- Fuse It More Deeply! A Variational Transformer with Layer-Wise Latent Variable Inference for Text Generation The past several years have witnessed Variational Auto-Encoder's superiority in various text generation tasks. However, due to the sequential nature of the text, auto-regressive decoders tend to ignore latent variables and then reduce to simple language models, known as the KL vanishing problem, which would further deteriorate when VAE is combined with Transformer-based structures. To ameliorate this problem, we propose DELLA, a novel variational Transformer framework. DELLA learns a series of layer-wise latent variables with each inferred from those of lower layers and tightly coupled with the hidden states by low-rank tensor product. In this way, DELLA forces these posterior latent variables to be fused deeply with the whole computation path and hence incorporate more information. We theoretically demonstrate that our method can be regarded as entangling latent variables to avoid posterior information decrease through layers, enabling DELLA to get higher non-zero KL values even without any annealing or thresholding tricks. Experiments on four unconditional and three conditional generation tasks show that DELLA could better alleviate KL vanishing and improve both quality and diversity compared to several strong baselines. 5 authors · Jul 13, 2022
- Learning Disentangled Representations for Time Series Time-series representation learning is a fundamental task for time-series analysis. While significant progress has been made to achieve accurate representations for downstream applications, the learned representations often lack interpretability and do not expose semantic meanings. Different from previous efforts on the entangled feature space, we aim to extract the semantic-rich temporal correlations in the latent interpretable factorized representation of the data. Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals. To bridge the gap, we propose Disentangle Time Series (DTS), a novel disentanglement enhancement framework for sequential data. Specifically, to generate hierarchical semantic concepts as the interpretable and disentangled representation of time-series, DTS introduces multi-level disentanglement strategies by covering both individual latent factors and group semantic segments. We further theoretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information maximization term, while preserving a heavier penalty on the total correlation and the dimension-wise KL to keep the disentanglement property. Experimental results on various real-world benchmark datasets demonstrate that the representations learned by DTS achieve superior performance in downstream applications, with high interpretability of semantic concepts. 7 authors · May 17, 2021
- ML-LMCL: Mutual Learning and Large-Margin Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding Spoken language understanding (SLU) is a fundamental task in the task-oriented dialogue systems. However, the inevitable errors from automatic speech recognition (ASR) usually impair the understanding performance and lead to error propagation. Although there are some attempts to address this problem through contrastive learning, they (1) treat clean manual transcripts and ASR transcripts equally without discrimination in fine-tuning; (2) neglect the fact that the semantically similar pairs are still pushed away when applying contrastive learning; (3) suffer from the problem of Kullback-Leibler (KL) vanishing. In this paper, we propose Mutual Learning and Large-Margin Contrastive Learning (ML-LMCL), a novel framework for improving ASR robustness in SLU. Specifically, in fine-tuning, we apply mutual learning and train two SLU models on the manual transcripts and the ASR transcripts, respectively, aiming to iteratively share knowledge between these two models. We also introduce a distance polarization regularizer to avoid pushing away the intra-cluster pairs as much as possible. Moreover, we use a cyclical annealing schedule to mitigate KL vanishing issue. Experiments on three datasets show that ML-LMCL outperforms existing models and achieves new state-of-the-art performance. 6 authors · Nov 19, 2023
2 Leverage the Average: an Analysis of KL Regularization in RL Recent Reinforcement Learning (RL) algorithms making use of Kullback-Leibler (KL) regularization as a core component have shown outstanding performance. Yet, only little is understood theoretically about why KL regularization helps, so far. We study KL regularization within an approximate value iteration scheme and show that it implicitly averages q-values. Leveraging this insight, we provide a very strong performance bound, the very first to combine two desirable aspects: a linear dependency to the horizon (instead of quadratic) and an error propagation term involving an averaging effect of the estimation errors (instead of an accumulation effect). We also study the more general case of an additional entropy regularizer. The resulting abstract scheme encompasses many existing RL algorithms. Some of our assumptions do not hold with neural networks, so we complement this theoretical analysis with an extensive empirical study. 6 authors · Mar 31, 2020
