new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

InternVideo-Next: Towards General Video Foundation Models without Video-Text Supervision

Large-scale video-text pretraining achieves strong performance but depends on noisy, synthetic captions with limited semantic coverage, often overlooking implicit world knowledge such as object motion, 3D geometry, and physical cues. In contrast, masked video modeling (MVM) directly exploits spatiotemporal structures but trails text-supervised methods on general tasks. We find this gap arises from overlooked architectural issues: pixel-level reconstruction struggles with convergence and its low-level requirement often conflicts with semantics, while latent prediction often encourages shortcut learning. To address these, we disentangle the traditional encoder-decoder design into an Encoder-Predictor-Decoder (EPD) framework, where the predictor acts as a latent world model, and propose InternVideo-Next, a two-stage pretraining scheme that builds a semantically consistent yet detail-preserving latent space for this world model. First, conventional linear decoder in pixel MVM enforces the predictor output latent to be linearly projected to, thus separable in pixel space, causing the conflict with semantic abstraction. Our Stage 1 proposes a conditional diffusion decoder and injects reliable image-level semantic priors to enhance semantics and convergence, thus bridging pixel-level fidelity with high-level semantic abstraction. Stage 2 further learns world knowledge by predicting frozen Stage 1 targets within this space, mitigating shortcut learning. Trained on public, unlabeled videos, InternVideo-Next achieves state-of-the-art results across benchmarks and provides a scalable path toward general video representation learning.

OpenGVLab OpenGVLab
·
Dec 1 1

TrackSSM: A General Motion Predictor by State-Space Model

Temporal motion modeling has always been a key component in multiple object tracking (MOT) which can ensure smooth trajectory movement and provide accurate positional information to enhance association precision. However, current motion models struggle to be both efficient and effective across different application scenarios. To this end, we propose TrackSSM inspired by the recently popular state space models (SSM), a unified encoder-decoder motion framework that uses data-dependent state space model to perform temporal motion of trajectories. Specifically, we propose Flow-SSM, a module that utilizes the position and motion information from historical trajectories to guide the temporal state transition of object bounding boxes. Based on Flow-SSM, we design a flow decoder. It is composed of a cascaded motion decoding module employing Flow-SSM, which can use the encoded flow information to complete the temporal position prediction of trajectories. Additionally, we propose a Step-by-Step Linear (S^2L) training strategy. By performing linear interpolation between the positions of the object in the previous frame and the current frame, we construct the pseudo labels of step-by-step linear training, ensuring that the trajectory flow information can better guide the object bounding box in completing temporal transitions. TrackSSM utilizes a simple Mamba-Block to build a motion encoder for historical trajectories, forming a temporal motion model with an encoder-decoder structure in conjunction with the flow decoder. TrackSSM is applicable to various tracking scenarios and achieves excellent tracking performance across multiple benchmarks, further extending the potential of SSM-like temporal motion models in multi-object tracking tasks. Code and models are publicly available at https://github.com/Xavier-Lin/TrackSSM.

  • 5 authors
·
Aug 31, 2024

One-Stage 3D Whole-Body Mesh Recovery with Component Aware Transformer

Whole-body mesh recovery aims to estimate the 3D human body, face, and hands parameters from a single image. It is challenging to perform this task with a single network due to resolution issues, i.e., the face and hands are usually located in extremely small regions. Existing works usually detect hands and faces, enlarge their resolution to feed in a specific network to predict the parameter, and finally fuse the results. While this copy-paste pipeline can capture the fine-grained details of the face and hands, the connections between different parts cannot be easily recovered in late fusion, leading to implausible 3D rotation and unnatural pose. In this work, we propose a one-stage pipeline for expressive whole-body mesh recovery, named OSX, without separate networks for each part. Specifically, we design a Component Aware Transformer (CAT) composed of a global body encoder and a local face/hand decoder. The encoder predicts the body parameters and provides a high-quality feature map for the decoder, which performs a feature-level upsample-crop scheme to extract high-resolution part-specific features and adopt keypoint-guided deformable attention to estimate hand and face precisely. The whole pipeline is simple yet effective without any manual post-processing and naturally avoids implausible prediction. Comprehensive experiments demonstrate the effectiveness of OSX. Lastly, we build a large-scale Upper-Body dataset (UBody) with high-quality 2D and 3D whole-body annotations. It contains persons with partially visible bodies in diverse real-life scenarios to bridge the gap between the basic task and downstream applications.

  • 5 authors
·
Mar 28, 2023

SKEL-CF: Coarse-to-Fine Biomechanical Skeleton and Surface Mesh Recovery

Parametric 3D human models such as SMPL have driven significant advances in human pose and shape estimation, yet their simplified kinematics limit biomechanical realism. The recently proposed SKEL model addresses this limitation by re-rigging SMPL with an anatomically accurate skeleton. However, estimating SKEL parameters directly remains challenging due to limited training data, perspective ambiguities, and the inherent complexity of human articulation. We introduce SKEL-CF, a coarse-to-fine framework for SKEL parameter estimation. SKEL-CF employs a transformer-based encoder-decoder architecture, where the encoder predicts coarse camera and SKEL parameters, and the decoder progressively refines them in successive layers. To ensure anatomically consistent supervision, we convert the existing SMPL-based dataset 4DHuman into a SKEL-aligned version, 4DHuman-SKEL, providing high-quality training data for SKEL estimation. In addition, to mitigate depth and scale ambiguities, we explicitly incorporate camera modeling into the SKEL-CF pipeline and demonstrate its importance across diverse viewpoints. Extensive experiments validate the effectiveness of the proposed design. On the challenging MOYO dataset, SKEL-CF achieves 85.0 MPJPE / 51.4 PA-MPJPE, significantly outperforming the previous SKEL-based state-of-the-art HSMR (104.5 / 79.6). These results establish SKEL-CF as a scalable and anatomically faithful framework for human motion analysis, bridging the gap between computer vision and biomechanics. Our implementation is available on the project page: https://pokerman8.github.io/SKEL-CF/.

