new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 17

Unveiling the soft X-ray source population towards the inner Galactic disk with XMM-Newton

Across the Galactic disk lies a diverse population of X-ray sources, with the fainter end remaining poorly understood due to past survey sensitivity limits. We aim to classify and characterize faint X-ray sources detected in the eROSITA All-Sky Survey (eRASS1) towards the inner Galactic disk (350^circ < l < 360^circ, -1^circ < b < 1^circ) using deeper XMM-Newton observations (typical exposure of sim 20,ks). We analyzed 189 eRASS1 sources, combining X-ray spectral fitting (0.2--10,keV) with Gaia astrometric and photometric data for robust classification. Our results show that the eRASS1 catalog towards the Galactic disk is overwhelmingly dominated by coronal sources (sim 74%), primarily active stars and binaries, with sim 8% being wind-powered massive stars and sim 18% being accreting compact objects. We propose an empirical hardness-ratio cut (HR > -0.2) to efficiently isolate these non-coronal sources. By stacking the classified population and comparing with the Galactic Ridge X-ray Emission (GRXE), we estimate that sim 6% of the GRXE flux in the 0.5--2.0,keV band is resolved into point sources above the eRASS1 flux limit (sim 5times 10^{-14},erg,cm^{-2},s^{-1}). This resolved soft-band emission is dominated by active stars, while hard-band flux originates primarily from X-ray binaries. We conclude that the eRASS1 catalog retains a non-negligible population of compact objects that can be effectively distinguished using X-ray color selection.

  • 8 authors
·
Oct 27

Investigating cannibalistic millisecond pulsar binaries using MESA: New constraints from pulsar spin and mass evolution

Compact binary millisecond pulsars (MSPs) with orbital periods lesssim1d are key to understanding binary evolution involving massive neutron stars (NSs). Due to the ablation of the companion by the rapidly spinning pulsar, these systems are also known as spiders and categorized into two main branches: redbacks (RBs; companion mass in the range of 0.1 to 0.5\,\Msun) and black widows (BWs; companion mass lesssim\,0.1\,\Msun). We present models of low- and intermediate-mass X-ray binaries and compare them with observations of Galactic spiders (including the presence or absence of hydrogen lines in their optical spectra), and we constrain and quantify the interaction between the pulsar and the companion. Using MESA, we created the allowed initial parameter space. For the first time in MESA, we also included the detailed evolution of the pulsar spin and modeled the irradiation of the companion by the pulsar wind. Efficient mass accretion onto the NS (at least 70% of the mass transferred is accreted) with an X-ray irradiated disk followed by strong irradiation of the companion can explain most of the properties of the observed spiders. Our RB evolutionary tracks continue to the BW regime, connecting the two branches of spiders. Our models explain the lack of hydrogen in some observed BWs with ultra-light companions. During accretion induced spin up, the mass required to spin up an NS to sub-milliseconds is high enough to collapse it into a black hole. Finally, after analyzing the formation of RB-like spiders with giant companions and orbital periods of several days (huntsmen), we conclude that they are unlikely to produce super-massive NSs (maximum accreted mass lesssim0.5M_{odot}). Cannibalistic MSP binary formation depends heavily on the interplay between accretion onto the pulsar and pulsar wind irradiation.

  • 3 authors
·
Aug 28, 2024

Evolution of the Accretion Disk and Corona During the Outburst of the Neutron Star Transient MAXI J1807+132

Low-mass X-ray binaries with a neutron star as the primary object show a complex array of phenomenology during outbursts. The observed variability in X-ray emission primarily arises from changes in the innermost regions of the accretion disk, neutron star surface, and corona. In this work, we present the results of a comprehensive X-ray spectral and timing analysis of the neutron star transient MAXI J1807+132 during its 2023 outburst using data from the NICER observatory. The outburst is marked by a very rapid rise in the count rate by about a factor of 20 in a day. The source undergoes full state transitions and displays hysteresis effect in the hardness and rms intensity diagrams. Spectral analysis with a three-component model is consistent with disk truncation during the hard states and reaching the last stable orbit during the intermediate and soft states. We discuss the different values of the last stable radius in the context of possible distance of the source and magnetic field strength. The characteristic frequencies throughout the hard and intermediate states are found to be strongly correlated with the inner radius of the disk. Together with the spectral and fast variability properties, we attempt to trace the evolution of the size of the corona along the outburst. Following the main outburst, the source undergoes a high amplitude reflare wherein it shows a complex behavior with relatively high variability (10 %), but low hardness.

  • 7 authors
·
Dec 11, 2024

A Diagnostic Kit for Optical Emission Lines Shaped by Accretion Disc Winds

Blueshifted absorption is the classic spectroscopic signature of an accretion disc wind in X-ray binaries and cataclysmic variables (CVs). However, outflows can also create pure emission lines, especially at optical wavelengths. Therefore, developing other outflow diagnostics for these types of lines is worthwhile. With this in mind, we construct a systematic grid of 3645 synthetic wind-formed H-alpha line profiles for CVs with the radiative transfer code SIROCCO. Our grid yields a variety of line shapes: symmetric, asymmetric, single- to quadruple-peaked, and even P-Cygni profiles. About 20% of these lines -- our `Gold' sample -- have strengths and widths consistent with observations. We use this grid to test a recently proposed method for identifying wind-formed emission lines based on deviations in the wing profile shape: the `excess equivalent width diagnostic diagram'. We find that our `Gold' sample can preferentially populate the suggested `wind regions' of this diagram. However, the method is highly sensitive to the adopted definition of the line profile `wing'. Hence, we propose a refined definition based on the full-width at half maximum to improve the interpretability of the diagnostic diagram. Furthermore, we define an approximate scaling relation for the strengths of wind-formed CV emission lines in terms of the outflow parameters. This relation provides a fast way to assess whether -- and what kind of -- outflow can produce an observed emission line. All our wind-based models are open-source and we provide an easy-to-use web-based tool to browse our full set of H-alpha spectral profiles.

  • 5 authors
·
Sep 2

IXPE Observation of the Low-Synchrotron Peaked Blazar S4 0954+65 During An Optical-X-ray Flare

The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength campaign on the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array. The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3pm4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3sigma level) on the X-ray polarization degree; although a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3sigma). We model the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. The constraints we obtain with our combined multi-wavelength polarization observations and SED modeling tentatively disfavor hadronic models for the X-ray emission in S4 0954+65.

  • 137 authors
·
Nov 25, 2024

A new sample of massive B-type contact binary candidates from the OGLE survey of the Magellanic Clouds

Massive contact binaries (CBs) are key to understanding close-binary evolution and stellar mergers, yet their study has been limited by the scarcity of observed systems, particularly of B-type binaries expected to dominate this class. We bridge this gap by mining a large sample of massive CB candidates from the OGLE-IV database, increasing their known numbers in the Magellanic Clouds by nearly an order of magnitude. Using main-sequence colour-magnitude limits, an observationally informed period-luminosity-colour relation for CBs, and a high morph-parameter cut (cgeq0.7), we identified 68 O- and B-type binaries that exhibit smooth, sinusoidal light curves with nearly equal eclipse depths. We then isolated a bona fide sample of 37 CB candidates (28 in the LMC and 9 in the SMC) that match theoretical colour-magnitude and period distributions derived from an extensive grid of MESA binary models. The bona fide sample, dominated by B-type systems with Papprox0.6-1 d, agrees with the predicted population and may contain many qapprox1 binaries, as expected from models showing mass equalization preceding temperature equalization during nuclear-timescale contact. Synthetic PHOEBE light curves of contact and near-contact phases of MESA models reveal a degeneracy between these configurations, suggesting possible misidentifications among these systems. Spectroscopic follow-up is required to test these predictions and refine the evolutionary framework of massive CBs.

  • 5 authors
·
Oct 21, 2024

The Chandra Source Catalog

The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <~ 30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1 sigma uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of <~ 1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively.

  • 39 authors
·
May 25, 2010

Radio observations point to a moderately relativistic outflow in the fast X-ray transient EP241021a

Fast X-ray transients (FXRTs) are short-lived X-ray outbursts with diverse progenitor scenarios, including compact object mergers, stellar core-collapses and tidal disruption events. The Einstein Probe (EP) has enabled the rapid discovery and follow-up of dozens of FXRTs, revealing that while some of them overlap with traditional gamma-ray bursts (GRBs), a larger fraction of FXRTs have no associated gamma-ray counterpart down to deep limits. The origin of these gamma-ray dark FXRTs and their connection to the diverse landscape of stellar explosions remains an open question, which can be tackled through the study of their multi-wavelength counterparts and environment. In this paper, we present long-term radio observations of the gamma-ray dark EP241021a, which exhibits sustained radio emission for over 100 days, placing it among the longest-lived radio afterglows. We detect signature of interstellar scintillation in early epochs, allowing us to constrain the angular size and Lorentz factor of the emitting region. Our observations point to an outflow that is at least mildly relativistic with Lorentz factor > 4. Afterglow modeling favors a moderately relativistic and collimated outflow interacting with a low-density interstellar medium. The derived beaming-corrected kinetic energy and low radiative efficiency are consistent with a standard relativistic explosion which did not produce bright gamma-rays. Alternatively, a highly-relativistic structured jet remains consistent with our observations if seen substantially off-axis. In the latter case, the initial X-ray flare detected by EP would be caused by the slower ejecta from the lateral wings intercepting our line of sight rather than by traditional prompt-emission mechanisms within the jet core.

  • 10 authors
·
May 13

Probing X-ray Timing and Spectral Variability in the Blazar PKS 2155-304 Over a Decade of XMM-Newton Observations

Blazars, a class of active galactic nuclei (AGN) powered by supermassive black holes, are known for their remarkable variability across multiple timescales and wavelengths. With advancements in both ground- and space-based telescopes, our understanding of AGN central engines has significantly improved. However, the mechanisms driving this variability remain elusive, and continue to fascinate both theorists and observers alike. The primary objective of this study is to constrain the X-ray variability properties of the TeV blazar PKS 2155-304. We conduct a comprehensive X-ray spectral and timing analysis, focusing on both long-term and intra-day variability. This analysis uses data from 22 epochs of XMM-Newton EPIC-pn observations, collected over 15 years (2000-2014). To investigate the variability of the source, we applied both timing and spectral analyses. For the timing analysis, we estimated fractional variability, variability amplitude, minimum variability timescales, flux distribution, and power spectral density (PSD). In the spectral analysis, we fitted the X-ray spectra using power-law, log-parabola, and broken power-law (BPL) models to determine the best-fitting parameters. Additionally, we studied the hardness ratio (HR). We observed moderate intra-day variability in most of the light curves. Seven out of the twenty-two observations showed a clear bimodal flux distribution, indicating the presence of two distinct flux states. Our analysis revealed a variable power-law PSD slope. Most HR plots did not show significant variation with flux, except for one observation (OBSID 0124930501), where HR increased with flux (Count/s). The fitted X-ray spectra favored the BPL model for the majority of observations. The findings of this work shed light on the intraday variability of blazars, providing insights into the non-thermal jet processes that drive the observed flux variations.

  • 8 authors
·
Oct 2, 2024

Analysis of Two Models for the Angular Structure of the Outflows Producing the Swift/XRT "Larger-Angle Emission" of Gamma-Ray Bursts

The instantaneous emission from a relativistic surface endowed with a Lorentz factor Gamma that decreases away from the outflow symmetry axis can naturally explain the three phases observed by Swift/XRT in GRBs and their afterglows (GRB tail, afterglow plateau and post-plateau). We expand the analytical formalism of the "Larger-Angle Emission" model previously developed for "Power-Law" outflows to "n-Exponential" outflows (e.g. exponential with n=1 and Gaussian with n=2) and compare their abilities to account for the X-ray emission of XRT afterglows. We assume power-law Gamma-dependences of two spectral characteristics (peak-energy and peak intensity) and find that, unlike Power-Law outflows, n-Exponential outflows cannot account for plateaus with a temporal dynamical range larger than 100. To include all information existing in the Swift/XRT measurements of X-ray aferglows (0.3-10 keV unabsorbed flux and effective spectral slope), we calculate 0.3 keV and 10 keV light-curves using a broken power-law emission spectrum of peak-energy and low-and high-energy slopes that are derived from the effective slope measured by XRT. This economical peak-energy determination is found to be consistent with more expensive spectral fits. The angular distributions of the Lorentz factor, comoving frame peak-energy, and peak-intensity (Gamma (theta), E'_p (theta), i'_p(theta)) constrain the (yet-to-be determined) convolution of various features of the production of relativistic jets by solar-mass black-holes and of their propagation through the progenitor/circumburst medium, while the E'_p (Gamma) and i'_p (Gamma) dependences may constrain the GRB dissipation mechanism and the GRB emission process.