- Deep vanishing point detection: Geometric priors make dataset variations vanish Deep learning has improved vanishing point detection in images. Yet, deep networks require expensive annotated datasets trained on costly hardware and do not generalize to even slightly different domains, and minor problem variants. Here, we address these issues by injecting deep vanishing point detection networks with prior knowledge. This prior knowledge no longer needs to be learned from data, saving valuable annotation efforts and compute, unlocking realistic few-sample scenarios, and reducing the impact of domain changes. Moreover, the interpretability of the priors allows to adapt deep networks to minor problem variations such as switching between Manhattan and non-Manhattan worlds. We seamlessly incorporate two geometric priors: (i) Hough Transform -- mapping image pixels to straight lines, and (ii) Gaussian sphere -- mapping lines to great circles whose intersections denote vanishing points. Experimentally, we ablate our choices and show comparable accuracy to existing models in the large-data setting. We validate our model's improved data efficiency, robustness to domain changes, adaptability to non-Manhattan settings. 6 authors · Mar 16, 2022
1 On the difficulty of training Recurrent Neural Networks There are two widely known issues with properly training Recurrent Neural Networks, the vanishing and the exploding gradient problems detailed in Bengio et al. (1994). In this paper we attempt to improve the understanding of the underlying issues by exploring these problems from an analytical, a geometric and a dynamical systems perspective. Our analysis is used to justify a simple yet effective solution. We propose a gradient norm clipping strategy to deal with exploding gradients and a soft constraint for the vanishing gradients problem. We validate empirically our hypothesis and proposed solutions in the experimental section. 3 authors · Nov 21, 2012
- Generalized Kernel Thinning The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses a probability distribution more effectively than independent sampling by targeting a reproducing kernel Hilbert space (RKHS) and leveraging a less smooth square-root kernel. Here we provide four improvements. First, we show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel, any distribution, and any fixed function in the RKHS. Second, we show that, for analytic kernels like Gaussian, inverse multiquadric, and sinc, target KT admits maximum mean discrepancy (MMD) guarantees comparable to or better than those of square-root KT without making explicit use of a square-root kernel. Third, we prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Mat\'ern, that do not have square-roots. Fourth, we establish that KT applied to a sum of the target and power kernels (a procedure we call KT+) simultaneously inherits the improved MMD guarantees of power KT and the tighter individual function guarantees of target KT. In our experiments with target KT and KT+, we witness significant improvements in integration error even in 100 dimensions and when compressing challenging differential equation posteriors. 2 authors · Oct 4, 2021
- Concavity Properties of Solutions of Elliptic Equations under Conformal Deformations We study the Dirichlet problem for the weighted Schr\"odinger operator \[-\Delta u +Vu = \lambda \rho u,\] where rho is a positive weighting function and V is a potential. Such equations appear naturally in conformal geometry and in the composite membrane problem. Our primary goal is to establish concavity estimates for the principle eigenfunction with respect to conformal connections. Doing so, we obtain new bounds on the fundamental gap problem, which is the difference between the first and second eigenvalues. In particular, we partially resolve a conjecture of Nguyen, Stancu and Wei [IMRN 2022] on the fundamental gap of horoconvex domains. In addition, we obtain a power convexity estimate for solutions to the torsion problem in spherical geometry on convex domains which are not too large. 3 authors · Mar 5, 2024
- Calabi-Yau fibrations, simple K-equivalence and mutations A homogeneous roof is a rational homogeneous variety of Picard rank 2 and index r equipped with two different mathbb P^{r-1}-bundle structures. We consider bundles of homogeneous roofs over a smooth projective variety, formulating a relative version of the duality of Calabi--Yau pairs associated to roofs of projective bundles. We discuss how derived equivalence of such pairs can lift to Calabi--Yau fibrations, extending a result of Bridgeland and Maciocia to higher-dimensional cases. We formulate an approach to prove that the DK-conjecture holds for a class of simple K-equivalent maps arising from bundles of roofs. As an example, we propose a pair of eight-dimensional Calabi--Yau varieties fibered in dual Calabi--Yau threefolds, related by a GLSM phase transition, and we prove derived equivalence with the methods above. 1 authors · Jun 11, 2020