  • 9 authors
·
Nov 25

GMAN: A Graph Multi-Attention Network for Traffic Prediction

Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.

  • 4 authors
·
Nov 11, 2019

OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction

Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.

  • 5 authors
·
Jul 18, 2024

GeoMAE: Masked Geometric Target Prediction for Self-supervised Point Cloud Pre-Training

This paper tries to address a fundamental question in point cloud self-supervised learning: what is a good signal we should leverage to learn features from point clouds without annotations? To answer that, we introduce a point cloud representation learning framework, based on geometric feature reconstruction. In contrast to recent papers that directly adopt masked autoencoder (MAE) and only predict original coordinates or occupancy from masked point clouds, our method revisits differences between images and point clouds and identifies three self-supervised learning objectives peculiar to point clouds, namely centroid prediction, normal estimation, and curvature prediction. Combined with occupancy prediction, these four objectives yield an nontrivial self-supervised learning task and mutually facilitate models to better reason fine-grained geometry of point clouds. Our pipeline is conceptually simple and it consists of two major steps: first, it randomly masks out groups of points, followed by a Transformer-based point cloud encoder; second, a lightweight Transformer decoder predicts centroid, normal, and curvature for points in each voxel. We transfer the pre-trained Transformer encoder to a downstream peception model. On the nuScene Datset, our model achieves 3.38 mAP improvment for object detection, 2.1 mIoU gain for segmentation, and 1.7 AMOTA gain for multi-object tracking. We also conduct experiments on the Waymo Open Dataset and achieve significant performance improvements over baselines as well.

  • 4 authors
·
May 15, 2023

DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency

Category-level 6D object pose and size estimation is to predict full pose configurations of rotation, translation, and size for object instances observed in single, arbitrary views of cluttered scenes. In this paper, we propose a new method of Dual Pose Network with refined learning of pose consistency for this task, shortened as DualPoseNet. DualPoseNet stacks two parallel pose decoders on top of a shared pose encoder, where the implicit decoder predicts object poses with a working mechanism different from that of the explicit one; they thus impose complementary supervision on the training of pose encoder. We construct the encoder based on spherical convolutions, and design a module of Spherical Fusion wherein for a better embedding of pose-sensitive features from the appearance and shape observations. Given no testing CAD models, it is the novel introduction of the implicit decoder that enables the refined pose prediction during testing, by enforcing the predicted pose consistency between the two decoders using a self-adaptive loss term. Thorough experiments on benchmarks of both category- and instance-level object pose datasets confirm efficacy of our designs. DualPoseNet outperforms existing methods with a large margin in the regime of high precision. Our code is released publicly at https://github.com/Gorilla-Lab-SCUT/DualPoseNet.

  • 6 authors
·
Mar 11, 2021

Future Token Prediction -- Causal Language Modelling with Per-Token Semantic State Vector for Multi-Token Prediction

Causal decoder-only transformer models used for generative language modelling, such as Generative Pre-trained Transformers (GPT), are trained to predict the next token in a sequence based only on its previous tokens. Despite this simple training objective, they have proved to be powerful AI tools. However, only predicting the next token results in top layer embedding vectors that are highly token-focused. There may be benefits in generating embedding vectors at each token position that better capture the overall meaning of longer sequences of future text. Recent studies matching brain scans with deep language models suggest that humans also predict upcoming words when listening or reading but consider multiple future tokens rather than just one. This research investigates a new pretraining method called Future Token Prediction (FTP). In FTP, a large transformer encoder generates top layer embedding vectors for each token position, which, instead of being passed to a language head, are linearly and expansively projected to a pseudo-sequence, which is cross attended to by a small transformer decoder to predict the next N tokens forward from that position in the sequence. The top layer embedding vectors from FTP models exhibit distinct properties compared to those from standard GPT models, varying smoothly along a text sequence as measured by cosine similarity between adjacent tokens. Text generated by FTP models show improved topic coherence compared to standard GPT-like models trained with the same prediction perplexity for the next single token. The vectors are shown to better represent the topic of text based on the results of text classification examples. On a toy, but complex, coding problem, FTP networks produce significantly better results than GPT networks.

  • 1 authors
·
Oct 23, 2024

ProtoOcc: Accurate, Efficient 3D Occupancy Prediction Using Dual Branch Encoder-Prototype Query Decoder

In this paper, we introduce ProtoOcc, a novel 3D occupancy prediction model designed to predict the occupancy states and semantic classes of 3D voxels through a deep semantic understanding of scenes. ProtoOcc consists of two main components: the Dual Branch Encoder (DBE) and the Prototype Query Decoder (PQD). The DBE produces a new 3D voxel representation by combining 3D voxel and BEV representations across multiple scales through a dual branch structure. This design enhances both performance and computational efficiency by providing a large receptive field for the BEV representation while maintaining a smaller receptive field for the voxel representation. The PQD introduces Prototype Queries to accelerate the decoding process. Scene-Adaptive Prototypes are derived from the 3D voxel features of input sample, while Scene-Agnostic Prototypes are computed by applying Scene-Adaptive Prototypes to an Exponential Moving Average during the training phase. By using these prototype-based queries for decoding, we can directly predict 3D occupancy in a single step, eliminating the need for iterative Transformer decoding. Additionally, we propose the Robust Prototype Learning, which injects noise into prototype generation process and trains the model to denoise during the training phase. ProtoOcc achieves state-of-the-art performance with 45.02% mIoU on the Occ3D-nuScenes benchmark. For single-frame method, it reaches 39.56% mIoU with an inference speed of 12.83 FPS on an NVIDIA RTX 3090. Our code can be found at https://github.com/SPA-junghokim/ProtoOcc.