  • 1 authors
·
May 9

X-ray Observations of Nova Scorpii 2023 (V1716 Sco) in Outburst

Nova Scorpii 2023 was first detected as a luminous supersoft X-ray source (SSS) 93 days after outburst and continued emitting soft X-rays for over two months, until it was too close to the Sun to observe. The nova was monitored with the Swift X-ray Telescope (XRT) and the Neutron Star Interior Composition Explorer (NICER) on the International Space Station, and in long exposures with the Chandra High Resolution Camera (HRC) and Low Energy Transmission Grating (LETG) on days 128, 129, and 183-185 after optical maximum. Swift detected a rapidly decaying SSS when observations resumed, constraining the constant bolometric luminosity phase to 9 months. The SSS flux was irregularly variable. A nearly three-fold increase in flux was observed between August and October 2023 in the 15 to 35 Angstrom range, from 3.5 x 10^(-11) to 9.4 x 10^(-11) erg cm^(-2) s^(-1). The SSS duration and effective temperature derived from the October LETG spectra indicate a massive white dwarf with temperature fitting nova evolutionary tracks for a 1.2 solar mass WD; emission lines superimposed on the WD continuum are attributed to surrounding shocked ejecta. We present a timing study based on Chandra and archival NICER data. The irregular variability timescale was days, but a 77.9 second periodic modulation in the SSS flux with varying amplitude was measured in many observations. Our analysis shows that this period was stable; short drifts derived with NICER, but not in long, uninterrupted Chandra exposures, are artifacts of measuring variable amplitude modulation. We suggest the modulations are associated with the WD rotation.

  • 8 authors
·
Oct 21

Phemenological Modeling of Eclipsing Binary Stars

We review the method NAV (New Algol Variable) first introduced in 2012Ap.....55..536A, which uses the locally-dependent shapes of eclipses in an addition to the trigonometric polynomial of the second order (which typically describes the "out-of-eclipse" part of the light curve with effects of reflection, ellipticity and O'Connell). Eclipsing binary stars are believed to show distinct eclipses only if belonging to the EA type. With a decreasing eclipse width, the statistically optimal value of the trigonometric polynomial s (2003ASPC..292..391A) drastically increases from ~2 for elliptic (EL) variables without eclipses, ~6-8 for EW and up to ~30-50 for some EA with narrow eclipses. In this case of large number of parameters, the smoothing curve becomes very noisy and apparent waves (the Gibbs phenomenon) may be seen. The NAV set of the parameters may be used for classification in the GCVS, VSX and similar catalogs. The maximal number of parameters is m=12, which corresponds to s=5, if correcting both the period and the initial epoch. We have applied the method to few stars, also in a case of multi-color photometry (2015JASS...32..127A), when it is possible to use the phenomenological parameters from the NAV fit to estimate physical parameters using statistical dependencies. We conclude that the NAV approximation is better than the TP one even for the case of EW-type stars with much wider eclipses. It may also be used to determine timings (see 2005ASPC..335...37A for a review of methods) or to determine parameters in the case of variable period, using a complete light curve modeling the phase variations. The method is illustrated on 2MASS J11080447-6143290 (EA-type), USNO-B1.0 1265-0306001 and USNO-B1.0 1266-0313413 (EW-type) and compared to various other methods from the literature.

  • 3 authors
·
Feb 12, 2016

SgrA* spin and mass estimates through the detection of multiple extremely large mass-ratio inspirals

We analyze the parameter estimation accuracy that can be achieved for the mass and spin of SgrA*, the SMBH in our Galactic Center, by detecting multiple extremely large mass-ratio inspirals (XMRIs). XMRIs are formed by brown dwarfs (BD) inspiraling into a supermassive black hole (SMBH), thus emitting gravitational waves (GWs) inside the detection band of future space-based detectors such as LISA and TianQin. Theoretical estimates suggest the presence of approximately 10 XMRIs emitting detectable GWs, making them some of the most promising candidates for space-based GW detectors. Our analysis indicates that even if individual sources have low SNRs (approx10), high-precision parameter estimates can still be achieved by detecting multiple sources. In this case, the accuracy of the parameter estimates increases by approximately one to two orders of magnitude, at least. Moreover, by analyzing a small sample of 400 initial conditions for XMRIs formed in the Galactic Center, we estimate that almost 80 % of the detectable XMRIs orbiting SgrA* will have eccentricities between 0.43 to 0.95 and an SNRin [10,100]. The remaining sim20 % of the sources have an SNRin [100,1000] and eccentricities ranging from 0.25 to 0.92. Additionally, some XMRIs with high SNR are far from being circular. These loud sources with SNRapprox 1000 can have eccentricities as high as eapprox0.7; although their detection chances are low, representing lesssim2 % of the detectable sources, their presence is not ruled out.

  • 3 authors
·
Dec 30, 2024

RABBITS -- I. The crucial role of nuclear star formation in driving the coalescence of supermassive black hole binaries

In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we focus on the hardening and coalescing process of supermassive black hole (SMBH) binaries in galaxy mergers. For simulations including different galaxy formation processes (i.e. gas cooling, star formation, SMBH accretion, stellar and AGN feedback), we systematically control the effect of stochastic eccentricity by fixing it to similar values during the SMBH hardening phase. We find a strong correlation between the SMBH merger time-scales and the presence of nuclear star formation. Throughout the galaxy merging process, gas condenses at the centre due to cooling and tidal torques, leading to nuclear star formation. These recently formed stars, which inherit low angular momenta from the gas, contribute to the loss cone and assist in the SMBH hardening via three-body interactions. Compared to non-radiative hydrodynamical runs, the SMBH merger time-scales measured from the runs including cooling, stellar and SMBH physical processes tend to be shortened by a factor of {sim}1.7. After fixing the eccentricity to the range of e sim 0.6--0.8 during the hardening phase, the simulations with AGN feedback reveal merger time-scales of {sim} 100--500 Myr for disc mergers and {sim} 1--2 Gyr for elliptical mergers. With a semi-analytical approach, we find that the torque interaction between the binary and its circumbinary disc has minimal impact on the shrinking of the binary orbit in our retrograde galaxy merger. Our results are useful in improving the modelling of SMBH merger time-scales and gravitational wave event rates.

  • 8 authors
·
Nov 2, 2023

First systematic study reporting the changes in eclipse cut-off frequency for pulsar J1544+4937

We present results from a long-term monitoring of frequency dependent eclipses of the radio emission from PSR J1544+4937 which is a ``black widow spider'' millisecond pulsar (MSP) in a compact binary system. The majority of such systems often exhibit relatively long duration radio eclipses caused by ablated material from their companion stars. With the wide spectral bandwidth of upgraded Giant Metrewave Radio Telescope (uGMRT), we present first systematic study of temporal variation of eclipse cut-off frequency. With decade-long monitoring of 39 eclipses for PSR J1544+4937, we notice significant changes in the observed cut-off frequency ranging from 343 pm 7 MHz to > 740 MHz. We also monitored changes in eclipse cut-off frequency on timescales of tens of days and observed a maximum change of ge 315 MHz between observations that were separated by 22 days. In addition, we observed a change of sim 47 MHz in eclipse cut-off frequency between adjacent orbits, i.e. on timescales of sim 2.9 hours. We infer that such changes in the eclipse cut-off frequency depict an eclipse environment for the PSR J1544+4937 system that is dynamically evolving, where, along with the change in electron density, the magnetic field could also be varying. We also report a significant correlation between the eclipse cut-off frequency and the mass loss rate of the companion. This study provides the first direct evidence of mass loss rate affecting the frequency dependent eclipsing in a spider MSP.

  • 6 authors
·
Nov 3, 2023

A comprehensive grid of massive binary evolution models for the Galaxy - Surface properties of post-mass transfer stars

Massive stars often evolve in binary systems, in which binary interactions significantly affect their evolution. Massive stars in the Galaxy serve as valuable testbeds for this due to their proximity. We computed the evolution of more than 38000 galactic binary systems with initial primary star masses of 5...100 Msun. In this paper, we aim to investigate the surface properties of post-mass transfer mass donor and mass gainer stars through core hydrogen burning, core helium burning, and for the pre-supernova stage. The models are computed with MESA, incorporating detailed stellar and binary physics, including internal differential rotation, magnetic angular momentum transport, mass-dependent overshooting, stellar wind mass-loss, mass and angular momentum transfer and tidal interaction. They incorporate a new extensive nuclear network for hydrogen burning, which allows us to track the full range of hydrogen burning nucleosynthesis products, from the light elements to aluminum. The widest, non-interacting binary models in our grid effectively serve as single star models. We find that mass gainers and mass donors may evolve through long-lived blue and yellow supergiant stages during core helium burning where single stars of the same mass remain red supergiants. Furthermore, some of our gainers evolve into more luminous yellow and blue supergiants prior to core collapse than single stars, while some donors end their life as red or yellow supergiants, showing a rich diversity in supernova progenitors. We show that the surface elemental and isotopic abundances carry valuable information about a star's evolutionary history and can be used to distinguish binary interaction products from single stars. Our binary model grid may serve as a tool for identifying post-mass transfer stars and supernovae, and holds potential for population studies, supernova modeling, and guidance of future observations.

  • 4 authors
·
Oct 22

Resolving Pleiades binary stars with Gaia and speckle interferometric observations

The Pleiades is the most prominent open star cluster visible from Earth and an important benchmark for simple stellar populations, unified by common origin, age, and distance. Binary stars are its essential ingredient, yet their contribution remains uncertain due to heavy observational biases. A resolved multiplicity survey was conducted for a magnitude-limited G < 15mag sample of 423 potential cluster members, including sources with poorly fitted astrometric solutions in Gaia DR3. Speckle interferometric observations at the 2.5 meter telescope of SAI MSU observatory were combined with Gaia data, enabling the identification of 61 resolved binary or multiple systems within the 0.04 - 10 arcsec (5 - 1350 au) separation range. With speckle observations, we discovered 21 components in 20 systems. The existence of a Merope (23 Tau) companion is confirmed after several previous unsuccessful attempts. We show that the Gaia multipeak fraction is a strong predictor of subarcsecond multiplicity, as all sources with ipd_frac_multi_peak > 4% are successfully resolved. We found that 10% of Pleiades stars have a companion with a mass ratio q > 0.5 within projected separation of 27 < s < 1350 au, and confirm a deficit of wide binaries with s > 300 au. An observed dearth of wide pairs with large mass ratio (q > 0.55) may imprint the transition from hard to soft binaries regime at the early stages of cluster evolution. The total binary fraction for q > 0.5 systems is extrapolated to be around 25%.

  • 3 authors
·
Dec 30, 2024

A systematic analysis of the radio properties of 22 X-ray selected tidal disruption event candidates with the Australia Telescope Compact Array

We present a systematic analysis of the radio properties of an X-ray selected sample of tidal disruption event (TDE) candidates discovered by the eROSITA telescope. We find radio sources coincident with half of the transient events (11 TDEs), with 8 radio sources showing statistically significant variability over a 6-month period. We model the radio spectra of 6 sources with sufficiently bright radio emission and find the sources show radio spectra consistent with optically thin synchrotron emission and radio outflow minimum radii of 10^{16}--10^{17} cm, velocities 0.01--0.05 c, and energies 10^{48}--10^{51} erg. On comparison with the radio properties of an optically-selected TDE sample at similar late times, we find no significant difference in the radio luminosity range or radio detection rate. We find a tentative positive trend with peak radio and X-ray luminosity, but require further observations to determine if this is real or due to observational bias due to the large range in distances of the events. Interestingly, none of the X-ray selected events show late rising radio emission, compared to 45% of radio-detected sources of an optically-selected sample that showed late rising radio emission. We propose that this may indicate that many TDEs launch radio outflows at or near peak X-ray luminosity, which can be significantly delayed from peak optical luminosity. This study presents the first systematic analysis of the radio properties of an X-ray selected sample of TDEs, and gives insight into the possible link between the physical processes that power X-ray and radio emission in TDEs.

  • 10 authors
·
Apr 11

The Binary Fraction of Red Supergiants in the Magellanic Clouds

Red supergiants (RSGs), as the descendants of OB-type stars and the progenitors of supernovae, provide crucial insights into the evolution of massive stars, particularly in binary systems. Previous studies show that the binary fraction of RSGs (approx 15% - 40%) is significantly lower than that of their predecessors (approx 50% - 70%). In this work, we investigate the binary fraction of RSGs with the recently selected largest samples of 4695 and 2097 RSGs in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), respectively. The binary system with a hot companion (O-, B- and A-type star) is identified by detecting the ultraviolet (UV) excess in the observed spectral energy distribution (SED) ranging from ultraviolet to mid-infrared after subtracting the model SED of RSG since RSGs are very weak in the UV band. It is found that the lower limit of binarity is 30.2% pm 0.7% and 32.2% pm 1% in the LMC and SMC, respectively. If the sample is limited to luminous RSGs with log L/L_{odot} > 4.0, the binary fraction becomes 26.6% pm 1.1% and 26.4% pm 1.7% in the LMC and SMC, respectively. The derived binary fraction is valid in the range of sim 2.3 < log P / [d] < sim 8. Our study suggests that roughly one-third of massive stars host a third companion within sim 30,000 AU. In addition, 15 RSGs are also identified as binary via HST/STIS spectra, and a handful of the binaries identified by the SED fitting are confirmed by their light curve and radial velocity dispersion. The stellar parameters of the companions, i.e. T_{eff}, R, L and log g, are calculated by model fitting.