- An addendum on the Mathieu Conjecture for SU(N), Sp(N) and G_2 In this paper, we sharpen results obtained by the author in 2023. The new results reduce the Mathieu Conjecture on SU(N) (formulated for all compact connected Lie groups by O. Mathieu in 1997) to a conjecture involving only functions on R^ntimes (S^1)^m with n,m non-negative integers instead of involving functions on R^ntimes (S^1setminus{1})^m. The proofs rely on a more recent work of the author (2024) and a specific KAK decomposition. Finally, with these results we can also improve the results on the groups Sp(N) and G_2 in the latter paper, since they relied on the construction introduced in the 2023 paper. 1 authors · Apr 2
1 How to train your VAE Variational Autoencoders (VAEs) have become a cornerstone in generative modeling and representation learning within machine learning. This paper explores a nuanced aspect of VAEs, focusing on interpreting the Kullback-Leibler (KL) Divergence, a critical component within the Evidence Lower Bound (ELBO) that governs the trade-off between reconstruction accuracy and regularization. Meanwhile, the KL Divergence enforces alignment between latent variable distributions and a prior imposing a structure on the overall latent space but leaves individual variable distributions unconstrained. The proposed method redefines the ELBO with a mixture of Gaussians for the posterior probability, introduces a regularization term to prevent variance collapse, and employs a PatchGAN discriminator to enhance texture realism. Implementation details involve ResNetV2 architectures for both the Encoder and Decoder. The experiments demonstrate the ability to generate realistic faces, offering a promising solution for enhancing VAE-based generative models. 1 authors · Sep 22, 2023
- Generalized Munchausen Reinforcement Learning using Tsallis KL Divergence Many policy optimization approaches in reinforcement learning incorporate a Kullback-Leilbler (KL) divergence to the previous policy, to prevent the policy from changing too quickly. This idea was initially proposed in a seminal paper on Conservative Policy Iteration, with approximations given by algorithms like TRPO and Munchausen Value Iteration (MVI). We continue this line of work by investigating a generalized KL divergence -- called the Tsallis KL divergence -- which use the q-logarithm in the definition. The approach is a strict generalization, as q = 1 corresponds to the standard KL divergence; q > 1 provides a range of new options. We characterize the types of policies learned under the Tsallis KL, and motivate when q >1 could be beneficial. To obtain a practical algorithm that incorporates Tsallis KL regularization, we extend MVI, which is one of the simplest approaches to incorporate KL regularization. We show that this generalized MVI(q) obtains significant improvements over the standard MVI(q = 1) across 35 Atari games. 4 authors · Jan 26, 2023
- A Riemann-Hilbert Approach to Asymptotic Analysis of Toeplitz+Hankel Determinants II In this article, we continue the development of the Riemann-Hilbert formalism for studying the asymptotics of Toeplitz+Hankel determinants with non-identical symbols, which we initiated in GI. In GI, we showed that the Riemann-Hilbert problem we formulated admits the Deift-Zhou nonlinear steepest descent analysis, but with a special restriction on the winding numbers of the associated symbols. In particular, the most natural case, namely zero winding numbers, is not allowed. A principal goal of this paper is to develop a framework that extends the asymptotic analysis of Toeplitz+Hankel determinants to a broader range of winding-number configurations. As an application, we consider the case in which the winding numbers of the Szego-type Toeplitz and Hankel symbols are zero and one, respectively, and compute the asymptotics of the norms of the corresponding system of orthogonal polynomials. 2 authors · Sep 15
- On κ-solutions and canonical neighborhoods in 4d Ricci flow We introduce a classification conjecture for kappa-solutions in 4d Ricci flow. Our conjectured list includes known examples from the literature, but also a new 1-parameter family of Z_2^2times O_3-symmetric bubble-sheet ovals that we construct. We observe that some special cases of the conjecture follow from recent results in the literature. We also introduce a stronger variant of the classification conjecture for ancient asymptotically cylindrical 4d Ricci flows, which does not assume smoothness and nonnegative curvature operator a priori. Assuming this stronger variant holds true, we establish a canonical neighborhood theorem for 4d Ricci flow through cylindrical singularities, which shares some elements in common with Perelman's canonical neighborhood theorem for 3d Ricci flow as well as the mean-convex neighborhood theorem for mean curvature flow through neck-singularities. Finally, we argue that quotient-necks lead to new phenomena, and sketch an example of non-uniqueness for 4d Ricci flow through singularities. 1 authors · Aug 2, 2023