  • 5 authors
·
Dec 11, 2024

Is Pre-training Applicable to the Decoder for Dense Prediction?

Pre-trained encoders are widely employed in dense prediction tasks for their capability to effectively extract visual features from images. The decoder subsequently processes these features to generate pixel-level predictions. However, due to structural differences and variations in input data, only encoders benefit from pre-learned representations from vision benchmarks such as image classification and self-supervised learning, while decoders are typically trained from scratch. In this paper, we introduce timesNet, which facilitates a "pre-trained encoder times pre-trained decoder" collaboration through three innovative designs. timesNet enables the direct utilization of pre-trained models within the decoder, integrating pre-learned representations into the decoding process to enhance performance in dense prediction tasks. By simply coupling the pre-trained encoder and pre-trained decoder, timesNet distinguishes itself as a highly promising approach. Remarkably, it achieves this without relying on decoding-specific structures or task-specific algorithms. Despite its streamlined design, timesNet outperforms advanced methods in tasks such as monocular depth estimation and semantic segmentation, achieving state-of-the-art performance particularly in monocular depth estimation. and semantic segmentation, achieving state-of-the-art results, especially in monocular depth estimation. embedding algorithms. Despite its streamlined design, timesNet outperforms advanced methods in tasks such as monocular depth estimation and semantic segmentation, achieving state-of-the-art performance particularly in monocular depth estimation.

  • 4 authors
·
Mar 5

Efficient Knowledge Feeding to Language Models: A Novel Integrated Encoder-Decoder Architecture

This paper introduces a novel approach to efficiently feeding knowledge to language models (LLMs) during prediction by integrating retrieval and generation processes within a unified framework. While the Retrieval-Augmented Generation (RAG) model addresses gaps in LLMs' training data and knowledge limits, it is hindered by token limit restrictions and dependency on the retrieval system's accuracy. Our proposed architecture incorporates in-context vectors (ICV) to overcome these challenges. ICV recasts in-context learning by using latent embeddings of LLMs to create a vector that captures essential task information. This vector is then used to shift the latent states of the LLM, enhancing the generation process without adding demonstration examples to the prompt. ICV directly integrates information into the model, enabling it to process this information more effectively. Our extensive experimental evaluation demonstrates that ICV outperforms standard in-context learning and fine-tuning across question-answering, information retrieval, and other tasks. This approach mitigates the limitations of current RAG models and offers a more robust solution for handling extensive and diverse datasets. Despite leveraging a fraction of the parameters, our ICV-enhanced model achieves competitive performance against models like LLaMA-3, Gemma, and Phi-3, significantly reducing computational costs and memory requirements. ICV reduces prompt length, is easy to control, surpasses token limitations, and is computationally efficient compared to fine-tuning.

  • 4 authors
·
Feb 6

Mask-Enhanced Autoregressive Prediction: Pay Less Attention to Learn More

Large Language Models (LLMs) are discovered to suffer from accurately retrieving key information. To address this, we propose Mask-Enhanced Autoregressive Prediction (MEAP), a simple yet effective training paradigm that seamlessly integrates Masked Language Modeling (MLM) into Next-Token Prediction (NTP) to enhance the latter's in-context retrieval capabilities. Specifically, MEAP first randomly masks a small fraction of input tokens and then directly performs the standard next-token prediction autoregressive using a decoder-only Transformer. MEAP eliminates the need for bidirectional attention or encoder-decoder architectures for MLM, incurring no additional computational overhead during pre-training or inference. Intensive experiments demonstrate that MEAP substantially outperforms NTP on key information retrieval and long-context reasoning tasks, while performing on par or better on commonsense reasoning tasks. The benefits of MEAP also extend to supervised fine-tuning, where it shows remarkable advantages in lost-in-the-middle scenarios, outperforming NTP by 11.77 percentage points. Our analysis indicates that MEAP's effectiveness arises from its ability to promote more distinguishable attention scores by concentrating on a reduced set of non-masked tokens. This mechanism improves the model's focus on task-relevant signals while mitigating the influence of peripheral context. These findings position MEAP as a promising training paradigm for large language models.

  • 7 authors
·
Feb 11 2

Dens3R: A Foundation Model for 3D Geometry Prediction

Recent advances in dense 3D reconstruction have led to significant progress, yet achieving accurate unified geometric prediction remains a major challenge. Most existing methods are limited to predicting a single geometry quantity from input images. However, geometric quantities such as depth, surface normals, and point maps are inherently correlated, and estimating them in isolation often fails to ensure consistency, thereby limiting both accuracy and practical applicability. This motivates us to explore a unified framework that explicitly models the structural coupling among different geometric properties to enable joint regression. In this paper, we present Dens3R, a 3D foundation model designed for joint geometric dense prediction and adaptable to a wide range of downstream tasks. Dens3R adopts a two-stage training framework to progressively build a pointmap representation that is both generalizable and intrinsically invariant. Specifically, we design a lightweight shared encoder-decoder backbone and introduce position-interpolated rotary positional encoding to maintain expressive power while enhancing robustness to high-resolution inputs. By integrating image-pair matching features with intrinsic invariance modeling, Dens3R accurately regresses multiple geometric quantities such as surface normals and depth, achieving consistent geometry perception from single-view to multi-view inputs. Additionally, we propose a post-processing pipeline that supports geometrically consistent multi-view inference. Extensive experiments demonstrate the superior performance of Dens3R across various dense 3D prediction tasks and highlight its potential for broader applications.

GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving

Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. This paper tackles the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer model for its implementation. The model incorporates a Transformer encoder, which effectively models the relationships between scene elements, alongside a novel hierarchical Transformer decoder structure. At each decoding level, the decoder utilizes the prediction outcomes from the previous level, in addition to the shared environmental context, to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the preceding level. Through comprehensive experiments on large-scale real-world driving datasets, we demonstrate the state-of-the-art accuracy of our model on the Waymo interaction prediction task. Additionally, we validate the model's capacity to jointly reason about the motion plan of the ego agent and the behaviors of multiple agents in both open-loop and closed-loop planning tests, outperforming various baseline methods. Furthermore, we evaluate the efficacy of our model on the nuPlan planning benchmark, where it achieves leading performance.

  • 3 authors
·
Mar 10, 2023

Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models

Designing robust and accurate predictive models for stock price prediction has been an active area of research for a long time. While on one side, the supporters of the efficient market hypothesis claim that it is impossible to forecast stock prices accurately, many researchers believe otherwise. There exist propositions in the literature that have demonstrated that if properly designed and optimized, predictive models can very accurately and reliably predict future values of stock prices. This paper presents a suite of deep learning based models for stock price prediction. We use the historical records of the NIFTY 50 index listed in the National Stock Exchange of India, during the period from December 29, 2008 to July 31, 2020, for training and testing the models. Our proposition includes two regression models built on convolutional neural networks and three long and short term memory network based predictive models. To forecast the open values of the NIFTY 50 index records, we adopted a multi step prediction technique with walk forward validation. In this approach, the open values of the NIFTY 50 index are predicted on a time horizon of one week, and once a week is over, the actual index values are included in the training set before the model is trained again, and the forecasts for the next week are made. We present detailed results on the forecasting accuracies for all our proposed models. The results show that while all the models are very accurate in forecasting the NIFTY 50 open values, the univariate encoder decoder convolutional LSTM with the previous two weeks data as the input is the most accurate model. On the other hand, a univariate CNN model with previous one week data as the input is found to be the fastest model in terms of its execution speed.

  • 2 authors
·
Oct 21, 2020

Augmenting LLMs for General Time Series Understanding and Prediction

Time series data is fundamental to decision-making in many crucial domains including healthcare, finance, and environmental science. However, analyzing this data often requires incorporating unstructured contextual information, answering domain-specific questions, and generating natural language explanations -- capabilities that traditional time series models lack due to their inability to process text. While Large Language Models (LLMs) excel at contextual reasoning and knowledge integration, they struggle with numerical time series due to inefficient text-based representations and limited exposure to temporal data during pretraining. We address this gap by augmenting an LLM with specialized time series perception through a patch-based encoder-decoder architecture. We train this Time Series-augmented LLM (TsLLM) on a large corpus of over 2 million interleaved time series and text examples spanning diverse analysis tasks: forecasting with contextual information, time series question-answering, pattern explanation, classification with natural language outputs, and report generation. This training enables TsLLM to leverage both its language understanding and newly acquired temporal reasoning capabilities. While not designed to surpass specialized models on traditional benchmarks, TsLLM demonstrates strong performance on tasks requiring the integration of time series analysis with natural language -- capabilities that existing approaches cannot provide. Our work establishes a new paradigm for time series analysis that bridges numerical computation and natural language understanding, democratizing access to sophisticated temporal reasoning through natural language interaction.

  • 4 authors
·
Oct 1

SentenceVAE: Enable Next-sentence Prediction for Large Language Models with Faster Speed, Higher Accuracy and Longer Context

Current large language models (LLMs) primarily utilize next-token prediction method for inference, which significantly impedes their processing speed. In this paper, we introduce a novel inference methodology termed next-sentence prediction, aiming at enhancing the inference efficiency of LLMs. We present Sentence Variational Autoencoder (SentenceVAE), which includes a Sentence Encoder to compress multiple tokens in a sentence into a single token, and a Sentence Decoder to reconstruct it. By integrating SentenceVAE into the input and output layers of LLMs, we develop Sentence-level LLMs (SLLMs) that employ a sentence-by-sentence inference method. In addition, the SentenceVAE module of SLLMs can maintain the integrity of the original semantic content by segmenting the context into sentences, thereby improving accuracy while boosting inference speed. Moreover, compared to previous LLMs, SLLMs process fewer tokens over equivalent context length, significantly reducing memory demands for self-attention computation and facilitating the handling of longer context. Extensive experiments on Wanjuan dataset have revealed that the proposed method can accelerate inference speed by 204~365%, reduce perplexity (PPL) to 46~75% of its original metric, and decrease memory overhead by 86~91% for the equivalent context length, compared to previous token-by-token methods.

  • 4 authors
·
Aug 1, 2024 1

Boundary-Aware Segmentation Network for Mobile and Web Applications

Although deep models have greatly improved the accuracy and robustness of image segmentation, obtaining segmentation results with highly accurate boundaries and fine structures is still a challenging problem. In this paper, we propose a simple yet powerful Boundary-Aware Segmentation Network (BASNet), which comprises a predict-refine architecture and a hybrid loss, for highly accurate image segmentation. The predict-refine architecture consists of a densely supervised encoder-decoder network and a residual refinement module, which are respectively used to predict and refine a segmentation probability map. The hybrid loss is a combination of the binary cross entropy, structural similarity and intersection-over-union losses, which guide the network to learn three-level (ie, pixel-, patch- and map- level) hierarchy representations. We evaluate our BASNet on two reverse tasks including salient object segmentation, camouflaged object segmentation, showing that it achieves very competitive performance with sharp segmentation boundaries. Importantly, BASNet runs at over 70 fps on a single GPU which benefits many potential real applications. Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is integrated with augmented reality for "COPYING" and "PASTING" real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal. Both applications have already drawn huge amount of attention and have important real-world impacts. The code and two applications will be publicly available at: https://github.com/NathanUA/BASNet.