  • 3 authors
·
Apr 4

Analysis of the JWST spectra of the kilonova AT 2023vfi accompanying GRB 230307A

Kilonovae are key to advancing our understanding of r-process nucleosynthesis. To date, only two kilonovae have been spectroscopically observed, AT 2017gfo and AT 2023vfi. Here, we present an analysis of the James Webb Space Telescope (JWST) spectra obtained +29 and +61 days post-merger for AT 2023vfi (the kilonova associated with GRB 230307A). After re-reducing and photometrically flux-calibrating the data, we empirically model the observed X-ray to mid-infrared continua with a power law and a blackbody, to replicate the non-thermal afterglow and apparent thermal continuum gtrsim 2 , mum. We fit Gaussians to the apparent emission features, obtaining line centroids of 20218_{-38}^{+37}, 21874 pm 89 and 44168_{-152}^{+153}\,\AA, and velocity widths spanning 0.057 - 0.110\,c. These line centroid constraints facilitated a detailed forbidden line identification search, from which we shortlist a number of r-process species spanning all three r-process peaks. We rule out Ba II and Ra II as candidates and propose Te I-III, Er I-III and W III as the most promising ions for further investigation, as they plausibly produce multiple emission features from one (W III) or multiple (Te I-III, Er I-III) ion stages. We compare to the spectra of AT 2017gfo, which also exhibit prominent emission at sim 2.1 , mum, and conclude that [Te III] lambda21050 remains the most plausible cause of the observed sim 2.1 , mum emission in both kilonovae. However, the observed line centroids are not consistent between both objects, and they are significantly offset from [Te III] lambda21050. The next strongest [Te III] transition at 29290\,\AA\ is not observed, and we quantify its detectability. Further study is required, with particular emphasis on expanding the available atomic data to enable quantitative non-LTE spectral modelling.

  • 2 authors
·
Aug 20, 2024

CAvity DEtection Tool (CADET): Pipeline for automatic detection of X-ray cavities in hot galactic and cluster atmospheres

The study of jet-inflated X-ray cavities provides a powerful insight into the energetics of hot galactic atmospheres and radio-mechanical AGN feedback. By estimating the volumes of X-ray cavities, the total energy and thus also the corresponding mechanical jet power required for their inflation can be derived. Properly estimating their total extent is, however, non-trivial, prone to biases, nearly impossible for poor-quality data, and so far has been done manually by scientists. We present a novel and automated machine-learning pipeline called Cavity Detection Tool (CADET), developed to detect and estimate the sizes of X-ray cavities from raw Chandra images. The pipeline consists of a convolutional neural network trained for producing pixel-wise cavity predictions and a DBSCAN clustering algorithm, which decomposes the predictions into individual cavities. The convolutional network was trained using mock observations of early-type galaxies simulated to resemble real noisy Chandra-like images. The network's performance has been tested on simulated data obtaining an average cavity volume error of 14 % at an 89 % true-positive rate. For simulated images without any X-ray cavities inserted, we obtain a 5 % false-positive rate. When applied to real Chandra images, the pipeline recovered 91 out of 100 previously known X-ray cavities in nearby early-type galaxies and all 14 cavities in chosen galaxy clusters. Besides that, the CADET pipeline discovered 8 new cavity pairs in atmospheres of early-type galaxies and galaxy clusters (IC4765, NGC533, NGC2300, NGC3091, NGC4073, NGC4125, NGC4472, NGC5129) and a number of potential cavity candidates.

  • 4 authors
·
Apr 11, 2023

Modelling the accretion and feedback of supermassive black hole binaries in gas-rich galaxy mergers

We introduce a new model for the accretion and feedback of supermassive black hole (SMBH) binaries to the KETJU code, which enables us to resolve the evolution of SMBH binaries down to separations of tens of Schwarzschild radii in gas-rich galaxy mergers. Our subgrid binary accretion model extends the widely used Bondi--Hoyle--Lyttleton accretion into the binary phase and incorporates preferential mass accretion onto the secondary SMBH, which is motivated by results from small-scale hydrodynamical circumbinary disc simulations. We perform idealised gas-rich disc galaxy merger simulations using pure thermal or pure kinetic active galactic nuclei (AGN) feedback. Our binary accretion model provides more physically motivated SMBH mass ratios, which are one of the key parameters for computing gravitational wave (GW) induced recoil velocities. The merger time-scales of our simulated SMBH binaries are in the range t_{rm merge}{sim} 10--400 Myr. Prograde in-plane equal-mass galaxy mergers lead to the shortest merger time-scales, as they experience the strongest starbursts, with the ensuing high stellar density resulting in a rapid SMBH coalescence. Compared to the thermal AGN feedback, the kinetic AGN feedback predicts longer merger time-scales and results in more core-like stellar profiles, as it is more effective in removing gas from the galaxy centre and quenching star formation. This suggests that the AGN feedback implementation plays a critical role in modelling SMBH coalescences. Our model will be useful for improving the modelling of SMBH mergers in gas-rich galaxies, the prime targets for the upcoming LISA GW observatory.

  • 9 authors
·
Nov 21, 2022

A UV to X-ray view of soft excess in type 1 AGNs: I. sample selection and spectral profile

A core sample of 59 unobscured type 1 AGNs with simultaneous XMM-Newton X-ray and UV observations is compiled from archive to probe the nature of soft X-ray excess (SE). In the first paper of this series, our focus centers on scrutinizing the spectral profile of the soft excess. Of the sources, approx 71% (42/59) exhibit powerlaw-like (po-like) soft excess, while approx 29% (17/59) exhibit blackbody-like (bb-like) soft excess. We show a cut-off powerlaw could uniformly characterize both types of soft excesses, with median Ecut of 1.40 keV for po-like and 0.14 keV for bb-like. For the first time, we report a robust and quantitative correlation between the SE profile and SE strength (the ratio of SE luminosity to that of the primary powerlaw continuum in 0.5 - 2.0 keV), indicating that stronger soft excess is more likely to be po-like, or effectively has a higher Ecut. This correlation cannot be explained by ionized disk reflection alone, which produces mostly bb-like soft excess (Ecut sim 0.1 keV) as revealed by relxilllp simulation. Remarkably, we show with simulations that a toy hybrid scenario, where both ionized disk reflection (relxilllp, with all reflection parameters fixed at default values except for ionization of the disk) and warm corona (compTT, with temperature fixed at 1 keV) contribute to the observed soft excess, can successfully reproduce the observed correlation. This highlights the ubiquitous hybrid nature of the soft X-ray excess in AGNs, and underscores the importance of considering both components while fitting the spectra of soft excess.

  • 8 authors
·
Dec 15, 2024

XRISM Observations of Cassiopeia A: Overview, Atomic Data, and Spectral Models

Cassiopeia A (Cas A) is the youngest known core-collapse supernova remnant (SNR) in the Galaxy and is perhaps the best-studied SNR in X-rays. Cas A has a line-rich spectrum dominated by thermal emission and given its high flux, it is an appealing target for high-resolution X-ray spectroscopy. Cas A was observed at two different locations during the Performance Verification phase of the XRISM mission, one location in the southeastern part (SE) of the remnant and one in the northwestern part (NW). This paper serves as an overview of these observations and discusses some of the issues relevant for the analysis of the data. We present maps of the so-called ``spatial-spectral mixing'' effect due to the fact that the XRISM point-spread function is larger than a pixel in the Resolve calorimeter array. We analyze spectra from two bright, on-axis regions such that the effects of spatial-spectral mixing are minimized. We find that it is critical to include redshifts/blueshifts and broadening of the emission lines in the two thermal components to achieve a reasonable fit given the high spectral resolution of the Resolve calorimeter. We fit the spectra with two versions of the AtomDB atomic database (3.0.9 and 3.1.0) and two versions of the SPEX (3.08.00 and 3.08.01*) spectral fitting software. Overall we find good agreement between AtomDB 3.1.0 and SPEX 3.08.01* for the spectral models considered in this paper. The most significant difference we found between AtomDB 3.0.9 and 3.1.0 and between AtomDB 3.1.0 and SPEX 3.08.01* is the Ni abundance, with the new atomic data favoring a considerably lower (up to a factor of 3) Ni abundance. Both regions exhibit significantly enhanced abundances compared to Solar values indicating that supernova ejecta dominate the emission in these regions. We find that the abundance ratios of Ti/Fe, Mn/Fe, \& Ni/Fe are significantly lower in the NW than the SE.

  • 17 authors
·
Aug 1

Tracing the Physical Lineage of GRB 211211A: Population Constraints on NS-WD Merger Gamma-Ray Bursts

The peculiar long gamma-ray burst (GRB) event, GRB 211211A, is known for it is association with a kilonova feature. Whereas most long GRBs are thought to originate in the core collapse of massive stars, the presence of kilonova suggests GRB 211211A was instead produced by a merger of a compact object binary. Building on the interpretation put forward by Yang2022Natur.612..232Y--who argue that GRB 211211A was powered by a massive white-dwarf + neutron-star (WD-NS) merger--we adopt this WD-NS scenario as our observationally supported starting point. If the burst truly originates from that channel, its rarity must mirror the formation and merger rate of WD-NS binaries--a rate still largely unexplored in conventional massive-binary population studies. In this letter, we present a qualitative analysis based on binary evolution physics in order to understand the fraction of GRB 211211A in short GRBs (NS-WD/NS-NS fraction). Since the progenitors of massive WD-NS binaries occupy the initial mass function-preferred regime, where the zero-age main-sequence mass range of the assumed WD mass range (1.2-1.4,M_odot) is comparable to that of NSs, the NS-WD/NS-NS fraction emerging from our standard evolutionary path is expected to be sim14--37\%, far higher than the observed fraction (sim5\%). This discrepancy might imply a large, still-unidentified population of GRB 211211A-like events or an unusual origin of the NS-such as being hypernova-born or accretion-induced-collapse-born. Placing these results in a broader compact-binary context, implications for black-hole systems are also discussed.

  • 4 authors
·
Aug 14

GWKokab: An Implementation to Identify the Properties of Multiple Population of Gravitational Wave Sources

The rapidly increasing sensitivity of gravitational wave detectors is enabling the detection of a growing number of compact binary mergers. These events are crucial for understanding the population properties of compact binaries. However, many previous studies rely on computationally expensive inference frameworks, limiting their scalability. In this work, we present GWKokab, a JAX-based framework that enables modular model building with independent rate for each subpopulation such as BBH, BNS, and NSBH binaries. It provides accelerated inference using the normalizing flow based sampler called flowMC and is also compatible with NumPyro samplers. To validate our framework, we generated two synthetic populations, one comprising spinning eccentric binaries and the other circular binaries using a multi-source model. We then recovered their injected parameters at significantly reduced computational cost and demonstrated that eccentricity distribution can be recovered even in spinning eccentric populations. We also reproduced results from two prior studies: one on non-spinning eccentric populations, and another on the BBH mass distribution using the third Gravitational Wave Transient Catalog (GWTC-3). We anticipate that GWKokab will not only reduce computational costs but also enable more detailed subpopulation analyses such as their mass, spin, eccentricity, and redshift distributions in gravitational wave events, offering deeper insights into compact binary formation and evolution.

  • 3 authors
·
Sep 16

Discovery of kiloparsec-scale semi-relativistic Fe Kα complex emission in NGC 5728

We present Chandra ACIS-S imaging spectroscopy results of the extended (1.5''- 8'', 300 pc-1600 pc) hard X-ray emission of NGC 5728, the host galaxy of a Compton thick active galactic nucleus (CT AGN). We find spectrally and spatially-resolved features in the Fe Kalpha complex (5.0-7.5 keV), redward and blueward of the neutral Fe line at 6.4 keV in the extended narrow line region bicone. A simple phenomenological fit of a power law plus Gaussians gives a significance of 5.4sigma and 3.7sigma for the red and blue wings, respectively. Fits to a suite of physically consistent models confirm a significance geq3sigma for the red wing. The significance of the blue wing may be diminished by the presence of rest frame highly ionized Fe XXV and Fe XXVI lines (1.4sigma - 3.7sigma range). A detailed investigation of the Chandra ACIS-S point spread function (PSF) and comparison with the observed morphology demonstrates that these red and blue wings are radially extended (~5'', ~1 kpc) along the optical bicone axis. If the wings emission is due solely to redshifted and blueshifted high-velocity neutral Fe Kalpha then the implied line-of-sight velocities are +/- ~0.1c, and their fluxes are consistent with being equal. A symmetric high-velocity outflow is then a viable explanation. This outflow has deprojected velocities ~100 times larger than the outflows detected in optical spectroscopic studies, potentially dominating the kinetic feedback power.

  • 5 authors
·
Mar 1, 2023

RABBITS -- II. The impact of AGN feedback on coalescing supermassive black holes in disc and elliptical galaxy mergers

In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we investigate the orbital evolution of supermassive black holes (SMBHs) during galaxy mergers. We simulate both disc and elliptical galaxy mergers using the KETJU code, which can simultaneously follow galaxy (hydro-)dynamics and small-scale SMBH dynamics with post-Newtonian corrections. With our SMBH binary subgrid model, we show how active galactic nuclei (AGNs) feedback affects galaxy properties and SMBH coalescence. We find that simulations without AGN feedback exhibit excessive star formation, resulting in merger remnants that deviate from observed properties. Kinetic AGN feedback proves more effective than thermal AGN feedback in expelling gas from the centre and quenching star formation. The different central galaxy properties, which are a result of distinct AGN feedback models, lead to varying rates of SMBH orbital decay. In the dynamical friction phase, galaxies with higher star formation and higher SMBH masses possess denser centres, become more resistant to tidal stripping, experience greater dynamical friction, and consequently form SMBH binaries earlier. As AGN feedback reduces gas densities in the centres, dynamical friction by stars dominates over gas. In the SMBH hardening phase, compared to elliptical mergers, disc mergers exhibit higher central densities of newly formed stars, resulting in accelerated SMBH hardening and shorter merger time-scales (i.e. lesssim 500 Myr versus gtrsim 1 Gyr). Our findings highlight the importance of AGN feedback and its numerical implementation in understanding the SMBH coalescing process, a key focus for low-frequency gravitational wave observatories.