- Ill-posedness of the Kelvin-Helmholtz problem for compressible Euler fluids In this paper, when the magnitude of the Mach number is strictly between some fixed small enough constant and 2, we can prove the linear and nonlinear ill-posedness of the Kelvin-Helmholtz problem for compressible ideal fluids. To our best knowledge, this is the first reslult that proves the nonlinear ill-posedness to the Kelvin-Helmholtz problem for the compressible Euler fluids. 2 authors · Jul 2, 2024
- Reverse mathematics and a Ramsey-type König's Lemma In this paper, we propose a weak regularity principle which is similar to both weak K\"onig's lemma and Ramsey's theorem. We begin by studying the computational strength of this principle in the context of reverse mathematics. We then analyze different ways of generalizing this principle. 1 authors · Nov 10, 2011
- Improving Variational Autoencoders with Density Gap-based Regularization Variational autoencoders (VAEs) are one of the powerful unsupervised learning frameworks in NLP for latent representation learning and latent-directed generation. The classic optimization goal of VAEs is to maximize the Evidence Lower Bound (ELBo), which consists of a conditional likelihood for generation and a negative Kullback-Leibler (KL) divergence for regularization. In practice, optimizing ELBo often leads the posterior distribution of all samples converge to the same degenerated local optimum, namely posterior collapse or KL vanishing. There are effective ways proposed to prevent posterior collapse in VAEs, but we observe that they in essence make trade-offs between posterior collapse and hole problem, i.e., mismatch between the aggregated posterior distribution and the prior distribution. To this end, we introduce new training objectives to tackle both two problems through a novel regularization based on the probabilistic density gap between the aggregated posterior distribution and the prior distribution. Through experiments on language modeling, latent space visualization and interpolation, we show that our proposed method can solve both problems effectively and thus outperforms the existing methods in latent-directed generation. To the best of our knowledge, we are the first to jointly solve the hole problem and the posterior collapse. 5 authors · Nov 1, 2022
- On the Optimality of Misspecified Kernel Ridge Regression In the misspecified kernel ridge regression problem, researchers usually assume the underground true function f_{rho}^{*} in [H]^{s}, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) H for some sin (0,1). The existing minimax optimal results require |f_{rho}^{*}|_{L^{infty}}<infty which implicitly requires s > alpha_{0} where alpha_{0}in (0,1) is the embedding index, a constant depending on H. Whether the KRR is optimal for all sin (0,1) is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any sin (0,1) when the H is a Sobolev RKHS. 4 authors · May 12, 2023
- Determinantal ideals of secant varieties Using Hilbert schemes of points, we establish a number of results for a smooth projective variety X in a sufficiently ample embedding. If X is a curve or a surface, we show that the ideals of higher secant varieties are determinantally presented, and we prove the same for the first secant variety if X has arbitrary dimension. This completely settles a conjecture of Eisenbud-Koh-Stillman for curves and partially resolves a conjecture of Sidman-Smith in higher dimensions. If X is a curve or a surface we also prove that the corresponding embedding of the Hilbert scheme of points X^{[d]} into the Grassmannian is projectively normal. Finally, if X is an arbitrary projective scheme in a sufficiently ample embedding, then we demonstrate that its homogeneous ideal is generated by quadrics of rank three, confirming a conjecture of Han-Lee-Moon-Park. Along the way, we check that the Hilbert scheme of three points on a smooth variety is the blow-up of the symmetric product along the big diagonal. 2 authors · Oct 2
1 BD-KD: Balancing the Divergences for Online Knowledge Distillation Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques. 5 authors · Dec 25, 2022
33 KLASS: KL-Guided Fast Inference in Masked Diffusion Models Masked diffusion models have demonstrated competitive results on various tasks including language generation. However, due to its iterative refinement process, the inference is often bottlenecked by slow and static sampling speed. To overcome this problem, we introduce `KL-Adaptive Stability Sampling' (KLASS), a fast yet effective sampling method that exploits token-level KL divergence to identify stable, high-confidence predictions. By unmasking multiple tokens in each iteration without any additional model training, our approach speeds up generation significantly while maintaining sample quality. On reasoning benchmarks, KLASS achieves up to 2.78times wall-clock speedups while improving performance over standard greedy decoding, attaining state-of-the-art results among diffusion-based samplers. We further validate KLASS across diverse domains, including text, image, and molecular generation, showing its effectiveness as a broadly applicable sampler across different models. KAIST AI · Nov 7 2
