1 A Hybrid Discriminative and Generative System for Universal Speech Enhancement Universal speech enhancement aims at handling inputs with various speech distortions and recording conditions. In this work, we propose a novel hybrid architecture that synergizes the signal fidelity of discriminative modeling with the reconstruction capabilities of generative modeling. Our system utilizes the discriminative TF-GridNet model with the Sampling-Frequency-Independent strategy to handle variable sampling rates universally. In parallel, an autoregressive model combined with spectral mapping modeling generates detail-rich speech while effectively suppressing generative artifacts. Finally, a fusion network learns adaptive weights of the two outputs under the optimization of signal-level losses and the comprehensive Speech Quality Assessment (SQA) loss. Our proposed system is evaluated in the ICASSP 2026 URGENT Challenge (Track 1) and ranks the third place. 6 authors · Jan 26
2 TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation In recent years, much speech separation research has focused primarily on improving model performance. However, for low-latency speech processing systems, high efficiency is equally important. Therefore, we propose a speech separation model with significantly reduced parameters and computational costs: Time-frequency Interleaved Gain Extraction and Reconstruction network (TIGER). TIGER leverages prior knowledge to divide frequency bands and compresses frequency information. We employ a multi-scale selective attention module to extract contextual features, while introducing a full-frequency-frame attention module to capture both temporal and frequency contextual information. Additionally, to more realistically evaluate the performance of speech separation models in complex acoustic environments, we introduce a dataset called EchoSet. This dataset includes noise and more realistic reverberation (e.g., considering object occlusions and material properties), with speech from two speakers overlapping at random proportions. Experimental results showed that models trained on EchoSet had better generalization ability than those trained on other datasets to the data collected in the physical world, which validated the practical value of the EchoSet. On EchoSet and real-world data, TIGER significantly reduces the number of parameters by 94.3% and the MACs by 95.3% while achieving performance surpassing state-of-the-art (SOTA) model TF-GridNet. This is the first speech separation model with fewer than 1 million parameters that achieves performance comparable to the SOTA model. 4 authors · Oct 2, 2024