  • 8 authors
·
Nov 2, 2023

Is planetary inward migration responsible for GJ 504's fast rotation and bright X-ray luminosity? New constraints from eROSITA

The discovery of an increasing variety of exoplanets in very close orbits around their host stars raised many questions about how stars and planets interact, and to which extent host stars' properties may be influenced by the presence of close-by companions. Understanding how the evolution of stars is impacted by the interactions with their planets is fundamental to disentangle their intrinsic evolution from Star-Planet Interactions (SPI)-induced phenomena. GJ 504 is a promising candidate for a star that underwent strong SPI. Its unusually short rotational period (3.4 days), while being in contrast with what is expected by single-star models, could result from the inward migration of a close-by, massive companion, pushed starward by tides. Moreover, its brighter X-ray luminosity may hint at a rejuvenation of the dynamo process sustaining the stellar magnetic field, consequent to the SPI-induced spin-up. We aim to study the evolution of GJ 504 and establish whether by invoking the engulfment of a planetary companion we can better reproduce its rotational period and X-ray luminosity. We simulate the past evolution assuming two different scenarios: 'Star without close-by planet', 'Star with close-by planet'. In the second scenario, we investigate how inward migration and planetary engulfment driven by tides spin up the stellar surface and rejuvenate its dynamo. We compare our tracks with rotational period and X-ray data collected from the all-sky surveys of the ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Russian Spektrum-Roentgen-Gamma mission (SRG). Despite the very uncertain stellar age, we found that the second evolutionary scenario is in better agreement with the short rotational period and the bright X-ray luminosity of GJ 504, thus strongly favouring the inward migration scenario over the one in which close-by planets have no tidal impact on the star.

  • 7 authors
·
Jan 13

TESS Discovers a Second System of Transiting Exocomets in the Extreme Debris Disk of RZ Psc

We present the TESS discovery of only the second system of transiting exocomets with a sufficient number of events to measure the size distribution in the RZ Psc system, enabling comparisons with the beta Pictoris and Solar System size distributions. Twenty-four transits with absorption depths (AD) of 1--20\% were observed across three TESS sectors of the 20-50 Myr K0V star, detected as part of our TESS survey of extreme debris disks identified by their IR excess. We discover that the ADs (and hence exocomet radii) follow a broken power-law cumulative frequency distribution not previously seen in extrasolar contexts but similar to that observed in Solar System Kuiper Belt Object sizes, with power-law slopes above and below the break of gamma_AD>break=2.32pm0.12 and gamma_AD<break=0.11pm0.04, respectively. We derive size distributions of 1--7~km from two independent lines of evidence. We use the RZ Psc exocomet rate to predict exocomet yields for the Early eVolution Explorer (EVE) NASA astrophysics Small Explorer (SMEX) mission concept to obtain simultaneous photometry of 10^4 young stars in NUV, optical, and NIR bands. Assuming occurrence rates scaled from RZ Psc, EVE would detect 590 exocomets from approx70 young systems in the optical band, with approx120 simultaneous 5sigma detections in all three bands. These data would enable grain sizes of 200--700~nm and graphite--olivine compositions of dozens of events to be distinguished at 2.5--3sigma, as well as a 4sigma determination of the accuracy of the Herschel-derived M-debris disk fraction.

  • 12 authors
·
Oct 10

New Radio Observations of the Supernova Remnant CTA 1

We present new radio images of the supernova remnant (SNR) CTA 1 at 1420 and 408 MHz, and in the 21 cm line of H I observed with the Dominion Radio Astrophysical Observatory Synthesis Telescope and at 1420 MHz observed with the Effelsberg 100 m telescope. We confirm previously described continuum features and elaborate further on filamentary features identified using the high-resolution (1') maps from these new observations. We investigate the abrupt change in sign of rotation measure (RM) across the SNR, using the linear polarization observations in the four bands around 1420 MHz. Following X. H. Sun et al.'s (2011) investigation, we both confirm that the distribution of signs of the RMs for extragalactic sources in the area appears to match that of the shell, as well as combine the data from the four bands to estimate the relative depolarization and the intrinsic rotation measure of the SNR. We do not conclusively reject X. H. Sun et al.'s (2011) claim of a Faraday screen in the foreground causing the distribution of RMs that we observe; however, we do suggest an alternative explanation of a swept-up stellar wind from the progenitor star with a toroidal magnetic field. Finally, we expand on the analysis of the H I observations by applying the Rolling Hough Transform to isolate filamentary structure and better identify H I emission with the SNR. Further constraining the H I velocity channels associated with CTA 1, we use more recent Galactic rotation curves to calculate an updated kinematic distance of 1.09 +/- 0.2 kpc.

  • 6 authors
·
Dec 19, 2024

The Low Mass Ratio Overcontact Binary GV Leonis and Its Circumbinary Companion

Photometric and spectroscopic observations of GV Leo were performed from 2017 to 2024. The light curves show a flat bottom at the primary eclipse and the conventional O'Connell effect. The echelle spectra reveal that the effective temperature and rotation velocity of the more massive secondary are T_{rm eff,2} = 5220pm120 K and v_2 sin i = 223pm40 km s^{-1}, respectively. Our binary modeling indicates that the program target is a W-subclass contact binary with a mass ratio of q = 5.48, an inclination angle of i = 81^circ.68, a temperature difference of (T_{rm eff,1}-T_{rm eff,2}) = 154 K, and a filling factor of f = 36 \%. The light asymmetries were reasonably modeled by a dark starspot on the secondary's photosphere. Including our 26 minimum epochs, 84 times of minimum light were used to investigate the orbital period of the system. We found that the eclipse times of GV Leo have varied by a sinusoid with a period of 14.9 years and a semi-amplitude of 0.0076 days superimposed on a downward parabola. The periodic modulation is interpreted as a light time effect produced by an unseen outer tertiary with a minimum mass of 0.26 M_odot, while the parabolic component is thought to be a combination of mass transfer (secondary to primary) and angular momentum loss driven by magnetic braking. The circumbinary tertiary would have caused the eclipsing pair of GV Leo to evolve into its current short-period contact state by removing angular momentum from the primordial widish binary.

  • 5 authors
·
Apr 13

Jet-ISM Interaction in the Radio Galaxy 3C293: Jet-driven Shocks Heat ISM to Power X-ray and Molecular H2 emission

We present a 70ks Chandra observation of the radio galaxy 3C293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 10^7 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C293, typically have LH2/LX~1 and MH2/MX~1, whereas MOHEGs that are BCGs have LH2/LX~0.01 and MH2/MX~0.01. The more massive, virialized, hot atmosphere in BCGs overwhelms any direct X-ray emission from current jet-ISM interaction. On the other hand, LH2/LX~1 in the Spiderweb BCG at z=2, which resides in an unvirialized protocluster and hosts a powerful radio source. Over time, jet-ISM interaction may contribute to the establishment of a hot atmosphere in BCGs and other massive elliptical galaxies.

  • 6 authors
·
Jan 5, 2015

Wave optics lensing of gravitational waves: theory and phenomenology of triple systems in the LISA band

We study lensing of gravitational waves by a black hole in the deep wave optics regime, i.e. when the wavelength is much larger than the black hole Schwarzschild radius. We apply it to triple systems, with a binary of stellar mass objects in the inspiraling phase orbiting around a central massive black hole. We describe the full polarisation structure of the wave and derive predictions for the polarisation modes of the scattered wave measured by the observer. We show that lensing in the wave optics regime is not helicity preserving, as opposed to lensing in the geometric optics regime. The amplitude of the total wave is modulated due to interference between the directly transmitted and lensed components. The relative amplitude of the modulation is fixed by the lensing geometry and can reach unity in the most favourable settings. This indicates that wave optics lensing is potentially detectable by LISA for sufficiently high SNR systems. Our findings show that in the wave optics regime it is necessary to go beyond the usual lensing description where the amplification factor is assumed to be the same for both helicity modes. While motivated by GW190521 and the AGN formation scenario, our results apply more broadly to stellar-mass binaries orbiting a third body described as a Schwarzschild black hole, with a period comparable to the GW observation time.

  • 4 authors
·
Apr 10, 2024

The implications of stochastic gas torques for asymmetric binaries in the LISA band

Gravitational waves from asymmetric mass-ratio black-hole binaries carry unique information about their astrophysical environment. For instance, the Laser Interferometer Space Antenna (LISA) could potentially measure the amplitude and slope of gas torques in binaries embedded in the accretion disks of Active Galactic Nuclei, helping differentiate competing accretion disk models. However, this relies on simplified analytic models, which do not account for the stochastic variability of torques seen in hydrodynamic simulations. In this work, we use hydrodynamic simulations to create gravitational waveforms for extreme and intermediate mass-ratio inspirals in the LISA band. We then analyze these simulated waveforms using simpler templates that assume analytic torques, without stochastic time variability. By performing realistic Bayesian parameter estimation, we find no bias at 90% confidence in the binary parameters; however, estimates of accretion disk parameters, such as torque amplitude and slope, may be biased. Typically, the posterior distribution is centered around the average value of the torques, but when stochastic variability is large, the posterior can indicate no torques, even though they are present in the simulation. Our results suggest that while simplified analytic torque models work well for estimating binary parameters, caution is needed when using them to infer properties of the accretion disk. This work moves towards a more realistic assessment of one of the LISA science objectives, i.e., probing the properties of the astrophysical environments of black holes.

  • 5 authors
·
Feb 14

Revision of the Phenomenological Characteristics of the Algol-Type Stars Using the NAV Algorithm

Phenomenological characteristics of the sample of the Algol-type stars are revised using a recently developed NAV ("New Algol Variable") algorithm (2012Ap.....55..536A, 2012arXiv 1212.6707A) and compared to that obtained using common methods of Trigonometric Polynomial Fit (TP) or local Algebraic Polynomial (A) fit of a fixed or (alternately) statistically optimal degree (1994OAP.....7...49A, 2003ASPC..292..391A). The computer program NAV is introduced, which allows to determine the best fit with 7 "linear" and 5 "non-linear" parameters and their error estimates. The number of parameters is much smaller than for the TP fit (typically 20-40, depending on the width of the eclipse, and is much smaller (5-20) for the W UMa and beta Lyrae - type stars. This causes more smooth approximation taking into account the reflection and ellipsoidal effects (TP2) and generally different shapes of the primary and secondary eclipses. An application of the method to two-color CCD photometry to the recently discovered eclipsing variable 2MASS J18024395 + 4003309 = VSX J180243.9 +400331 (2015JASS...32..101A) allowed to make estimates of the physical parameters of the binary system based on the phenomenological parameters of the light curve. The phenomenological parameters of the light curves were determined for the sample of newly discovered EA and EW - type stars (VSX J223429.3+552903, VSX J223421.4+553013, VSX J223416.2+553424, US-NO-B1.0 1347-0483658, UCAC3-191-085589, VSX J180755.6+074711= UCAC3 196-166827). Despite we have used original observations published by the discoverers, the accuracy estimates of the period using the NAV method are typically better than the original ones.

  • 3 authors
·
Nov 30, 2015

An X-ray Significantly Variable, Luminous, Type 2 Quasar at z = 2.99 with a Massive Host Galaxy

We present a comprehensive X-ray analysis and spectral energy distribution (SED) fitting of WISEA J171419.96+602724.6, an extremely luminous type 2 quasar at z = 2.99. The source was suggested as a candidate Compton-thick (column density N_{rm H}>1.5 times 10^{24} cm^{-2}) quasar by a short XMM-Newton observation in 2011. We recently observed the source with deep NuSTAR and XMM-Newton exposures in 2021 and found that the source has a lower obscuration of N_{rm H}sim5 times 10^{22} cm^{-2} with an about four times lower flux. The two epochs of observations suggested that the source was significantly variable in X-ray obscuration, flux, and intrinsic luminosity at 2-3~sigma in less than 2.5 years (in the source rest frame). We performed SED fitting of this source using CIGALE thanks to its great availability of multiwavelength data (from hard X-rays to radio). The source is very luminous with a bolometric luminosity of L_{rm BOL}sim 2.5 times 10^{47} erg s^{-1}. Its host galaxy has a huge star formation rate (SFR) of sim1280 Solar mass yr^{-1} and a huge stellar mass of sim1.1 times 10^{12} Solar mass. The correlation between the SFR and stellar mass of this source is consistent with what was measured in the high-z quasars. It is also consistent with what was measured in the main-sequence star-forming galaxies, suggesting that the presence of the active nucleus in our target does not enhance or suppress the SFR of its host galaxy. The source is an Infrared hyper-luminous, obscured galaxy with significant amount of hot dust in its torus and shares many similar properties with hot, dust obscured galaxies.

  • 11 authors
·
Sep 3, 2024

Phemenological Modelling of a Group of Eclipsing Binary Stars

Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the field of previously known variable star RS Car) and compare results to that obtained using the TP fits. For this system, the statistically optimal number of parameters is 44, but the fit is still worse than that of the NAV fit. Application to the system GSC 3692-00624 argues that the NAV fit is better than the TP one even for the case of EW-type stars with much wider eclipses. Model parameters are listed.