  • 9 authors
·
Jan 12, 2021

GPT-4 Enhanced Multimodal Grounding for Autonomous Driving: Leveraging Cross-Modal Attention with Large Language Models

In the field of autonomous vehicles (AVs), accurately discerning commander intent and executing linguistic commands within a visual context presents a significant challenge. This paper introduces a sophisticated encoder-decoder framework, developed to address visual grounding in AVs.Our Context-Aware Visual Grounding (CAVG) model is an advanced system that integrates five core encoders-Text, Image, Context, and Cross-Modal-with a Multimodal decoder. This integration enables the CAVG model to adeptly capture contextual semantics and to learn human emotional features, augmented by state-of-the-art Large Language Models (LLMs) including GPT-4. The architecture of CAVG is reinforced by the implementation of multi-head cross-modal attention mechanisms and a Region-Specific Dynamic (RSD) layer for attention modulation. This architectural design enables the model to efficiently process and interpret a range of cross-modal inputs, yielding a comprehensive understanding of the correlation between verbal commands and corresponding visual scenes. Empirical evaluations on the Talk2Car dataset, a real-world benchmark, demonstrate that CAVG establishes new standards in prediction accuracy and operational efficiency. Notably, the model exhibits exceptional performance even with limited training data, ranging from 50% to 75% of the full dataset. This feature highlights its effectiveness and potential for deployment in practical AV applications. Moreover, CAVG has shown remarkable robustness and adaptability in challenging scenarios, including long-text command interpretation, low-light conditions, ambiguous command contexts, inclement weather conditions, and densely populated urban environments. The code for the proposed model is available at our Github.

  • 7 authors
·
Dec 6, 2023

Context Autoencoder for Self-Supervised Representation Learning

We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised representation pretraining. We pretrain an encoder by making predictions in the encoded representation space. The pretraining tasks include two tasks: masked representation prediction - predict the representations for the masked patches, and masked patch reconstruction - reconstruct the masked patches. The network is an encoder-regressor-decoder architecture: the encoder takes the visible patches as input; the regressor predicts the representations of the masked patches, which are expected to be aligned with the representations computed from the encoder, using the representations of visible patches and the positions of visible and masked patches; the decoder reconstructs the masked patches from the predicted encoded representations. The CAE design encourages the separation of learning the encoder (representation) from completing the pertaining tasks: masked representation prediction and masked patch reconstruction tasks, and making predictions in the encoded representation space empirically shows the benefit to representation learning. We demonstrate the effectiveness of our CAE through superior transfer performance in downstream tasks: semantic segmentation, object detection and instance segmentation, and classification. The code will be available at https://github.com/Atten4Vis/CAE.

  • 10 authors
·
Feb 7, 2022

CROMA: Remote Sensing Representations with Contrastive Radar-Optical Masked Autoencoders

A vital and rapidly growing application, remote sensing offers vast yet sparsely labeled, spatially aligned multimodal data; this makes self-supervised learning algorithms invaluable. We present CROMA: a framework that combines contrastive and reconstruction self-supervised objectives to learn rich unimodal and multimodal representations. Our method separately encodes masked-out multispectral optical and synthetic aperture radar samples -- aligned in space and time -- and performs cross-modal contrastive learning. Another encoder fuses these sensors, producing joint multimodal encodings that are used to predict the masked patches via a lightweight decoder. We show that these objectives are complementary when leveraged on spatially aligned multimodal data. We also introduce X- and 2D-ALiBi, which spatially biases our cross- and self-attention matrices. These strategies improve representations and allow our models to effectively extrapolate to images up to 17.6x larger at test-time. CROMA outperforms the current SoTA multispectral model, evaluated on: four classification benchmarks -- finetuning (avg. 1.8%), linear (avg. 2.4%) and nonlinear (avg. 1.4%) probing, kNN classification (avg. 3.5%), and K-means clustering (avg. 8.4%); and three segmentation benchmarks (avg. 6.4%). CROMA's rich, optionally multimodal representations can be widely leveraged across remote sensing applications.

  • 3 authors
·
Nov 1, 2023

PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps

We present PrediTree, the first comprehensive open-source dataset designed for training and evaluating tree height prediction models at sub-meter resolution. This dataset combines very high-resolution (0.5m) LiDAR-derived canopy height maps, spatially aligned with multi-temporal and multi-spectral imagery, across diverse forest ecosystems in France, totaling 3,141,568 images. PrediTree addresses a critical gap in forest monitoring capabilities by enabling the training of deep learning methods that can predict tree growth based on multiple past observations. %Initially focused on French forests, PrediTree is designed as an expanding resource with ongoing efforts to incorporate data from other countries. To make use of this PrediTree dataset, we propose an encoder-decoder framework that requires the multi-temporal multi-spectral imagery and the relative time differences in years between the canopy height map timestamp (target) and each image acquisition date for which this framework predicts the canopy height. The conducted experiments demonstrate that a U-Net architecture trained on the PrediTree dataset provides the highest masked mean squared error of 11.78%, outperforming the next-best architecture, ResNet-50, by around 12%, and cutting the error of the same experiments but on fewer bands (red, green, blue only), by around 30%. This dataset is publicly available on URL{HuggingFace}, and both processing and training codebases are available on URL{GitHub}.

  • 3 authors
·
Sep 1

Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations

Recent advances in Neural Fields have enabled powerful, discretization-invariant methods for learning neural operators that approximate solutions of Partial Differential Equations (PDEs) on general geometries. Building on these developments, we introduce enf2enf, an encoder--decoder methodology for predicting steady-state Partial Differential Equations with non-parameterized geometric variability, based on recently proposed Equivariant Neural Field architectures. In enf2enf, input geometries are encoded into latent point cloud embeddings that inherently preserve geometric grounding and capture local phenomena. The resulting representations are then combined with global parameters and directly decoded into continuous output fields, thus efficiently modeling the coupling between geometry and physics. By leveraging the inductive biases of locality and translation invariance, our approach is able to capture fine-scale physical features as well as complex shape variations, thereby enhancing generalization and physical compliance. Extensive experiments on a high-fidelity aerodynamic dataset, a hyper-elastic material benchmark, and multi-element airfoil geometries, demonstrate that the proposed model achieves superior or competitive performance compared to state-of-the-art graph based, operator learning, and neural field methods. Notably, our method supports real time inference and zero-shot super-resolution, enabling efficient training on low-resolution meshes while maintaining high accuracy on full-scale discretizations.

