Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeROS Based Visual Programming Tool for Mobile Robot Education and Applications
Visual programming languages (VPLs) provide coding without typing texts. VPL makes coding easy to programmers with automatically adding usually used some code structure. Beginners in coding have generally two main challenges; transforming ideas into logical expressions and syntax errors. Syntax errors are impossible with VPLs because of there is no forgotten parentheses and semicolons. VPLs provide to focus on algorithm for programmers. VPL is a new trend for educational robotic environments. In this study, Robot Operating System (ROS) compatible web based visual programming system has been developed for evarobot. ROS provides libraries and tools to help software developers create robot applications. It provides hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, and more. Blockly has been used as VPL for the study and to generate / use blocks (commucation, sensing etc.). Some applications were generated like teleoperation, SLAM and wander etc. In this system, communication between server and client is supported by rosbridge package. Web page connected to ROS which runs on server using roslibjs library. Rosbridge provides a JSON API to ROS functionality for non-ROS programs.
ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning
We present a framework for intuitive robot programming by non-experts, leveraging natural language prompts and contextual information from the Robot Operating System (ROS). Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface. Key features of the framework include: integration of ROS with an AI agent connected to a plethora of open-source and commercial LLMs, automatic extraction of a behavior from the LLM output and execution of ROS actions/services, support for three behavior modes (sequence, behavior tree, state machine), imitation learning for adding new robot actions to the library of possible actions, and LLM reflection via human and environment feedback. Extensive experiments validate the framework, showcasing robustness, scalability, and versatility in diverse scenarios, including long-horizon tasks, tabletop rearrangements, and remote supervisory control. To facilitate the adoption of our framework and support the reproduction of our results, we have made our code open-source. You can access it at: https://github.com/huawei-noah/HEBO/tree/master/ROSLLM.
Ford Multi-AV Seasonal Dataset
This paper presents a challenging multi-agent seasonal dataset collected by a fleet of Ford autonomous vehicles at different days and times during 2017-18. The vehicles traversed an average route of 66 km in Michigan that included a mix of driving scenarios such as the Detroit Airport, freeways, city-centers, university campus and suburban neighbourhoods, etc. Each vehicle used in this data collection is a Ford Fusion outfitted with an Applanix POS-LV GNSS system, four HDL-32E Velodyne 3D-lidar scanners, 6 Point Grey 1.3 MP Cameras arranged on the rooftop for 360-degree coverage and 1 Pointgrey 5 MP camera mounted behind the windshield for the forward field of view. We present the seasonal variation in weather, lighting, construction and traffic conditions experienced in dynamic urban environments. This dataset can help design robust algorithms for autonomous vehicles and multi-agent systems. Each log in the dataset is time-stamped and contains raw data from all the sensors, calibration values, pose trajectory, ground truth pose, and 3D maps. All data is available in Rosbag format that can be visualized, modified and applied using the open-source Robot Operating System (ROS). We also provide the output of state-of-the-art reflectivity-based localization for bench-marking purposes. The dataset can be freely downloaded at our website.
VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2times speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.
Simulating an Autonomous System in CARLA using ROS 2
Autonomous racing offers a rigorous setting to stress test perception, planning, and control under high speed and uncertainty. This paper proposes an approach to design and evaluate a software stack for an autonomous race car in CARLA: Car Learning to Act simulator, targeting competitive driving performance in the Formula Student UK Driverless (FS-AI) 2025 competition. By utilizing a 360° light detection and ranging (LiDAR), stereo camera, global navigation satellite system (GNSS), and inertial measurement unit (IMU) sensor via ROS 2 (Robot Operating System), the system reliably detects the cones marking the track boundaries at distances of up to 35 m. Optimized trajectories are computed considering vehicle dynamics and simulated environmental factors such as visibility and lighting to navigate the track efficiently. The complete autonomous stack is implemented in ROS 2 and validated extensively in CARLA on a dedicated vehicle (ADS-DV) before being ported to the actual hardware, which includes the Jetson AGX Orin 64GB, ZED2i Stereo Camera, Robosense Helios 16P LiDAR, and CHCNAV Inertial Navigation System (INS).
CRISP -- Compliant ROS2 Controllers for Learning-Based Manipulation Policies and Teleoperation
Learning-based controllers, such as diffusion policies and vision-language action models, often generate low-frequency or discontinuous robot state changes. Achieving smooth reference tracking requires a low-level controller that converts high-level targets commands into joint torques, enabling compliant behavior during contact interactions. We present CRISP, a lightweight C++ implementation of compliant Cartesian and joint-space controllers for the ROS2 control standard, designed for seamless integration with high-level learning-based policies as well as teleoperation. The controllers are compatible with any manipulator that exposes a joint-torque interface. Through our Python and Gymnasium interfaces, CRISP provides a unified pipeline for recording data from hardware and simulation and deploying high-level learning-based policies seamlessly, facilitating rapid experimentation. The system has been validated on hardware with the Franka Robotics FR3 and in simulation with the Kuka IIWA14 and Kinova Gen3. Designed for rapid integration, flexible deployment, and real-time performance, our implementation provides a unified pipeline for data collection and policy execution, lowering the barrier to applying learning-based methods on ROS2-compatible manipulators. Detailed documentation is available at the project website - https://utiasDSL.github.io/crisp_controllers.