  • 3 authors
·
Sep 17, 2015

DA 362: A Gamma-ray Emitting Compact Symmetric Object

The Gamma-ray detection from an astrophysical object indicates the presence of an extreme environment where high-energy radiation is produced. With the continuous monitoring of the Gamma-ray sky by the Fermi Large Area Telescope (LAT), leading to deeper sensitivity, the high-energy Gamma-ray emission has now been detected from a diverse class of jetted active galactic nuclei (AGN). Here, we present the results of a multiwavelength study of the radio source DA~362, which was reported to be a blazar candidate of uncertain type. However, it was recently identified as a bona fide compact symmetric object (CSO) based on its sub-kpc, bi-polar radio morphology, and lack of radio variability. This makes DA~362 the only fourth Gamma-ray emitting object of this enigmatic class of radio-loud AGN. Using five very long baseline interferometry observations covering 1996-2018, we found the jet separation velocity to be subluminal (v_{rm app}sim 0.2c), thus supporting its CSO nature. Its Fermi-LAT observations revealed a Gamma-ray flaring activity, a phenomenon never detected from the other three Gamma-ray detected CSOs. This object is bright in the near-infrared band but extremely faint in the optical-ultraviolet filters, hinting at possible obscuration. The Swift X-Ray Telescope observation of DA 362 reveals an extremely hard X-ray spectrum, though a strong claim cannot be made due to large uncertainties. We conclude that deeper observations are needed to probe the broadband properties of this enigmatic object and to understand the origin of high-energy Gamma-ray emission.

  • 4 authors
·
Dec 17, 2024

A search for periodic activity in multi-peaked long gamma-ray bursts

A sizeable fraction of gamma-ray burst (GRB) light curves (LCs) features a sequence of peaks, which holds information on the unknown way energy is dissipated into gamma-rays over time. Traditional searches for periodic signals in GRB LCs turned out to be inconclusive, partly because they are challenging as a consequence of the short-lived, coloured-noise, and non-stationary nature of the LCs themselves. Yet, recent claims have revived the issue. We searched for periodic components in GRB LCs through a new approach to GRBs, that avoids most of the issues faced by traditional techniques. We identified peaks through a well tested algorithm and selected GRBs with at least 10 peaks out of 5 GRB catalogues (Swift/BAT, CGRO/BATSE, Fermi/GBM, Insight-HXMT, BeppoSAX/GRBM). Each GRB was simply treated as a discrete point process, whose realisation coincides with the sequence of peak times. We searched for possible periodic recurrences based on the multinomial distribution, after accounting for the clustering of peaks due to the non-stationarity of the GRB signals. The best candidate has a p-value of 3e-4 that there is no periodic recurrence. However, accounting for the multiple trials of 555 searched GRBs, its statistical significance is demoted to 17%. The overall distribution of the p-values obtained for all GRBs is compatible with a uniform distribution in [0,1]. We found no robust evidence for multi-peaked GRBs with periodic recurrences. We can exclude that a sizeable fraction (>~ 0.75) of peaks of each GRB with at least 10 peaks are periodic. While our result does not necessarily clash with claimed periodicities based on Fourier techniques, it constrains the putative recurrent behaviour, which would not manifest itself through the sequence of peaks, but, evidently, in a more elusive way.

  • 13 authors
·
Apr 10

SN 2023ixf in the Pinwheel Galaxy M101: From Shock Breakout to the Nebular Phase

We present photometric and spectroscopic observations of SN 2023ixf covering from day one to 442 days after explosion. SN 2023ixf reached a peak V-band absolute magnitude of -18.2 pm 0.07, and light curves show that it is in the fast-decliner (IIL) subclass with a relatively short ``plateau'' phase (fewer than sim 70 days). Early-time spectra of SN 2023ixf exhibit strong, very narrow emission lines from ionized circumstellar matter (CSM), possibly indicating a Type IIn classification. But these flash/shock-ionization emission features faded after the first week and the spectrum evolved in a manner similar to that of typical Type II SNe, unlike the case of most genuine SNe~IIn in which the ejecta interact with CSM for an extended period of time and develop intermediate-width emission lines. We compare observed spectra of SN 2023ixf with various model spectra to understand the physics behind SN 2023ixf. Our nebular spectra (between 200-400 d) match best with the model spectra from a 15 rm M_{odot} progenitor which experienced enhanced mass loss a few years before explosion. A last-stage mass-loss rate of M = 0.01 rm M_{odot} yr^{-1} from the r1w6 model matches best with the early-time spectra, higher than M approx 2.4 times 10^{-3} rm M_{odot} yr^{-1} derived from the ionized H{alpha} luminosity at 1.58 d. We also use SN 2023ixf as a distance indicator and fit the light curves to derive the Hubble constant by adding SN 2023ixf to the existing sample; we obtain H_{0}=73.1^{+3.68}_{-3.50} km s^{-1} Mpc^{-1}, consistent with the results from SNe~Ia and many other independent methods.

  • 42 authors
·
Mar 18

Follow-Up of Extended Shells around B[e] Stars

B[e] stars are massive B type emission line stars in different evolutionary stages ranging from pre-main sequence to post-main sequence. Due to their mass loss and ejection events these objects deposit huge amounts of mass and energy into their environment and enrich it with chemically processed material, contributing significantly to the chemical and dynamical evolution of their host galaxies. However, the large-scale environments of these enigmatic objects have not attracted much attention. The first and so far only catalog reporting the detection of extended shells around a sample of B[e] stars was an Ha imaging survey carried out in the year 2001, and was limited to bright targets in the northern hemisphere. We have recently started a follow-up of those targets to detect possible evolution of their nebulae in the plane of the sky over a baseline of two decades. Furthermore, we extend our survey to southern targets and fainter northern ones to complement and complete our knowledge on large-scale ejecta surrounding B[e] stars. Besides imaging in Ha and selected nebular lines, we utilize long-slit and 3D spectral observations across the nebulae to derive their physical properties. We discovered pronounced nebula structures around 15 more objects, resulting in a total of 27 B[e] stars with a large-scale nebula. Here we present our (preliminary) results for three selected objects: the two massive supergiants MWC137 and MWC 314, and the unclassified B[e] star MWC 819.

  • 6 authors
·
Mar 2, 2022

European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background

We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95% upper limit on the dimensionless strain amplitude A of the background of A<3.0times 10^{-15} at a reference frequency of 1yr^{-1} and a spectral index of 13/3, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to Omega_gw(f)h^2 < 1.1times10^{-9} at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of sim 5times10^{-9}~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95% upper limits on the string tension, Gmu/c^2, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gmu/c^2<1.3times10^{-7}, identical to that set by the {\it Planck} Collaboration, when combining {\it Planck} and high-ell Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of Omega^relic_gw(f)h^2<1.2 times10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.

  • 36 authors
·
Apr 14, 2015

Detecting eclipsing double white dwarfs with electromagnetic and gravitational waves

Galactic double white dwarfs are predominant sources of gravitational waves in the millihertz frequencies accessible to space-borne gravitational wave detectors. With advances in multi-messenger astronomy, an increasing number of double white dwarf systems will be discovered through both electromagnetic and gravitational wave observations. In this paper, we simulated two populations of double white dwarfs originating from different star formation histories (hereafter referred to as Model 1 and Model 2) using the binary population synthesis method. We predicted the number of double white dwarfs in our Galaxy detectable by TianQin and Laser Interferometer Space Antenna (LISA) individually, as well as through their joint observation. In addition, we performed an analysis to evaluate the accuracy of the parameter estimation using the Fisher information matrix. Furthermore, we predicted the number of detached eclipsing double white dwarfs detectable by Gaia and the Vera C. Rubin Observatory (VRO). Our study found that over the nominal mission durations, TianQin, LISA, and their joint observation can detect at least five thousand and potentially several tens of thousands of double white dwarfs with signal-to-noise ratios greater than 7. Gaia and VRO are expected to detect at least several dozen and up to several hundred eclipsing double white dwarfs with orbital periods less than 30 hours. We also found that several dozen eclipsing double white dwarfs can be detected jointly through electromagnetic and gravitational wave observations.

  • 4 authors
·
Jun 24, 2024

The High-resolution Accretion Disks of Embedded protoStars (HADES) simulations. I. Impact of Protostellar Magnetic Fields on the Accretion Modes

How embedded, actively accreting low-mass protostars accrete their mass is still greatly debated. Observations are now piecing together the puzzle of embedded protostellar accretion, in particular with new facilities in the near-infrared. However, high-resolution theoretical models are still lacking, with a stark paucity of detailed simulations of these early phases. Here we present high-resolution non-ideal magneto-hydrodynamic simulations of a Solar mass protostar accreting at rates exceeding 10^{-6} M_{odot} yr^{-1}. We show the results of the accretion flow for four different protostellar magnetic fields, 10 G, 500 G, 1 kG, and 2 kG, combined with a disk magnetic field. For weaker (10 G and 500 G) protostar magnetic fields, accretion occurs via a turbulent boundary layer mode, with disk material impacting across the protostellar surface. In the 500 G model, the presence of a magnetically dominated outflow focuses the accretion towards the equator, slightly enhancing and ordering the accretion. For kG magnetic fields, the disk becomes truncated due to the protostellar dipole and exhibits magnetospheric accretion, with the 2 kG model having accretion bursts induced by the interchange instability. We present bolometric light curves for the models and find that they reproduce observations of Class I protostars from YSOVAR, with high bursts followed by an exponential decay possibly being a signature of instability-driven accretion. Finally, we present the filling fractions of accretion and find that 90\% of the mass is accreted in a surface area fraction of 10-20\%. These simulations will be extended in future work for a broader parameter space, with their high resolution and high temporal spacing able to explore a wide range of interesting protostellar physics.

  • 4 authors
·
Oct 18, 2024

Synthetic Light Curves and Spectra for the Photospheric Phase of a 3D Stripped-Envelope Supernova Explosion Model

We present synthetic light curves and spectra from three-dimensional (3D) Monte Carlo radiative transfer simulations based on a 3D core-collapse supernova explosion model of an ultra-stripped 3.5,M_{odot} progenitor. Our calculations predict a fast and faint transient with Delta m_{15} sim 1- 2,mag and peak bolometric luminosity between -15.3,mag and -16.4,mag. Due to a large-scale unipolar asymmetry in the distribution of ^{56}Ni, there is a pronounced viewing-angle dependence with about 1,mag difference between the directions of highest and lowest luminosity. The predicted spectra for this rare class of explosions do not yet match any observed counterpart. They are dominated by prominent Mg~II lines, but features from O, C, Si, and Ca are also found. In particular, the O~I line at 7{774} appears as a blended feature together with Mg~II emission. Our model is not only faster and fainter than the observed Ib/c supernova population, but also shows a correlation between higher peak luminosity and larger Delta m_{15} that is not present in observational samples. A possible explanation is that the unusually small ejecta mass of our model accentuates the viewing-angle dependence of the photometry. We suggest that the viewing-angle dependence of the photometry may be used to constrain asymmetries in explosion models of more typical stripped-envelope supernova progenitors in future.

  • 5 authors
·
Oct 28, 2024

The SRG/eROSITA All-Sky Survey: Large-scale view of the Centaurus cluster

Methods. We utilized the combined five SRG/eROSITA All-Sky Survey data (eRASS:5) to perform X-ray imaging and spectral analyses of the Centaurus cluster in various directions to large radii. Surface brightness (SB) profiles out to 2R_{200} were constructed. We acquired gas temperature, metallicity, and normalization per area profiles out to R_{200}. We compared our results with previous Centaurus studies, cluster outskirts measurements, and simulations. Comprehensive sky background analysis was done across the FoV, in particular, to assess the variation of the eROSITA Bubble emission that partially contaminates the field. Results. The processed X-ray images show the known sloshing-induced structures in the core. The core (rleq11~kpc) is better described with a 2T model than a 1T model. Here, we measured lower T from the cooler component (~1.0 keV) and higher Z (sim!1.6Z_odot), signifying an iron bias. In the intermediate radial range, we observed prominent SB and normalization per area excesses in the eastern sector (Cen 45 location), reaching out to R_{500}. Temperature enhancements near the location of Cen 45 imply that the gas is shock-heated due to the interaction with Cen 30, the significant excess behind Cen 45 center might be the tail/ram-pressure-stripped gas. We found good agreement between the outskirt temperatures with the profile from simulations and fit from Suzaku outskirts measurements. We detected significant SB emission to the sky background level out to R_{200} with a 3.5sigma and followed by 2.9sigma at 1.1R_{200}. The metallicity at R_{500}-R_{200} is low but within the ranges of other outskirts studies. Conclusions. We present the first measurement of ICM morphology and properties of Centaurus cluster sampling the whole azimuth beyond 30', increasing the probed volume by a factor of almost 30.

  • 12 authors
·
Apr 7, 2024

Quantifying spectroscopic Ca II exocomet transit occurrence in two decades of HARPS data

The field of exocomets has been built around the unmatched number of detections made in the circumstellar disc of the archetypal star Beta Pictoris. An exocomet detection in spectroscopy is identified by variable atomic absorption features in a stellar spectrum, associated with transiting gas in and trailing an exocomet coma. This paper presents the largest spectroscopic search for exocomet transits to date, which overcomes the limitations of biased samples of stars with debris discs, and instead looks through the approx7500 stars in the HARPS archive for signs of exocomets in the CaII doublet (H:396.847nm and K:393.366nm). The search resulted in 155 candidate stars, which after filtering for false positives (e.g. binaries, stellar activity, etc.), were cut down to 22 stars. These 22 stars are classified into Tier1, 2, and 3 exocomet candidates, reflecting the confidence level of their exocomet detection. Our two best candidates (Tier1: Beta Pictoris, HD172555) and four lower confidence candidates (Tier2: Gl1, HIP5158, HD94771, HR1996) are discussed, yielding a detection rate of 0.03% (Tier1 only) and 0.1% (Tier1 & 2) in the HARPS sample. Both Tier1 stars are known exocomet host stars. These two young A-type stars correspond to 0.4% of all A-types in the sample, suggesting that detecting signs of exocomet transits using CaII is more likely around young A-type stars. Reanalysing a past HARPS study, we found no evidence to support the previously claimed four exocomet detections, indicating either that those detections are not robust or that we are only sensitive to the strongest signals.