1 Rethinking Kullback-Leibler Divergence in Knowledge Distillation for Large Language Models Kullback-Leiber divergence has been widely used in Knowledge Distillation (KD) to compress Large Language Models (LLMs). Contrary to prior assertions that reverse Kullback-Leibler (RKL) divergence is mode-seeking and thus preferable over the mean-seeking forward Kullback-Leibler (FKL) divergence, this study empirically and theoretically demonstrates that neither mode-seeking nor mean-seeking properties manifest in KD for LLMs. Instead, RKL and FKL are found to share the same optimization objective and both converge after a sufficient number of epochs. However, due to practical constraints, LLMs are seldom trained for such an extensive number of epochs. Meanwhile, we further find that RKL focuses on the tail part of the distributions, while FKL focuses on the head part at the beginning epochs. Consequently, we propose a simple yet effective Adaptive Kullback-Leiber (AKL) divergence method, which adaptively allocates weights to combine FKL and RKL. Metric-based and GPT-4-based evaluations demonstrate that the proposed AKL outperforms the baselines across various tasks and improves the diversity and quality of generated responses. 5 authors · Apr 3, 2024
- Asymptotic Plateau Problem in H^2xR: Tall Curves We study the asymptotic Plateau problem in BHH for area minimizing surfaces, and give a fairly complete solution for finite curves. 1 authors · May 31, 2020
- Multi-index Based Solution Theory to the Φ^4 Equation in the Full Subcritical Regime We obtain (small-parameter) well-posedness for the (space-time periodic) Phi^4 equation in the full subcritical regime in the context of regularity structures based on multi-indices. As opposed to Hairer's more extrinsic tree-based setting, due to the intrinsic description encoded by multi-indices, it is not possible to obtain a solution theory via the standard fixed-point argument. Instead, we develop a more intrinsic approach for existence using a variant of the continuity method from classical PDE theory based on a priori estimates for a new `robust' formulation of the equation. This formulation also allows us to obtain uniqueness of solutions and continuity of the solution map in the model norm even at the limit of vanishing regularisation scale. Since our proof relies on the structure of the nonlinearity in only a mild way, we expect the same ideas to be sufficient to treat a more general class of equations. 3 authors · Mar 3
- Morse theory and Seiberg-Witten moduli spaces of 3-dimensional cobordisms, I Motivated by a variant of Atiyah-Floer conjecture proposed in L2 and its potential generalizations, we study in this article and its sequel as a first step properties of moduli spaces of Seiberg-Witten equations on a 3-dimensional cobordism with cylindrical ends (CCE) \(Y\), perturbed by closed 2-forms of the form \(r*d\ff+w\), where \(r\geq 1\), where \(\ff\) is a harmonic Morse function with certain linear growth at the ends of \(Y\), and \(w\) is a certain closed 2-form. 1 authors · Dec 29, 2024
- Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space Variational inference (VI) seeks to approximate a target distribution pi by an element of a tractable family of distributions. Of key interest in statistics and machine learning is Gaussian VI, which approximates pi by minimizing the Kullback-Leibler (KL) divergence to pi over the space of Gaussians. In this work, we develop the (Stochastic) Forward-Backward Gaussian Variational Inference (FB-GVI) algorithm to solve Gaussian VI. Our approach exploits the composite structure of the KL divergence, which can be written as the sum of a smooth term (the potential) and a non-smooth term (the entropy) over the Bures-Wasserstein (BW) space of Gaussians endowed with the Wasserstein distance. For our proposed algorithm, we obtain state-of-the-art convergence guarantees when pi is log-smooth and log-concave, as well as the first convergence guarantees to first-order stationary solutions when pi is only log-smooth. 4 authors · Apr 10, 2023
- New type of solutions for a critical Grushin-type problem with competing potentials In this paper, we consider a critical Grushin-type problem with double potentials. By applying the reduction argument and local Pohozaev identities, we construct a new family of solutions to this problem, which are concentrated at points lying on the top and the bottom circles of a cylinder. 2 authors · Jun 29, 2024
- Concentrating solutions of the fractional (p,q)-Choquard equation with exponential growth This article deals with the following fractional (p,q)-Choquard equation with exponential growth of the form: $varepsilon^{ps}(-Delta)_{p}^{s}u+varepsilon^{qs}(-Delta)_q^su+ Z(x)(|u|^{p-2}u+|u|^{q-2}u)=varepsilon^{mu-N}[|x|^{-mu}*F(u)]f(u) in R^N, where s\in (0,1), \varepsilon>0 is a parameter, 2\leq p=N{s}<q, and 0<\mu<N. The nonlinear function f has an exponential growth at infinity and the continuous potential function Z satisfies suitable natural conditions. With the help of the Ljusternik-Schnirelmann category theory and variational methods, the multiplicity and concentration of positive solutions are obtained for \varepsilon>0$ small enough. In a certain sense, we generalize some previously known results. 3 authors · May 31
