new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 14

FinSearchComp: Towards a Realistic, Expert-Level Evaluation of Financial Search and Reasoning

Search has emerged as core infrastructure for LLM-based agents and is widely viewed as critical on the path toward more general intelligence. Finance is a particularly demanding proving ground: analysts routinely conduct complex, multi-step searches over time-sensitive, domain-specific data, making it ideal for assessing both search proficiency and knowledge-grounded reasoning. Yet no existing open financial datasets evaluate data searching capability of end-to-end agents, largely because constructing realistic, complicated tasks requires deep financial expertise and time-sensitive data is hard to evaluate. We present FinSearchComp, the first fully open-source agent benchmark for realistic, open-domain financial search and reasoning. FinSearchComp comprises three tasks -- Time-Sensitive Data Fetching, Simple Historical Lookup, and Complex Historical Investigation -- closely reproduce real-world financial analyst workflows. To ensure difficulty and reliability, we engage 70 professional financial experts for annotation and implement a rigorous multi-stage quality-assurance pipeline. The benchmark includes 635 questions spanning global and Greater China markets, and we evaluate 21 models (products) on it. Grok 4 (web) tops the global subset, approaching expert-level accuracy. DouBao (web) leads on the Greater China subset. Experimental analyses show that equipping agents with web search and financial plugins substantially improves results on FinSearchComp, and the country origin of models and tools impact performance significantly.By aligning with realistic analyst tasks and providing end-to-end evaluation, FinSearchComp offers a professional, high-difficulty testbed for complex financial search and reasoning.

  • 23 authors
·
Sep 16 2

MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers

The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.

  • 10 authors
·
Aug 20 10

APRIL: Active Partial Rollouts in Reinforcement Learning to Tame Long-tail Generation

Reinforcement learning (RL) has become a cornerstone in advancing large-scale pre-trained language models (LLMs). Successive generations, including GPT-o series, DeepSeek-R1, Kimi-K1.5, Grok 4, and GLM-4.5, have relied on large-scale RL training to enhance reasoning and coding capabilities. To meet the community's growing RL needs, numerous RL frameworks have been proposed. However, RL training remains computationally expensive, with rollout generation accounting for more than 90% of total runtime. In addition, its efficiency is often constrained by the long-tail distribution of rollout response lengths, where a few lengthy responses stall entire batches, leaving GPUs idle and underutilized. As model and rollout sizes continue to grow, this bottleneck increasingly limits scalability. To address this challenge, we propose Active Partial Rollouts in Reinforcement Learning (APRIL), which mitigates long-tail inefficiency. In the rollout phase, APRIL over-provisions rollout requests, terminates once the target number of responses is reached, and recycles incomplete responses for continuation in future steps. This strategy ensures that no rollouts are discarded while substantially reducing GPU idle time. Experiments show that APRIL improves rollout throughput by 22.5% on average (at most 44%) across commonly used RL algorithms (GRPO, DAPO, GSPO), accelerates convergence, and achieves 2.1% on average(at most 8%) higher final accuracy across tasks. Moreover, APRIL is both framework and hardware agnostic, already integrated into the slime RL framework, and deployable on NVIDIA and AMD GPUs alike. Taken together, this work unifies system-level and algorithmic considerations in proposing APRIL, with the aim of advancing RL training efficiency and inspiring further optimizations in RL systems. Our codebase is available at https://github.com/RLsys-Foundation/APRIL

  • 18 authors
·
Sep 22

Socratic-Zero : Bootstrapping Reasoning via Data-Free Agent Co-evolution

Recent breakthroughs in large language models (LLMs) on reasoning tasks rely heavily on massive, high-quality datasets-typically human-annotated and thus difficult to scale. While data synthesis or distillation offers a promising alternative, existing methods struggle with inconsistent data quality and an inability to dynamically adapt to the evolving capabilities of the model, leading to suboptimal training signals. To address these limitations, we introduce Socratic-Zero, a fully autonomous framework that generates high-quality training data from minimal seed examples through the co-evolution of three agents: the Teacher, the Solver, and the Generator. The Solver continuously refines its reasoning by learning from preference feedback on both successful and failed trajectories; the Teacher adaptively crafts increasingly challenging questions based on the Solver's weaknesses; and the Generator distills the Teacher's question-design strategy to enable scalable, high-fidelity curriculum generation. This closed-loop system produces a self-improving curriculum-requiring no pre-existing tasks or labels. Remarkably, starting from only 100 seed questions, our Socratic-Solver-8B achieves an average gain of +20.2 percentage points over prior data synthesis methods across seven mathematical reasoning benchmarks (AMC23, AIME24-25, Olympiad, MATH-500, Minerva, and GSM8K), with consistent gains on both Qwen3 and GLM4 series models. Even more surprisingly, synthetic data from Socratic-Generator-32B enables student LLMs to achieve superior performance compared to other state-of-the-art (SOTA) commercial LLMs on these benchmarks, including Qwen3-235B-A22B, DeepSeek-V3.1-671B, GPT-5, Gemini-2.5-Pro, Grok-4, and Claude-4.1-Opus.