  • 4 authors
·
Dec 17, 2024

Super-Eddington Accretion in Quasars

This review provides an observational perspective on the fundamental properties of super-Eddington accretion onto supermassive black holes in quasars. It begins by outlining the selection criteria, particularly focusing on optical and UV broad-line intensity ratios, used to identify a population of unobscured super-Eddington candidates. Several defining features place these candidates at the extreme end of the Population A in main sequence of quasars: among them are the highest observed singly-ionized iron emission, extreme outflow velocities in UV resonance lines, and unusually high metal abundances. These key properties reflect the coexistence of a virialized sub-system within the broad-line region alongside powerful outflows, with the observed gas enrichment likely driven by nuclear or circumnuclear star formation. The most compelling evidence for the occurrence of super-Eddington accretion onto supermassive black holes comes from recent observations of massive black holes at early cosmic epochs. These black holes require rapid growth rates that are only achievable through radiatively inefficient super-Eddington accretion. Furthermore, extreme Eddington ratios, close to or slightly exceeding unity, are consistent with the saturation of radiative output per unit mass predicted by accretion disk theory for super-Eddington accretion rates. The extreme properties of super-Eddington candidates suggest that these quasars could make them stable and well-defined cosmological distance indicators, leveraging the correlation between broad-line width and luminosity expected in virialized systems. Finally, several analogies with accretion processes around stellar-mass black holes, particularly in the high/soft state, are explored to provide additional insight into the mechanisms driving super-Eddington accretion.

  • 8 authors
·
Feb 20

The first measurements of carbon isotopic ratios in post-RGB stars: SZ Mon and DF Cyg. E-iSpec: A spectral analysis tool to derive elemental abundances and isotopic ratios for evolved stars

Dusty post-red giant branch (post-RGB) stars are low- and intermediate-mass stars where the RGB evolution was prematurely terminated by a poorly understood binary interaction. These binary stars are considered to be low-luminosity analogues of post-asymptotic giant branch (post-AGB) binary stars. In this study, we investigated the chemical composition of two dusty post-RGB binary stars, SZ Mon and DF Cyg, using multi-wavelength spectroscopic data from HERMES/Mercator (optical) and the APOGEE survey (near-infrared). Owing to challenges posed by existing spectral analysis tools for the study of evolved stars with complex atmospheres, we developed E-iSpec: a dedicated spectral analysis tool for evolved stars, to consistently determine atmospheric parameters, elemental abundances, and carbon isotopic ratios. Our abundance analysis revealed that observed depletion patterns and estimated depletion efficiencies resemble those found in post-AGB binary stars. However, the onset of chemical depletion in post-RGB targets occurs at higher condensation temperatures (T_{rm turn-off, post-RGB}approx1400 K), than in most post-AGB stars (T_{rm turn-off, post-AGB}approx1100 K). Additionally, our study resulted in the first estimates of carbon isotopic ratios for post-RGB stars (^{12}C/^{13}C_{rm SZ Mon}=8pm4, ^{12}C/^{13}C_{rm DF Cyg}=12pm3). We found that the observationally derived CNO abundances and the carbon isotopic ratios of our post-RGB binary targets are in good agreement with theoretical predictions from the ATON single star evolutionary models involving first dredge-up and moderately-deep extra mixing. This agreement emphasises that in post-RGB binary targets, the observed CNO abundances reflect the chemical composition expected from single star nucleosynthesis (i.e., convective and non-convective mixing processes) occurring during the RGB phase before it is terminated.

  • 7 authors
·
Mar 14, 2024

1FLAT: a Firmamento-based catalog of AGN in Fermi-LAT high Galactic latitude γ-ray sources

We present a systematic reassessment of 5,062 high-Galactic latitude gamma-ray sources from the Fermi-LAT 4FGL-DR4 catalog using Firmamento, a web-based platform for multi-frequency source discovery and analysis. Our goal is to provide an independent evaluation of LAT gamma-ray source associations through alternative spectral and spatial methods that combine recent and legacy survey data, supplemented by human supervision of spectral energy distributions (SEDs), source morphology, flux variability, and template-based comparisons. Firmamento confirms the 4FGL-DR4 and 4LAC-DR3 counterparts or unassociated sources in 4,493 cases (88.8%), demonstrating the robustness of both approaches. Beyond this general agreement, we identify 421 new blazar counterparts among previously unassociated sources, thereby reducing the fraction of unidentified extragalactic Fermi-LAT sources from 25% to 17%. In addition, in 64 cases we find alternative blazar associations, while in 49 instances we do not confirm the 4FGL-DR4 association. For all confirmed blazar counterparts we provide homogeneous estimates of synchrotron peak frequency and peak flux using machine-learning and template-based methods; these agree with 4LAC-DR3 values in most cases, though significant discrepancies appear for a few dozen sources, often due to improved X-ray coverage. The primary outcome of this work is the 1st Firmamento LAT AGN table (1FLAT), made publicly available through the Firmamento platform (https://firmamento.nyuad.nyu.edu), where all related multi-wavelength data and images are available. The project involved extensive manual validation and benefited from the active participation of graduate and undergraduate students, highlighting the platform's value for both research and education.

  • 18 authors
·
Oct 8

Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory

We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.

  • 68 authors
·
Dec 3, 2014

Deep Synoptic Array Science: Searching for Long Duration Radio Transients with the DSA-110

We describe the design and commissioning tests for the DSA-110 Not-So-Fast Radio Burst (NSFRB) search pipeline, a 1.4 GHz image-plane single-pulse search sensitive to 134 ms-160.8 s radio bursts. Extending the pulse width range of the Fast Radio Burst (FRB) search by 3 orders of magnitude, the NSFRB search is sensitive to the recently-discovered Galactic Long Period Radio Transients (LPRTs). The NSFRB search operates in real-time, utilizing a custom GPU-accelerated search code, cerberus, implemented in Python with JAX. We summarize successful commissioning sensitivity tests with continuum sources and pulsar B0329+54, estimating the 6sigma flux (fluence) threshold to be ~290 mJy (~40 Jy ms). Future tests of recovery of longer timescale transients, e.g. CHIME J1634+44, are planned to supplement injection testing and B0329+54 observations. An offline DSA-110 NSFRB Galactic Plane Survey was conducted to search for LPRTs, covering -3.5^circ<b<5.7^circ and 141^circ<l<225^circ (~770 square degrees) in Galactic coordinates. We estimate an upper limit Poissonian burst rate ~1 hr^{-1} per square degree (~7 hr^{-1} per 3^circtimes3^circ survey grid cell) maximized across the inner |b|<0.25^circ of the surveyed region. By imposing the ~290 mJy flux limit on two representative models (the magnetar plastic flow model and the White Dwarf-M Dwarf binary model), we reject with 95% confidence the presence of White Dwarf-M Dwarf binary LPRTs with periods between ~10-70s within ~95% of the surveyed region. Combined with the prevalence of LPRTs in the Galactic Plane, our results motivate further consideration of both White Dwarf-M Dwarf binary models and isolated magnetar models. We will continue to explore novel LPRT search strategies during real-time operations, such as triggered periodicity searches and additional targeted surveys.

  • 13 authors
·
Oct 20

Optical Emission Model for Binary Black Hole Merger Remnants Travelling through Discs of Active Galactic Nuclei

Active galactic nuclei (AGNs) have been proposed as plausible sites for hosting a sizable fraction of the binary black hole (BBH) mergers measured through gravitational waves (GWs) by the LIGO-Virgo-Kagra (LVK) experiment. These GWs could be accompanied by radiation feedback due to the interaction of the BBH merger remnant with the AGN disc. We present a new predicted radiation signature driven by the passage of a kicked BBH remnant throughout a thin AGN disc. We analyse the situation of a merger occurring outside the thin disc, where the merger is of second or higher generation in a merging hierarchical sequence. The coalescence produces a kicked BH remnant that eventually plunges into the disc, accretes material, and inflates jet cocoons. We consider the case of a jet cocoon propagating quasi-parallel to the disc plane and study the outflow that results when the cocoon emerges from the disc. We calculate the transient emission of the emerging cocoon using a photon diffusion model typically employed to describe the light curves of supernovae. Depending on the parameter configuration, the flare produced by the emerging cocoon could be comparable to or exceed the AGN background emission at optical, and extreme ultraviolet wavelengths. For instance, in AGNs with central engines of sim 5times10^{6} M_odot, flares driven by BH remnants with masses of sim 100 M_odot can appear in about sim[10-100] days after the GW, lasting for few days.

  • 4 authors
·
Apr 20, 2023

Identifying supermassive black hole recoil in elliptical galaxies

We study stellar core growth in simulations of merging massive (M_star>10^{11},M_odot) elliptical galaxies by a supermassive black hole (SMBH) displaced by gravitational wave induced recoil velocity. With controlled, dense sampling of the SMBH recoil velocity, we find the core radius originally formed by SMBH binary scouring can grow by a factor of 2-3 when the recoil velocity exceeds sim50 per cent of the central escape velocity, and the mass deficit grows by up to a factor of sim4. Using Bayesian inference we predict the distribution of stellar core sizes formed through this process to peak at sim1,kpc. An orbital decomposition of stellar particles within the core reveals that radial orbits dominate over tube orbits when the recoil velocity exceeds the velocity dispersion of the core, whereas tube orbits dominate for the lowest recoil kicks. A change in orbital structure is reflected in the anisotropy parameter, with a central tangential bias present only for recoil velocities less than the local stellar velocity dispersion. Emulating current integral field unit observations of the stellar line-of-sight velocity distribution, we uncover a distinct signature in the Gauss-Hermite symmetric deviation coefficient h_4 that uniquely constrains the core size due to binary scouring. This signature is insensitive to the later evolution of the stellar mass distribution due to SMBH recoil. Our results provide a novel method to estimate the SMBH recoil magnitude from observations of local elliptical galaxies, and implies these galaxies primarily experienced recoil velocities less than the stellar velocity dispersion of the core.

  • 11 authors
·
Oct 17, 2024

Channels of Stellar-mass Black Hole Formation

On the basis of a large collection of detailed 3D core-collapse supernova simulations carried to late times, we identify four channels of stellar mass black hole formation. Our examples for Channel 1 involve the formation of lower-gap and above black holes in energetic asymmetric supernova explosions. Our Channel 2 example involves a modest supernova explosion that may leave behind a lower-gap to sim10 M_{odot} black hole. The latter may not be easily distinguishable from ``standard" supernovae that birth neutron stars. Our Channel 3 example experiences an aborted core-collapse explosion, more often in the context of a low-metallicity progenitor, whose residue is a black hole with a mass perhaps up to sim40 M_{odot}. The latter may be accompanied by a pulsational-pair instability supernova (PPISN). Channel 4 is the only quiescent or ``silent" scenario for which perhaps sim5 to 15 M_{odot} black holes are left. Where appropriate, we estimate ^{56}Ni yields, explosion energies, approximate recoil speeds, and residual black hole masses. The progenitor mass density and binding energy profiles at collapse influence the outcome in a systematic way. The statistics and prevalence of these various channels depend not only on still evolving supernova theory, but on remaining issues with the theory of massive star evolution, binary interaction, wind mass loss, metallicity, and the nuclear equation of state. Importantly, we suggest, but have not proven, that the silent channel for black hole formation may not be the dominant formation modality.

  • 3 authors
·
Dec 10, 2024

Digital Discovery of interferometric Gravitational Wave Detectors

Gravitational waves, detected a century after they were first theorized, are spacetime distortions caused by some of the most cataclysmic events in the universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations remains largely unexplored, offering an exciting territory potentially rich in innovative and unconventional detection strategies. Here, we demonstrate the application of artificial intelligence (AI) to systematically explore this enormous space, revealing novel topologies for gravitational wave (GW) detectors that outperform current next-generation designs under realistic experimental constraints. Our results span a broad range of astrophysical targets, such as black hole and neutron star mergers, supernovae, and primordial GW sources. Moreover, we are able to conceptualize the initially unorthodox discovered designs, emphasizing the potential of using AI algorithms not only in discovering but also in understanding these novel topologies. We've assembled more than 50 superior solutions in a publicly available Gravitational Wave Detector Zoo which could lead to many new surprising techniques. At a bigger picture, our approach is not limited to gravitational wave detectors and can be extended to AI-driven design of experiments across diverse domains of fundamental physics.