  • 5 authors
·
Apr 24

WeedSense: Multi-Task Learning for Weed Segmentation, Height Estimation, and Growth Stage Classification

Weed management represents a critical challenge in agriculture, significantly impacting crop yields and requiring substantial resources for control. Effective weed monitoring and analysis strategies are crucial for implementing sustainable agricultural practices and site-specific management approaches. We introduce WeedSense, a novel multi-task learning architecture for comprehensive weed analysis that jointly performs semantic segmentation, height estimation, and growth stage classification. We present a unique dataset capturing 16 weed species over an 11-week growth cycle with pixel-level annotations, height measurements, and temporal labels. WeedSense leverages a dual-path encoder incorporating Universal Inverted Bottleneck blocks and a Multi-Task Bifurcated Decoder with transformer-based feature fusion to generate multi-scale features and enable simultaneous prediction across multiple tasks. WeedSense outperforms other state-of-the-art models on our comprehensive evaluation. On our multi-task dataset, WeedSense achieves mIoU of 89.78% for segmentation, 1.67cm MAE for height estimation, and 99.99% accuracy for growth stage classification while maintaining real-time inference at 160 FPS. Our multitask approach achieves 3times faster inference than sequential single-task execution and uses 32.4% fewer parameters. Please see our project page at weedsense.github.io.

  • 5 authors
·
Aug 20

FastSpeech: Fast, Robust and Controllable Text to Speech

Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from the mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of the target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech.

  • 7 authors
·
May 22, 2019 1

Building a Safer Maritime Environment Through Multi-Path Long-Term Vessel Trajectory Forecasting

Maritime transportation is paramount in achieving global economic growth, entailing concurrent ecological obligations in sustainability and safeguarding endangered marine species, most notably preserving large whale populations. In this regard, the Automatic Identification System (AIS) data plays a significant role by offering real-time streaming data on vessel movement, allowing enhanced traffic monitoring. This study explores using AIS data to prevent vessel-to-whale collisions by forecasting long-term vessel trajectories from engineered AIS data sequences. For such a task, we have developed an encoder-decoder model architecture using Bidirectional Long Short-Term Memory Networks (Bi-LSTM) to predict the next 12 hours of vessel trajectories using 1 to 3 hours of AIS data as input. We feed the model with probabilistic features engineered from historical AIS data that refer to each trajectory's potential route and destination. The model then predicts the vessel's trajectory, considering these additional features by leveraging convolutional layers for spatial feature learning and a position-aware attention mechanism that increases the importance of recent timesteps of a sequence during temporal feature learning. The probabilistic features have an F1 Score of approximately 85% and 75% for each feature type, respectively, demonstrating their effectiveness in augmenting information to the neural network. We test our model on the Gulf of St. Lawrence, a region known to be the habitat of North Atlantic Right Whales (NARW). Our model achieved a high R2 score of over 98% using various techniques and features. It stands out among other approaches as it can make complex decisions during turnings and path selection. Our study highlights the potential of data engineering and trajectory forecasting models for marine life species preservation.

  • 11 authors
·
Oct 29, 2023

Learning Invariant World State Representations with Predictive Coding

Self-supervised learning methods overcome the key bottleneck for building more capable AI: limited availability of labeled data. However, one of the drawbacks of self-supervised architectures is that the representations that they learn are implicit and it is hard to extract meaningful information about the encoded world states, such as 3D structure of the visual scene encoded in a depth map. Moreover, in the visual domain such representations only rarely undergo evaluations that may be critical for downstream tasks, such as vision for autonomous cars. Herein, we propose a framework for evaluating visual representations for illumination invariance in the context of depth perception. We develop a new predictive coding-based architecture and a hybrid fully-supervised/self-supervised learning method. We propose a novel architecture that extends the predictive coding approach: PRedictive Lateral bottom-Up and top-Down Encoder-decoder Network (PreludeNet), which explicitly learns to infer and predict depth from video frames. In PreludeNet, the encoder's stack of predictive coding layers is trained in a self-supervised manner, while the predictive decoder is trained in a supervised manner to infer or predict the depth. We evaluate the robustness of our model on a new synthetic dataset, in which lighting conditions (such as overall illumination, and effect of shadows) can be be parametrically adjusted while keeping all other aspects of the world constant. PreludeNet achieves both competitive depth inference performance and next frame prediction accuracy. We also show how this new network architecture, coupled with the hybrid fully-supervised/self-supervised learning method, achieves balance between the said performance and invariance to changes in lighting. The proposed framework for evaluating visual representations can be extended to diverse task domains and invariance tests.

  • 3 authors
·
Jul 6, 2022

TCSinger: Zero-Shot Singing Voice Synthesis with Style Transfer and Multi-Level Style Control

Zero-shot singing voice synthesis (SVS) with style transfer and style control aims to generate high-quality singing voices with unseen timbres and styles (including singing method, emotion, rhythm, technique, and pronunciation) from audio and text prompts. However, the multifaceted nature of singing styles poses a significant challenge for effective modeling, transfer, and control. Furthermore, current SVS models often fail to generate singing voices rich in stylistic nuances for unseen singers. To address these challenges, we introduce TCSinger, the first zero-shot SVS model for style transfer across cross-lingual speech and singing styles, along with multi-level style control. Specifically, TCSinger proposes three primary modules: 1) the clustering style encoder employs a clustering vector quantization model to stably condense style information into a compact latent space; 2) the Style and Duration Language Model (S\&D-LM) concurrently predicts style information and phoneme duration, which benefits both; 3) the style adaptive decoder uses a novel mel-style adaptive normalization method to generate singing voices with enhanced details. Experimental results show that TCSinger outperforms all baseline models in synthesis quality, singer similarity, and style controllability across various tasks, including zero-shot style transfer, multi-level style control, cross-lingual style transfer, and speech-to-singing style transfer. Singing voice samples can be accessed at https://tcsinger.github.io/.