ROSGPT_Vision: Commanding Robots Using Only Language Models' Prompts
In this paper, we argue that the next generation of robots can be commanded using only Language Models' prompts. Every prompt interrogates separately a specific Robotic Modality via its Modality Language Model (MLM). A central Task Modality mediates the whole communication to execute the robotic mission via a Large Language Model (LLM). This paper gives this new robotic design pattern the name of: Prompting Robotic Modalities (PRM). Moreover, this paper applies this PRM design pattern in building a new robotic framework named ROSGPT_Vision. ROSGPT_Vision allows the execution of a robotic task using only two prompts: a Visual and an LLM prompt. The Visual Prompt extracts, in natural language, the visual semantic features related to the task under consideration (Visual Robotic Modality). Meanwhile, the LLM Prompt regulates the robotic reaction to the visual description (Task Modality). The framework automates all the mechanisms behind these two prompts. The framework enables the robot to address complex real-world scenarios by processing visual data, making informed decisions, and carrying out actions automatically. The framework comprises one generic vision module and two independent ROS nodes. As a test application, we used ROSGPT_Vision to develop CarMate, which monitors the driver's distraction on the roads and makes real-time vocal notifications to the driver. We showed how ROSGPT_Vision significantly reduced the development cost compared to traditional methods. We demonstrated how to improve the quality of the application by optimizing the prompting strategies, without delving into technical details. ROSGPT_Vision is shared with the community (link: https://github.com/bilel-bj/ROSGPT_Vision) to advance robotic research in this direction and to build more robotic frameworks that implement the PRM design pattern and enables controlling robots using only prompts.
Agent as Cerebrum, Controller as Cerebellum: Implementing an Embodied LMM-based Agent on Drones
In this study, we present a novel paradigm for industrial robotic embodied agents, encapsulating an 'agent as cerebrum, controller as cerebellum' architecture. Our approach harnesses the power of Large Multimodal Models (LMMs) within an agent framework known as AeroAgent, tailored for drone technology in industrial settings. To facilitate seamless integration with robotic systems, we introduce ROSchain, a bespoke linkage framework connecting LMM-based agents to the Robot Operating System (ROS). We report findings from extensive empirical research, including simulated experiments on the Airgen and real-world case study, particularly in individual search and rescue operations. The results demonstrate AeroAgent's superior performance in comparison to existing Deep Reinforcement Learning (DRL)-based agents, highlighting the advantages of the embodied LMM in complex, real-world scenarios.
SAILOR: Perceptual Anchoring For Robotic Cognitive Architectures
Symbolic anchoring is a crucial problem in the field of robotics, as it enables robots to obtain symbolic knowledge from the perceptual information acquired through their sensors. In cognitive-based robots, this process of processing sub-symbolic data from real-world sensors to obtain symbolic knowledge is still an open problem. To address this issue, this paper presents SAILOR, a framework for providing symbolic anchoring in the ROS 2 ecosystem. SAILOR aims to maintain the link between symbolic data and perceptual data in real robots over time, increasing the intelligent behavior of robots. It provides a semantic world modeling approach using two deep learning-based sub-symbolic robotic skills: object recognition and matching function. The object recognition skill allows the robot to recognize and identify objects in its environment, while the matching function enables the robot to decide if new perceptual data corresponds to existing symbolic data. This paper provides a description of the proposed method and the development of the framework, as well as its integration in MERLIN2 (a hybrid cognitive architecture fully functional in robots running ROS 2).
RLFactory: A Plug-and-Play Reinforcement Learning Post-Training Framework for LLM Multi-Turn Tool-Use
Large language models excel at basic reasoning but struggle with tasks that require interaction with external tools. We present RLFactory, a plug-and-play reinforcement learning post-training framework for multi-round tool use. RLFactory tackles (i) tool-call stability and adaptability amid tool heterogeneity and interface issues via an asyncio-based asynchronous caller and a decoupled tool/training architecture, and (ii) diverse evaluation needs via a reward layer supporting rule-based, model-judgment, and tool-verification signals. It reconstructs the MDP by introducing observation markers from tool feedback, closing the loop among model, tools, and environment, and implements a generate-parse-invoke-update workflow for dynamic policy optimization. On Search-R1 with Qwen3-4B, RLFactory achieves a 0.486 test score on the Natural Questions (NQ) dataset, surpassing larger models trained with similar techniques (e.g., Qwen2.5-7B-Instruct-GRPO at 0.473), and increases training throughput by 6.8x. RLFactory provides a low-barrier, highly adaptable framework for strengthening multi-round tool use of LLMs in real-world scenarios. Code: https://github.com/Simple-Efficient/RL-Factory.