  • 3 authors
·
Dec 5, 2023 1

Gaia Data Release 3: Summary of the content and survey properties

We present the third data release of the European Space Agency's Gaia mission, GDR3. The GDR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. The GDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, G_{BP}, and G_{RP} pass-bands already present in the Early Third Data Release. GDR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges G_{rvs} < 14 and 3100 <T_{eff} <14500 , have new determinations of their mean radial velocities based on data collected by Gaia. We provide G_{rvs} magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The GDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BPRP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. GDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800,000 astrometric, spectroscopic and eclipsing binaries. More than 150,000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BPRP spectral data are published for about 60\,000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey (abridged)

  • 456 authors
·
Jul 30, 2022

Signatures of the Shock Interaction as an Additional Power Source in the Nebular Spectra of SN 2023ixf

Red supergiants may lose significant mass through steady winds and episodic eruptions in the final 100-1000 years before the core collapses, shaping their circumstellar environment. Interaction between supernova (SN) ejecta and distant circumstellar material (CSM) can generate shocks, which can energize the ejecta and serve as a key power source during the nebular phase of the SN. In the present work, we investigate the nebular spectrum of SN 2023ixf, observed one year post-explosion (at +363 d) with the recently commissioned WEAVE instrument on the 4.2m William Herschel Telescope. This marks the first supernova spectrum captured with WEAVE. In this spectrum, Halpha exhibits a peculiar evolution, flanked by blueward and redward broad components centred at simpm 5650,km,s^{-1} from the rest velocity of Halpha, which are seen for only a few SNe to date. These features indicate energy deposition from shocks generated by the interaction of ejecta with a CSM expelled nearly 350 - 640 years pre-explosion. Comparisons of the +363 d spectrum with model spectra from the literature, that include varying shock powers, suggest a shock power of at least sim 5 times 10 ^{40},erg,s^{-1} at this epoch. Additionally, analysis of the [O I] doublet, along with other prominent emission lines, provides evidence for clumpiness, dust formation, and asymmetry within the ejecta and/or the surrounding CSM. These emission lines also helped to constrain the oxygen mass (approx0.19^{scriptscriptstyle +0.08}_{scriptscriptstyle -0.04} M_odot), He-core mass (<3 M_odot) and the zero-age main sequence mass (lesssim 12 M_odot) of the progenitor of SN 2023ixf. The comparison with other Type II SNe highlights SN 2023ixf's unique shock interaction signatures and evidence of dust formation, setting it apart in terms of evolution and dynamics.

  • 5 authors
·
Dec 4, 2024

Searching For Anisotropic Gravitational-wave Backgrounds Using Pulsar Timing Arrays

We present the results of simulated injections testing the first Bayesian search-pipeline capable of investigating the angular-structure of a gravitational-wave (GW) background influencing pulsar signals. A stochastic background of GWs from the incoherent superposition of many inspiraling supermassive black hole binaries at nHz frequencies is likely to be the dominant GW signal detectable by pulsar timing arrays (PTAs). Even though one might expect a background composed of a high-redshift cosmological population of sources to be fairly isotropic, deviations from isotropy may be indicative of local GW hotspots or some form of continuous anisotropy in the angular-distribution of GW-power. A GWB induces time-of-arrival deviations in pulsar signals which are correlated between separated pulsars. In an isotropic background this cross-correlation follows a distinctive relationship, known as the Hellings and Downs curve, that depends only on the angular separation of the pulsars. If the background is anisotropic, the cross-correlation is different, but predictable, and also depends on the absolute position of the pulsars. By simulating datasets containing GWBs with various anisotropic configurations, we have explored the prospects for constraining anisotropy using near future data. We find that at moderate to high signal to noise ratio the assumption of isotropy is no longer an appropriate description of the simulated background. Furthermore, we can recover the nature of the injected anisotropy in a Bayesian parameter-estimation search, and propose a prior on the anisotropy search-space motivated by the physicality of the implied distribution of sources.

  • 2 authors
·
Jun 23, 2013

A multi-messenger hierarchical triple merger gravitational-wave event pair GW190514-GW190521 inside AGN J124942.3 + 344929

There is a candidate electromagnetic counterpart to the binary black hole merger GW190521, identified as ZTF19abanrhr within AGN J124942.3 + 344929. Additionally, GW190514 is proposed as a plausible precursor merger to GW190521 within a hierarchical merger scenario. In this study, we investigate the potential association between GW190514 and GW190521 as a hierarchical triple merger associated with ZTF19abanrhr, taking into account of sky position, distance, and mass of the sources using a Bayesian criterion. Our analysis reveals that the association is favored over a random coincidence, with a log Bayes factor of 16.8, corresponding to an odds ratio of sim199:1, assuming an astrophysical prior odds of 10^{-5}. Notably, when accounting for the primary masses of the two gravitational wave events as potential products of mergers in the AGN formation channel, the Bayes factor increases significantly, further enhancing the preference for this association by a factor of sim10^2, corresponding to a log Bayes factor of 21.5 and an odds ratio of sim2times10^4:1. Our results suggest strong evidence for the first hierarchical triple merger associated with an electromagnetic counterpart in the AGN formation channel. This work is crucial for understanding the formation mechanisms of massive black holes, the role of AGNs in hierarchical mergers, and the implications of multi-messenger astronomy.

  • 2 authors
·
Mar 21

KETJU -- resolving small-scale supermassive black hole dynamics in GADGET-4

We present the new public version of the KETJU supermassive black hole (SMBH) dynamics module, as implemented into GADGET-4. KETJU adds a small region around each SMBH where the dynamics of the SMBHs and stellar particles are integrated using an algorithmically regularised integrator instead of the leapfrog integrator with gravitational softening used by GADGET-4. This enables modelling SMBHs as point particles even during close interactions with stellar particles or other SMBHs, effectively removing the spatial resolution limitation caused by gravitational softening. KETJU also includes post-Newtonian corrections, which allows following the dynamics of SMBH binaries to sub-parsec scales and down to tens of Schwarzschild radii. Systems with multiple SMBHs are also supported, with the code also including the leading non-linear cross terms that appear in the post-Newtonian equations for such systems. We present tests of the code showing that it correctly captures, at sufficient mass resolution, the sinking driven by dynamical friction and binary hardening driven by stellar scattering. We also present an example application demonstrating how the code can be applied to study the dynamics of SMBHs in mergers of multiple galaxies and the effect they have on the properties of the surrounding galaxy. We expect that the presented KETJU SMBH dynamics module can also be straightforwardly incorporated into other codes similar to GADGET-4, which would allow coupling small-scale SMBH dynamics to the rich variety of galactic physics models that exist in the literature.

  • 8 authors
·
Jun 8, 2023

A Machine Learning Framework for Stellar Collision Transient Identification

Modern astronomical surveys, such as the Zwicky Transient Facility (ZTF), are capable of detecting thousands of transient events per year, necessitating the use of automated and scalable data analysis techniques. Recent advances in machine learning have enabled the efficient classification and characterization of these transient phenomena. We aim to develop a fully systematic pipeline to identify candidate stellar collision events in galactic nuclei, which may otherwise be identified as tidal disruption events or other transients. We also seek to validate our simulations by comparing key physical parameters derived from observations and used in modeling these events. We generate a comprehensive bank of simulated light curves spanning a range of physical parameters and employ an approximate nearest neighbor algorithm (via the annoy library) to match these with observed ZTF light curves. Our pipeline is successfully able to associate observed ZTF light curves with simulated events. The resulting estimated parameters, including supermassive black hole masses and ejecta mass, are presented and compared to known values when applicable. We demonstrate that a systematic, machine learning-based approach can effectively identify and characterize stellar collision candidate events from large-scale transient surveys. This methodology is especially promising for future surveys which will provide us with significantly high volumes of data, such as LSST, where automated, data-intensive analysis will be critical for advancing our understanding of transient astrophysical phenomena.

  • 2 authors
·
Apr 15

Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise

In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.

  • 5 authors
·
Apr 3, 2023

Revisiting the Classics: On the Optical Colours of Novae as Standard Crayons

We present a systematic study of the BVRI colours of novae over the course of their eruptions. Where possible, interstellar reddening was measured using the equivalent widths of Diffuse Interstellar Bands (DIBs). Some novae lack spectra with sufficient resolution and signal-to-noise ratios; therefore, we supplement as necessary with 3D and 2D dust maps. Utilising only novae with DIB- or 3D-map-based E(B-V), we find an average intrinsic (B-V)_0 colour of novae at V-band light curve peak of 0.18 with a standard deviation of 0.31, based on a sample of 23 novae. When the light curve has declined by 2 magnitudes (t_2), we find an average (B-V)_0 = -0.02 with a standard deviation of 0.19. These average colours are consistent with previous findings, although the spreads are larger than previously found due to more accurate reddening estimates. We also examined the intrinsic (R-I)_0 and (V-R)_0 colours across our sample. These colours behave similarly to (B-V)_0, except that the (V-R)_0 colour gets redder after peak, likely due to the contributions of emission line flux. We searched for correlations between nova colours and t_2, peak V-band absolute magnitude, and GeV gamma-ray luminosity, but find no statistically significant correlations. Nova colours can therefore be used as standard "crayons" to estimate interstellar reddening from photometry alone, with 0.2--0.3 mag uncertainty. We present a novel Bayesian strategy for estimating distances to Galactic novae based on these E(B-V) measurements, independent of assumptions about luminosity, built using 3D dust maps and a stellar mass model of the Milky Way.

  • 12 authors
·
Dec 19, 2024

Characterising gravitational wave stochastic background anisotropy with Pulsar Timing Arrays

Detecting a stochastic gravitational wave background, particularly radiation from individually unresolvable super-massive black hole binary systems, is one of the primary targets for Pulsar Timing Arrays. Increasingly more stringent upper limits are being set on these signals under the assumption that the background radiation is isotropic. However, some level of anisotropy may be present and the characterisation of the power at different angular scales carries important information. We show that the standard analysis for isotropic backgrounds can be generalised in a conceptually straightforward way to the case of generic anisotropic background radiation by decomposing the angular distribution of the gravitational wave power on the sky into multipole moments. We introduce the concept of generalised overlap reduction functions which characterise the effect of the anisotropy multipoles on the correlation of the timing residuals from the pulsars timed by a Pulsar Timing Array. In a search for a signal characterised by a generic anisotropy, the generalised overlap reduction functions play the role of the so-called Hellings and Downs curve used for isotropic radiation. We compute the generalised overlap reduction functions for a generic level of anisotropy and Pulsar Timing Array configuration. We also provide an order of magnitude estimate of the level of anisotropy that can be expected in the background generated by super-massive black hole binary systems.

  • 4 authors
·
Jun 23, 2013

Understanding the Neutron Star Population with the SKA

Since their discovery in the late 1960's the population of known neutron stars (NSs) has grown to ~2500. The last five decades of observations have yielded many surprises and demonstrated that the observational properties of NSs are remarkably diverse. The surveys that will be performed with SKA (the Square Kilometre Array) will produce a further tenfold increase in the number of Galactic NSs known. Moreover, the SKA's broad spectral coverage, sub-arraying and multi-beaming capabilities will allow us to characterise these sources with unprecedented efficiency, in turn enabling a giant leap in the understanding of their properties. Here we review the NS population and outline our strategies for studying each of the growing number of diverse classes that are populating the "NS zoo". Some of the main scientific questions that will be addressed by the much larger statistical samples and vastly improved timing efficiency provided by SKA include: (i) the spin period and spin-down rate distributions (and thus magnetic fields) at birth, and the associated information about the SNe wherein they are formed; (ii) the radio pulsar-magnetar connection; (iii) the link between normal radio pulsars, intermittent pulsars and rotating radio transients; (iv) the slowest possible spin period for a radio pulsar (revealing the conditions at the pulsar death-line); (v) proper motions of pulsars (revealing SN kick physics); (vi) the mass distribution of NSs (vii) the fastest possible spin period for a recycled pulsar (constraining magnetosphere-accretion disc interactions, gravitational wave radiation and the equation-of-state); (viii) the origin of high eccentricity millisecond pulsars (MSPs); (ix) the formation channels for recently identified triple systems; and finally (x) how isolated MSPs are formed. We expect that the SKA will break new ground unveiling exotic systems that will challenge... [abridged]

  • 12 authors
·
Dec 30, 2014

The nature of an imaginary quasi-periodic oscillation in the soft-to-hard transition of MAXI J1820+070

A recent study shows that if the power spectra (PS) of accreting compact objects consist of a combination of Lorentzian functions that are coherent in different energy bands but incoherent with each other, the same is true for the Real and Imaginary parts of the cross spectrum (CS). Using this idea, we discovered imaginary quasi-periodic oscillations (QPOs) in NICER observations of the black hole candidate MAXI J1820+070. The imaginary QPOs appear as narrow features with a small Real and large Imaginary part in the CS but are not significantly detected in the PS when they overlap in frequency with other variability components. The coherence function drops and the phase lags increase abruptly at the frequency of the imaginary QPO. We show that the multi-Lorentzian model that fits the PS and CS of the source in two energy bands correctly reproduces the lags and the coherence, and that the narrow drop of the coherence is caused by the interaction of the imaginary QPO with other variability components. The imaginary QPO appears only in the decay of the outburst, during the transition from the high-soft to the low-hard state of MAXI J1820+070, and its frequency decreases from approximately 5 Hz to around 1 Hz as the source spectrum hardens. We also analysed the earlier observations of the transition, where no narrow features were seen, and we identified a QPO in the PS that appears to evolve into the imaginary QPO as the source hardens. As for the type-B and C QPOs in this source, the rms spectrum of the imaginary QPO increases with energy. The lags of the imaginary QPO are similar to those of the type-B and C QPOs above 2 keV but differ from the lags of those other QPOs below that energy. While the properties of this imaginary QPO resemble those of type-C QPOs, we cannot rule out that it is a new type of QPO.