  • 8 authors
·
Sep 24, 2024

Slot-MLLM: Object-Centric Visual Tokenization for Multimodal LLM

Recently, multimodal large language models (MLLMs) have emerged as a key approach in achieving artificial general intelligence. In particular, vision-language MLLMs have been developed to generate not only text but also visual outputs from multimodal inputs. This advancement requires efficient image tokens that LLMs can process effectively both in input and output. However, existing image tokenization methods for MLLMs typically capture only global abstract concepts or uniformly segmented image patches, restricting MLLMs' capability to effectively understand or generate detailed visual content, particularly at the object level. To address this limitation, we propose an object-centric visual tokenizer based on Slot Attention specifically for MLLMs. In particular, based on the Q-Former encoder, diffusion decoder, and residual vector quantization, our proposed discretized slot tokens can encode local visual details while maintaining high-level semantics, and also align with textual data to be integrated seamlessly within a unified next-token prediction framework of LLMs. The resulting Slot-MLLM demonstrates significant performance improvements over baselines with previous visual tokenizers across various vision-language tasks that entail local detailed comprehension and generation. Notably, this work is the first demonstration of the feasibility of object-centric slot attention performed with MLLMs and in-the-wild natural images.

  • 10 authors
·
May 23

Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers

The complex nature of big biological systems pushed some scientists to classify its understanding under the inconceivable missions. Different leveled challenges complicated this task, one of is the prediction of a protein's function. In recent years, significant progress has been made in this field through the development of various machine learning approaches. However, most existing methods formulate the task as a multi-classification problem, i.e assigning predefined labels to proteins. In this work, we propose a novel approach, Prot2Text, which predicts a protein function's in a free text style, moving beyond the conventional binary or categorical classifications. By combining Graph Neural Networks(GNNs) and Large Language Models(LLMs), in an encoder-decoder framework, our model effectively integrates diverse data types including proteins' sequences, structures, and textual annotations. This multimodal approach allows for a holistic representation of proteins' functions, enabling the generation of detailed and accurate descriptions. To evaluate our model, we extracted a multimodal protein dataset from SwissProt, and demonstrate empirically the effectiveness of Prot2Text. These results highlight the transformative impact of multimodal models, specifically the fusion of GNNs and LLMs, empowering researchers with powerful tools for more accurate prediction of proteins' functions. The code, the models and a demo will be publicly released.

  • 4 authors
·
Jul 25, 2023

QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Detecting customized moments and highlights from videos given natural language (NL) user queries is an important but under-studied topic. One of the challenges in pursuing this direction is the lack of annotated data. To address this issue, we present the Query-based Video Highlights (QVHIGHLIGHTS) dataset. It consists of over 10,000 YouTube videos, covering a wide range of topics, from everyday activities and travel in lifestyle vlog videos to social and political activities in news videos. Each video in the dataset is annotated with: (1) a human-written free-form NL query, (2) relevant moments in the video w.r.t. the query, and (3) five-point scale saliency scores for all query-relevant clips. This comprehensive annotation enables us to develop and evaluate systems that detect relevant moments as well as salient highlights for diverse, flexible user queries. We also present a strong baseline for this task, Moment-DETR, a transformer encoder-decoder model that views moment retrieval as a direct set prediction problem, taking extracted video and query representations as inputs and predicting moment coordinates and saliency scores end-to-end. While our model does not utilize any human prior, we show that it performs competitively when compared to well-engineered architectures. With weakly supervised pretraining using ASR captions, MomentDETR substantially outperforms previous methods. Lastly, we present several ablations and visualizations of Moment-DETR. Data and code is publicly available at https://github.com/jayleicn/moment_detr

  • 3 authors
·
Jul 20, 2021

Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection

Detecting abnormal activities in real-world surveillance videos is an important yet challenging task as the prior knowledge about video anomalies is usually limited or unavailable. Despite that many approaches have been developed to resolve this problem, few of them can capture the normal spatio-temporal patterns effectively and efficiently. Moreover, existing works seldom explicitly consider the local consistency at frame level and global coherence of temporal dynamics in video sequences. To this end, we propose Convolutional Transformer based Dual Discriminator Generative Adversarial Networks (CT-D2GAN) to perform unsupervised video anomaly detection. Specifically, we first present a convolutional transformer to perform future frame prediction. It contains three key components, i.e., a convolutional encoder to capture the spatial information of the input video clips, a temporal self-attention module to encode the temporal dynamics, and a convolutional decoder to integrate spatio-temporal features and predict the future frame. Next, a dual discriminator based adversarial training procedure, which jointly considers an image discriminator that can maintain the local consistency at frame-level and a video discriminator that can enforce the global coherence of temporal dynamics, is employed to enhance the future frame prediction. Finally, the prediction error is used to identify abnormal video frames. Thoroughly empirical studies on three public video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the effectiveness of the proposed adversarial spatio-temporal modeling framework.