alibaba-inc alibaba-inc
·
Sep 29 1

Visual Reasoning Evaluation of Grok, Deepseek Janus, Gemini, Qwen, Mistral, and ChatGPT

Traditional evaluations of multimodal large language models (LLMs) have been limited by their focus on single-image reasoning, failing to assess crucial aspects like contextual understanding, reasoning stability, and uncertainty calibration. This study addresses these limitations by introducing a novel benchmark that integrates multi-image reasoning tasks with rejection-based evaluation and positional bias detection. To evaluate these dimensions, we further introduce entropy as a novel metric for quantifying reasoning consistency across reordered answer variants. We applied this benchmark to assess Grok 3, ChatGPT-4o, ChatGPT-o1, Gemini 2.0 Flash Experimental, DeepSeek Janus models, Qwen2.5-VL-72B-Instruct, QVQ-72B-Preview, and Pixtral 12B across eight visual reasoning tasks, including difference spotting and diagram interpretation. Our findings reveal ChatGPT-o1 leading in overall accuracy (82.5\%) and rejection accuracy (70.0\%), closely followed by Gemini 2.0 Flash Experimental (70.8\%). QVQ-72B-Preview demonstrated superior rejection accuracy (85.5\%). Notably, Pixtral 12B (51.7\%) showed promise in specific domains, while Janus models exhibited challenges in bias and uncertainty calibration, reflected in low rejection accuracies and high entropy scores. High entropy scores in Janus models (Janus 7B: 0.8392, Janus 1B: 0.787) underscore their susceptibility to positional bias and unstable reasoning, contrasting with the low entropy and robust reasoning of ChatGPT models. The study further demonstrates that model size is not the sole determinant of performance, as evidenced by Grok 3 underperformance despite its substantial parameter count. By employing multi-image contexts, rejection mechanisms, and entropy-based consistency metrics, this benchmark sets a new standard for evaluating multimodal LLMs, enabling a more robust and reliable assessment of next-generation AI systems.

  • 3 authors
·
Feb 22

Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact

Can machines truly think, reason and act in domains like humans? This enduring question continues to shape the pursuit of Artificial General Intelligence (AGI). Despite the growing capabilities of models such as GPT-4.5, DeepSeek, Claude 3.5 Sonnet, Phi-4, and Grok 3, which exhibit multimodal fluency and partial reasoning, these systems remain fundamentally limited by their reliance on token-level prediction and lack of grounded agency. This paper offers a cross-disciplinary synthesis of AGI development, spanning artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems. We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination. In particular, we emphasize the rise of Agentic RAG frameworks that combine retrieval, planning, and dynamic tool use to enable more adaptive behavior. We discuss generalization strategies, including information compression, test-time adaptation, and training-free methods, as critical pathways toward flexible, domain-agnostic intelligence. Vision-Language Models (VLMs) are reexamined not just as perception modules but as evolving interfaces for embodied understanding and collaborative task completion. We also argue that true intelligence arises not from scale alone but from the integration of memory and reasoning: an orchestration of modular, interactive, and self-improving components where compression enables adaptive behavior. Drawing on advances in neurosymbolic systems, reinforcement learning, and cognitive scaffolding, we explore how recent architectures begin to bridge the gap between statistical learning and goal-directed cognition. Finally, we identify key scientific, technical, and ethical challenges on the path to AGI.

Biases in Edge Language Models: Detection, Analysis, and Mitigation

The integration of large language models (LLMs) on low-power edge devices such as Raspberry Pi, known as edge language models (ELMs), has introduced opportunities for more personalized, secure, and low-latency language intelligence that is accessible to all. However, the resource constraints inherent in edge devices and the lack of robust ethical safeguards in language models raise significant concerns about fairness, accountability, and transparency in model output generation. This paper conducts a comparative analysis of text-based bias across language model deployments on edge, cloud, and desktop environments, aiming to evaluate how deployment settings influence model fairness. Specifically, we examined an optimized Llama-2 model running on a Raspberry Pi 4; GPT 4o-mini, Gemini-1.5-flash, and Grok-beta models running on cloud servers; and Gemma2 and Mistral models running on a MacOS desktop machine. Our results demonstrate that Llama-2 running on Raspberry Pi 4 is 43.23% and 21.89% more prone to showing bias over time compared to models running on the desktop and cloud-based environments. We also propose the implementation of a feedback loop, a mechanism that iteratively adjusts model behavior based on previous outputs, where predefined constraint weights are applied layer-by-layer during inference, allowing the model to correct bias patterns, resulting in 79.28% reduction in model bias.