1 Vanishing Point Estimation in Uncalibrated Images with Prior Gravity Direction We tackle the problem of estimating a Manhattan frame, i.e. three orthogonal vanishing points, and the unknown focal length of the camera, leveraging a prior vertical direction. The direction can come from an Inertial Measurement Unit that is a standard component of recent consumer devices, e.g., smartphones. We provide an exhaustive analysis of minimal line configurations and derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers. Additionally, we design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization. Combining all solvers in a hybrid robust estimator, our method achieves increased accuracy even with a rough prior. Experiments on synthetic and real-world datasets demonstrate the superior accuracy of our method compared to the state of the art, while having comparable runtimes. We further demonstrate the applicability of our solvers for relative rotation estimation. The code is available at https://github.com/cvg/VP-Estimation-with-Prior-Gravity. 5 authors · Aug 21, 2023
- Ancient solutions to the Ricci flow with isotropic curvature conditions We show that every n-dimensional, kappa-noncollapsed, noncompact, complete ancient solution to the Ricci flow with uniformly PIC for n=4 or nge 12 has weakly PIC_2 and bounded curvature. Combining this with earlier results, we prove that any such solution is isometric to either a family of shrinking cylinders (or a quotient thereof) or the Bryant soliton. Also, we classify all complex 2-dimensional, kappa-noncollapsed, complete ancient solutions to the K\"ahler Ricci flow with weakly PIC. 2 authors · May 24, 2020
- Comments on Fermi Liquid from Holography We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7 brane dynamics in AdS_5 x S^5 background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In case of vanishing hypermultiplet mass, Karch, Son and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling. 2 authors · Aug 28, 2008
- Analysis of Variational Sparse Autoencoders Sparse Autoencoders (SAEs) have emerged as a promising approach for interpreting neural network representations by learning sparse, human-interpretable features from dense activations. We investigate whether incorporating variational methods into SAE architectures can improve feature organization and interpretability. We introduce the Variational Sparse Autoencoder (vSAE), which replaces deterministic ReLU gating with stochastic sampling from learned Gaussian posteriors and incorporates KL divergence regularization toward a standard normal prior. Our hypothesis is that this probabilistic sampling creates dispersive pressure, causing features to organize more coherently in the latent space while avoiding overlap. We evaluate a TopK vSAE against a standard TopK SAE on Pythia-70M transformer residual stream activations using comprehensive benchmarks including SAE Bench, individual feature interpretability analysis, and global latent space visualization through t-SNE. The vSAE underperforms standard SAE across core evaluation metrics, though excels at feature independence and ablation metrics. The KL divergence term creates excessive regularization pressure that substantially reduces the fraction of living features, leading to observed performance degradation. While vSAE features demonstrate improved robustness, they exhibit many more dead features than baseline. Our findings suggest that naive application of variational methods to SAEs does not improve feature organization or interpretability. 2 authors · Sep 26
- Invariant subspaces for finite index shifts in Hardy spaces and the invariant subspace problem for finite defect operators Let mathbb H be the finite direct sums of H^2(mathbb D). In this paper, we give a characterization of the closed subspaces of mathbb H which are invariant under the shift, thus obtaining a concrete Beurling-type theorem for the finite index shift. This characterization presents any such a subspace as the finite intersection, up to an inner function, of pre-images of a closed shift-invariant subspace of H^2(mathbb D) under ``determinantal operators'' from mathbb H to H^2(mathbb D), that is, continuous linear operators which intertwine the shifts and appear as determinants of matrices with entries given by bounded holomorphic functions. With simple algebraic manipulations we provide a direct proof that every invariant closed subspace of codimension at least two sits into a non-trivial closed invariant subspace. As a consequence every bounded linear operator with finite defect has a nontrivial closed invariant subspace. 2 authors · Nov 4, 2024
- Torelli problem for Calabi-Yau threefolds with GLSM description We construct a gauged linear sigma model with two non-birational K\"alher phases which we prove to be derived equivalent, L-equivalent, deformation equivalent and Hodge equivalent. This provides a new counterexample to the birational Torelli problem which admits a simple GLSM interpretation. 2 authors · Nov 28, 2017