  • 6 authors
·
Jul 28, 2021

Prot2Token: A Unified Framework for Protein Modeling via Next-Token Prediction

The diverse nature of protein prediction tasks has traditionally necessitated specialized models, hindering the development of broadly applicable and computationally efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token, a unified framework that overcomes these challenges by converting a wide spectrum of protein-related predictions, from sequence-level properties and residue-specific attributes to complex inter-protein interactions, into a standardized next-token prediction format. At its core, Prot2Token employs an autoregressive decoder, conditioned on embeddings from pre-trained protein encoders and guided by learnable task tokens, to perform diverse predictions. This architecture uniquely facilitates multi-task learning, enabling a single model to master numerous tasks with improved efficiency. We present extensive experimental validation across a variety of benchmarks, demonstrating Prot2Tokens strong predictive power in different types of protein-prediction tasks. Key results include significant speedups (e.g., near 1000x over AlphaFold2 with MSA) and performance often matching or exceeding specialized approaches. Beyond that, we introduce an auxiliary self-supervised decoder pre-training approach to improve spatially sensitive task performance. Prot2Token thus offers a significant step towards a versatile, high-throughput paradigm for protein modeling, promising to accelerate biological discovery and the development of novel therapeutics. The code is available at https://github.com/mahdip72/prot2token .

  • 9 authors
·
May 26 2

DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting

End-to-end text spotting aims to integrate scene text detection and recognition into a unified framework. Dealing with the relationship between the two sub-tasks plays a pivotal role in designing effective spotters. Although Transformer-based methods eliminate the heuristic post-processing, they still suffer from the synergy issue between the sub-tasks and low training efficiency. In this paper, we present DeepSolo, a simple DETR-like baseline that lets a single Decoder with Explicit Points Solo for text detection and recognition simultaneously. Technically, for each text instance, we represent the character sequence as ordered points and model them with learnable explicit point queries. After passing a single decoder, the point queries have encoded requisite text semantics and locations, thus can be further decoded to the center line, boundary, script, and confidence of text via very simple prediction heads in parallel. Besides, we also introduce a text-matching criterion to deliver more accurate supervisory signals, thus enabling more efficient training. Quantitative experiments on public benchmarks demonstrate that DeepSolo outperforms previous state-of-the-art methods and achieves better training efficiency. In addition, DeepSolo is also compatible with line annotations, which require much less annotation cost than polygons. The code is available at https://github.com/ViTAE-Transformer/DeepSolo.

  • 7 authors
·
Nov 19, 2022

Met$^2$Net: A Decoupled Two-Stage Spatio-Temporal Forecasting Model for Complex Meteorological Systems

The increasing frequency of extreme weather events due to global climate change urges accurate weather prediction. Recently, great advances have been made by the end-to-end methods, thanks to deep learning techniques, but they face limitations of representation inconsistency in multivariable integration and struggle to effectively capture the dependency between variables, which is required in complex weather systems. Treating different variables as distinct modalities and applying a two-stage training approach from multimodal models can partially alleviate this issue, but due to the inconformity in training tasks between the two stages, the results are often suboptimal. To address these challenges, we propose an implicit two-stage training method, configuring separate encoders and decoders for each variable. In detailed, in the first stage, the Translator is frozen while the Encoders and Decoders learn a shared latent space, in the second stage, the Encoders and Decoders are frozen, and the Translator captures inter-variable interactions for prediction. Besides, by introducing a self-attention mechanism for multivariable fusion in the latent space, the performance achieves further improvements. Empirically, extensive experiments show the state-of-the-art performance of our method. Specifically, it reduces the MSE for near-surface air temperature and relative humidity predictions by 28.82\% and 23.39\%, respectively. The source code is available at https://github.com/ShremG/Met2Net.

  • 4 authors
·
Jul 23 1

HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions

Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution (g^nConv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. g^nConv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and larger model sizes. Apart from the effectiveness in visual encoders, we also show g^nConv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that g^nConv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet

  • 6 authors
·
Jul 28, 2022

End-to-end Autonomous Driving with Semantic Depth Cloud Mapping and Multi-agent

Focusing on the task of point-to-point navigation for an autonomous driving vehicle, we propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously. The model is used to drive the ego vehicle safely by following a sequence of routes defined by the global planner. The perception part of the model is used to encode high-dimensional observation data provided by an RGBD camera while performing semantic segmentation, semantic depth cloud (SDC) mapping, and traffic light state and stop sign prediction. Then, the control part decodes the encoded features along with additional information provided by GPS and speedometer to predict waypoints that come with a latent feature space. Furthermore, two agents are employed to process these outputs and make a control policy that determines the level of steering, throttle, and brake as the final action. The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions. In addition, we do a comparative study with some recent models to justify the performance in multiple aspects of driving. Moreover, we also conduct an ablation study on SDC mapping and multi-agent to understand their roles and behavior. As a result, our model achieves the highest driving score even with fewer parameters and computation load. To support future studies, we share our codes at https://github.com/oskarnatan/end-to-end-driving.

  • 2 authors
·
Apr 11, 2022

Shepherding Slots to Objects: Towards Stable and Robust Object-Centric Learning

Object-centric learning (OCL) aspires general and compositional understanding of scenes by representing a scene as a collection of object-centric representations. OCL has also been extended to multi-view image and video datasets to apply various data-driven inductive biases by utilizing geometric or temporal information in the multi-image data. Single-view images carry less information about how to disentangle a given scene than videos or multi-view images do. Hence, owing to the difficulty of applying inductive biases, OCL for single-view images remains challenging, resulting in inconsistent learning of object-centric representation. To this end, we introduce a novel OCL framework for single-view images, SLot Attention via SHepherding (SLASH), which consists of two simple-yet-effective modules on top of Slot Attention. The new modules, Attention Refining Kernel (ARK) and Intermediate Point Predictor and Encoder (IPPE), respectively, prevent slots from being distracted by the background noise and indicate locations for slots to focus on to facilitate learning of object-centric representation. We also propose a weak semi-supervision approach for OCL, whilst our proposed framework can be used without any assistant annotation during the inference. Experiments show that our proposed method enables consistent learning of object-centric representation and achieves strong performance across four datasets. Code is available at https://github.com/object-understanding/SLASH.

  • 4 authors
·
Mar 31, 2023