  • 3 authors
·
Feb 16 1

Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models

Large language models (LLMs) can perform reasoning computations both internally within their latent space and externally by generating explicit token sequences like chains of thought. Significant progress in enhancing reasoning abilities has been made by scaling test-time compute. However, understanding and quantifying model-internal reasoning abilities - the inferential "leaps" models make between individual token predictions - remains crucial. This study introduces a benchmark (n = 4,000 items) designed to quantify model-internal reasoning in different domains. We achieve this by having LLMs indicate the correct solution to reasoning problems not through descriptive text, but by selecting a specific language of their initial response token that is different from English, the benchmark language. This not only requires models to reason beyond their context window, but also to overrise their default tendency to respond in the same language as the prompt, thereby posing an additional cognitive strain. We evaluate a set of 18 LLMs, showing significant performance variations, with GPT-4.5 achieving the highest accuracy (74.7%), outperforming models like Grok-2 (67.2%), and Llama 3.1 405B (65.6%). Control experiments and difficulty scaling analyses suggest that while LLMs engage in internal reasoning, we cannot rule out heuristic exploitations under certain conditions, marking an area for future investigation. Our experiments demonstrate that LLMs can "think" via latent-space computations, revealing model-internal inference strategies that need further understanding, especially regarding safety-related concerns such as covert planning, goal-seeking, or deception emerging without explicit token traces.

  • 2 authors
·
Apr 14

Auditing M-LLMs for Privacy Risks: A Synthetic Benchmark and Evaluation Framework

Recent advances in multi-modal Large Language Models (M-LLMs) have demonstrated a powerful ability to synthesize implicit information from disparate sources, including images and text. These resourceful data from social media also introduce a significant and underexplored privacy risk: the inference of sensitive personal attributes from seemingly daily media content. However, the lack of benchmarks and comprehensive evaluations of state-of-the-art M-LLM capabilities hinders the research of private attribute profiling on social media. Accordingly, we propose (1) PRISM, the first multi-modal, multi-dimensional and fine-grained synthesized dataset incorporating a comprehensive privacy landscape and dynamic user history; (2) an Efficient evaluation framework that measures the cross-modal privacy inference capabilities of advanced M-LLM. Specifically, PRISM is a large-scale synthetic benchmark designed to evaluate cross-modal privacy risks. Its key feature is 12 sensitive attribute labels across a diverse set of multi-modal profiles, which enables targeted privacy analysis. These profiles are generated via a sophisticated LLM agentic workflow, governed by a prior distribution to ensure they realistically mimic social media users. Additionally, we propose a Multi-Agent Inference Framework that leverages a pipeline of specialized LLMs to enhance evaluation capabilities. We evaluate the inference capabilities of six leading M-LLMs (Qwen, Gemini, GPT-4o, GLM, Doubao, and Grok) on PRISM. The comparison with human performance reveals that these MLLMs significantly outperform in accuracy and efficiency, highlighting the threat of potential privacy risks and the urgent need for robust defenses.

  • 4 authors
·
Nov 5

LLM-based Multi-class Attack Analysis and Mitigation Framework in IoT/IIoT Networks

The Internet of Things has expanded rapidly, transforming communication and operations across industries but also increasing the attack surface and security breaches. Artificial Intelligence plays a key role in securing IoT, enabling attack detection, attack behavior analysis, and mitigation suggestion. Despite advancements, evaluations remain purely qualitative, and the lack of a standardized, objective benchmark for quantitatively measuring AI-based attack analysis and mitigation hinders consistent assessment of model effectiveness. In this work, we propose a hybrid framework combining Machine Learning (ML) for multi-class attack detection with Large Language Models (LLMs) for attack behavior analysis and mitigation suggestion. After benchmarking several ML and Deep Learning (DL) classifiers on the Edge-IIoTset and CICIoT2023 datasets, we applied structured role-play prompt engineering with Retrieval-Augmented Generation (RAG) to guide ChatGPT-o3 and DeepSeek-R1 in producing detailed, context-aware responses. We introduce novel evaluation metrics for quantitative assessment to guide us and an ensemble of judge LLMs, namely ChatGPT-4o, DeepSeek-V3, Mixtral 8x7B Instruct, Gemini 2.5 Flash, Meta Llama 4, TII Falcon H1 34B Instruct, xAI Grok 3, and Claude 4 Sonnet, to independently evaluate the responses. Results show that Random Forest has the best detection model, and ChatGPT-o3 outperformed DeepSeek-R1 in attack analysis and mitigation.

  • 3 authors
·
Oct 30