitates exploratory policy optimization, but suffers from low sample efficiency and stringent dependency on high-quality base models. To address these dual challenges, we propose GRAO (Group Relative Alignment Optimization), a unified framework that synergizes the respective strengths of SFT and RL through three key innovations: 1) A multi-sample generation strategy enabling comparative quality assessment via reward feedback; 2) A novel Group Direct Alignment Loss formulation leveraging intra-group relative advantage weighting; 3) Reference-aware parameter updates guided by pairwise preference dynamics. Our theoretical analysis establishes GRAO's convergence guarantees and sample efficiency advantages over conventional approaches. Comprehensive evaluations across complex human alignment tasks demonstrate GRAO's superior performance, achieving 57.70\%,17.65\% 7.95\% and 5.18\% relative improvements over SFT, DPO, PPO and GRPO baselines respectively. This work provides both a theoretically grounded alignment framework and empirical evidence for efficient capability evolution in language models.

  • 15 authors
·
Aug 11 2

PLaID++: A Preference Aligned Language Model for Targeted Inorganic Materials Design

Discovering novel materials is critical for technological advancements such as solar cells, batteries, and carbon capture. However, the development of new materials is constrained by a slow and expensive trial-and-error process. To accelerate this pipeline, we introduce PLaID++, a Large Language Model (LLM) fine-tuned for stable and property-guided crystal generation. We fine-tune Qwen-2.5 7B to generate crystal structures using a novel Wyckoff-based text representation. We show that generation can be effectively guided with a reinforcement learning technique based on Direct Preference Optimization (DPO), with sampled structures categorized by their stability, novelty, and space group. By encoding symmetry constraints directly into text and guiding model outputs towards desirable chemical space, PLaID++ generates structures that are thermodynamically stable, unique, and novel at a sim50\% greater rate than prior methods and conditionally generates structures with desired space group properties. Our experiments highlight the effectiveness of iterative DPO, achieving sim115\% and sim50\% improvements in unconditional and space group conditioned generation, respectively, compared to fine-tuning alone. Our work demonstrates the potential of adapting post-training techniques from natural language processing to materials design, paving the way for targeted and efficient discovery of novel materials.

  • 5 authors
·
Sep 8