  • 5 authors
·
Feb 17

Testing the extended corona model with the optical/UV reverberation mapping of the accretion disk

The illumination of the accretion disks is frequently studied assuming that the incident X-ray flux is a point-like source. The approach is referred as lamppost model.The most recent computations of the X-ray reprocessing by the disk take into account the departure from the simple lamppost models. However, in computations of the incident flux thermalization and subsequent re-emission in the optical-UV band the lamppost approximation is most frequently assumed. We test if the UV-optical reverberation mapping and time delay measurements are sensitive to this assumption. We assume that the incident radiation originates from a region extended along the symmetry axis. To model this, we adopt a simple setup by representing the emission as two lamps irradiating the disk simultaneously from two different heights. We then compare the resulting predictions with those obtained for a single lamppost located at an intermediate height. We show at the basis of the transfer function that the deviation of the wavelength-dependent delay curve shows at most a difference of 20% in comparison to a single lamppost, assuming the black hole mass of 10^8 M_{odot}, Eddington ratio 1, and the location of the lamps at 5 and 100 rg. The maximum deviation happens for the lamp luminosity ratio sim3. When simulating light curves for a two-lamp setup and a standard lamppost with the same black hole mass and a sampling rate of 0.1 days, we find no measurable differences in the ICCF profiles between the two setups. Larger black hole mass and considerably lower Eddington ratio would allow to see larger differences between a single lamppost and a two-lampost model. UV/optical reverberation mapping is not very sensitive to the vertical extension of the corona.

  • 2 authors
·
Jan 1

Deriving pulsar pair-production multiplicities from pulsar wind nebulae using H.E.S.S. and LHAASO observations

Pulsar Wind Nebulae (PWNe) dominate the galactic gamma-ray sky at very high energies, and are major contributors to the leptonic cosmic ray flux. However, whether or not pulsars also accelerate ions to comparable energies is not yet experimentally confirmed. We aim to constrain the birth period and pair-production multiplicity for a set of pulsars. In doing so, we aim to constrain the proportion of ions in the pulsar magnetosphere and hence the proportion of ions that could enter the pulsar wind. We estimate possible ranges of the value of the average pair production multiplicity for a sample of 26 pulsars in the Australia Telescope National Facility (ATNF) catalogue, which have also been observed by the High Energy Stereoscopic System (H.E.S.S.) telescopes. We then derive lower limits for the pulsar birth periods and average pair production multiplicities for a subset of these sources where the extent of the pulsar wind nebula and surrounding supernova shell have been measured in the radio. We also derive curves for the average pair production multiplicities as a function of birth period for sources recently observed by the Large High Altitude Air Shower Observatory (LHAASO). We show that there is a potential for hadrons entering the pulsar wind for most of the H.E.S.S. and LHAASO sources we consider, dependent upon the efficiency of luminosity conversion into particles. We also present estimates of the pulsar birth period for six of these sources, which all fall into the range of simeq10-50 ms.

  • 2 authors
·
Feb 3

Hydrodynamic Predictions for the Next Outburst of T Coronae Borealis: It will be the Brightest Classical or Recurrent Nova Ever Observed in X-rays

T Coronae Borealis (TCrB) is a recurrent nova (RN) with recorded outbursts in 1866, and 1946 and possible outbursts in 1217 and 1787. It is predicted to explode again in 2025 or 2026 based on multiple observational studies. The system consists of a massive (M_{wd} gtrsim 1.35 M_odot) white dwarf (WD) and a red giant (M3-M4 III). We have performed 1-D hydrodynamic simulations with NOVA to predict the behavior of the next outburst. These simulations consist of a range of mass accretion rates onto sim1.35 M_odot WDs, designed to bound the conditions necessary to achieve ignition of an explosion after an approx80 year inter-outburst period. We have used both carbon-oxygen and oxygen-neon initial compositions, in order to include the possible ejecta abundances to be measured in the observations of the next outburst. As the WD in the TCrB system is observed to be massive, theoretical predictions reported here imply that the WD is growing in mass as a consequence of the TNR. Therefore, the secular evolution of the WD may allow it to approach the Chandrasekhar limit and either explode as a Type Ia supernova or undergo accretion induced collapse, depending on its underlying composition. We have followed the evolution of just the WD, after removing the ejected matter from the surface layers. Our intent is to illuminate the mystery of the unique, second, maximum in the two well observed outbursts and we have found conditions that bracket the predictions.

  • 14 authors
·
Feb 15

Adaptive Detection of Fast Moving Celestial Objects Using a Mixture of Experts and Physical-Inspired Neural Network

Fast moving celestial objects are characterized by velocities across the celestial sphere that significantly differ from the motions of background stars. In observational images, these objects exhibit distinct shapes, contrasting with the typical appearances of stars. Depending on the observational method employed, these celestial entities may be designated as near-Earth objects or asteroids. Historically, fast moving celestial objects have been observed using ground-based telescopes, where the relative stability of stars and Earth facilitated effective image differencing techniques alongside traditional fast moving celestial object detection and classification algorithms. However, the growing prevalence of space-based telescopes, along with their diverse observational modes, produces images with different properties, rendering conventional methods less effective. This paper presents a novel algorithm for detecting fast moving celestial objects within star fields. Our approach enhances state-of-the-art fast moving celestial object detection neural networks by transforming them into physical-inspired neural networks. These neural networks leverage the point spread function of the telescope and the specific observational mode as prior information; they can directly identify moving fast moving celestial objects within star fields without requiring additional training, thereby addressing the limitations of traditional techniques. Additionally, all neural networks are integrated using the mixture of experts technique, forming a comprehensive fast moving celestial object detection algorithm. We have evaluated our algorithm using simulated observational data that mimics various observations carried out by space based telescope scenarios and real observation images. Results demonstrate that our method effectively detects fast moving celestial objects across different observational modes.

  • 5 authors
·
Apr 10

Efficient Massive Black Hole Binary parameter estimation for LISA using Sequential Neural Likelihood

The inspiral, merger, and ringdown of Massive Black Hole Binaries (MBHBs) is one the main sources of Gravitational Waves (GWs) for the future Laser Interferometer Space Antenna (LISA), an ESA-led mission in the implementation phase. It is expected that LISA will detect these systems throughout the entire observable universe. Robust and efficient data analysis algorithms are necessary to detect and estimate physical parameters for these systems. In this work, we explore the application of Sequential Neural Likelihood, a simulation-based inference algorithm, to detect and characterize MBHB GW signals in synthetic LISA data. We describe in detail the different elements of the method, their performance and possible alternatives that can be used to enhance the performance. Instead of sampling from the conventional likelihood function, which requires a forward simulation for each evaluation, this method constructs a surrogate likelihood that is ultimately described by a neural network trained from a dataset of simulations of the MBHB signals and noise. One important advantage of this method is that, given that the likelihood is independent of the priors, we can iteratively train models that target specific observations in a fraction of the time and computational cost that other traditional and machine learning-based strategies would require. Because of the iterative nature of the method, we are able to train models to obtain qualitatively similar posteriors with less than 2\% of the simulator calls that Markov Chain Monte Carlo methods would require. We compare these posteriors with those obtained from Markov Chain Monte Carlo techniques and discuss the differences that appear, in particular in relation with the important role that data compression has in the modular implementation of the method that we present. We also discuss different strategies to improve the performance of the algorithms.

  • 2 authors
·
Jun 1, 2024

Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB

We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.

  • 17 authors
·
Aug 1, 2023

KIC 4150611: A quadruply eclipsing heptuple star system with a g-mode period-spacing pattern Asteroseismic modelling of the g-mode period-spacing pattern

In this work, we aim to estimate the stellar parameters of the primary (Aa) by performing asteroseismic analysis on its period-spacing pattern. We use the C-3PO neural network to perform asteroseismic modelling of the g-mode period-spacing pattern of Aa, discussing the interplay of this information with external constraints from spectroscopy (T_{rm eff} and log(g)) and eclipse modelling (R). To estimate the level of uncertainty due to different frequency extraction and pattern identification processes, we consider four different variations on the period-spacing patterns. To better understand the correlations between and the uncertainty structure of our parameter estimates, we also employed a classical, parameter-based MCMC grid search on four different stellar grids. The best-fitting, externally constrained model to the period-spacing pattern arrives at estimates of the stellar properties for Aa of: M=1.51 pm 0.05 M_odot, X_c =0.43 pm 0.04, R=1.66 pm 0.1 R_odot, f_{rm ov}=0.010, Omega_c=1.58 pm 0.01 d^{-1} with rigid rotation to within the measurement errors, log(T_{rm eff})=3.856 pm 0.008 dex, log(g)=4.18 pm 0.04 dex, and log(L)=0.809 pm 0.005 dex, which agree well with previous measurements from eclipse modelling, spectroscopy, and the Gaia DR3 luminosity. We find that the near-core properties of the best-fitting asteroseismic models are consistent with external constraints from eclipse modelling and spectroscopy. Aa appears to be a typical example of a gamma Dor star, fitting well within existing populations. We find that Aa is quasi-rigidly rotating to within the uncertainties, and note that the asteroseismic age estimate for Aa (1100 pm 100 Myr) is considerably older than the young (35 Myr) age implied by previous isochrone fits to the B binary in the literature. Our MCMC parameter-based grid-search agrees well with our pattern-modelling approach.

  • 10 authors
·
Nov 27, 2024

Separating source-intrinsic and Lorentz invariance violation induced delays in the very high energy emission of blazar flares

Aims: The aim of the present study is to explore how to disentangle energy-dependent time delays due to a possible Lorentz invariance violation (LIV) at Planck scale from intrinsic delays expected in standard blazar flares. Methods: We first characterise intrinsic time delays in BL Lacs and Flat Spectrum Radio Quasars in standard one-zone time-dependent synchrotron self-Compton or external Compton models, during flares produced by particle acceleration and cooling processes. We simulate families of flares with both intrinsic and external LIV-induced energy-dependent delays. Discrimination between intrinsic and LIV delays is then investigated in two different ways. A technique based on Euclidean distance calculation between delays obtained in the synchrotron and in the inverse-Compton spectral bumps is used to assess their degree of correlation. A complementary study is performed using spectral hardness versus intensity diagrams in both energy ranges. Results: We show that the presence of non-negligible LIV effects, which essentially act only at very high energies (VHE), can drastically reduce the strong correlation expected between the X-ray and the VHE gamma-ray emission in leptonic scenarios. The LIV phenomenon can then be hinted at measuring the Euclidean distance d_{E} from simultaneous X-ray and gamma-ray flare monitoring. Large values of minimal distance d_{E,min} would directly indicate the influence of non-intrinsic time delays possibly due to LIV in SSC flares. LIV effects can also significantly modify the VHE hysteresis patterns in hardness-intensity diagrams and even change their direction of rotation as compared to the X-ray behaviour. Both observables could be used to discriminate between LIV and intrinsic delays, provided high quality flare observations are available.

  • 3 authors
·
Jun 3, 2024

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

  • 11 authors
·
Jul 15, 2024

AstronomicAL: An interactive dashboard for visualisation, integration and classification of data using Active Learning

AstronomicAL is a human-in-the-loop interactive labelling and training dashboard that allows users to create reliable datasets and robust classifiers using active learning. This technique prioritises data that offer high information gain, leading to improved performance using substantially less data. The system allows users to visualise and integrate data from different sources and deal with incorrect or missing labels and imbalanced class sizes. AstronomicAL enables experts to visualise domain-specific plots and key information relating both to broader context and details of a point of interest drawn from a variety of data sources, ensuring reliable labels. In addition, AstronomicAL provides functionality to explore all aspects of the training process, including custom models and query strategies. This makes the software a tool for experimenting with both domain-specific classifications and more general-purpose machine learning strategies. We illustrate using the system with an astronomical dataset due to the field's immediate need; however, AstronomicAL has been designed for datasets from any discipline. Finally, by exporting a simple configuration file, entire layouts, models, and assigned labels can be shared with the community. This allows for complete transparency and ensures that the process of reproducing results is effortless

  • 4 authors
·
Sep 11, 2021

Soft X-ray line emission from hot gas in intervening galaxy halos and diffuse gas in the cosmic web

Cosmic hot-gas emission is closely related to halo gas acquisition and galactic feedback processes. Their X-ray observations reveal important physical properties and movements of the baryonic cycle of galactic ecosystems. However, the measured emissions toward a target at a cosmological distance would always include contributions from hot gases along the entire line of sight to the target. Observationally, such contaminations are routinely subtracted via different strategies. With this work, we aim to answer an interesting theoretical question regarding the amount of soft X-ray line emissions from intervening hot gases of different origins. We tackled this problem with the aid of the TNG100 simulation. We generated typical wide-field light cones and estimated their impacts on spectral and flux measurements toward X-ray-emitting galaxy-, group- and cluster-halo targets at lower redshifts. We split the intervening hot gases into three categories; that is, the hot gas that is gravitationally bound to either star-forming or quenched galaxy halos, and the diffuse gas, which is more tenuously distributed permeating the cosmic web structures. We find that along a given line of sight, the diffuse gas that permeates the cosmic web structures produces strong oxygen and iron line emissions at different redshifts. The diffuse gas emission in the soft X-ray band can be equal to the emission from hot gases that are gravitationally bound to intervening galaxy halos. The hot-gas emission from the quiescent galaxy halos can be significantly less than that from star-forming halos along the line of sight. The fluxes from all of the line-of-sight emitters as measured in the energy band of 0.4--0.85 keV can reach ~20--200 % of the emission from the target galaxy, group, and cluster halos.

  • 4 authors
·
Jun 17

Harnessing the Hubble Space Telescope Archives: A Catalogue of 21,926 Interacting Galaxies

Mergers play a complex role in galaxy formation and evolution. Continuing to improve our understanding of these systems require ever larger samples, which can be difficult (even impossible) to select from individual surveys. We use the new platform ESA Datalabs to assemble a catalogue of interacting galaxies from the Hubble Space Telescope science archives; this catalogue is larger than previously published catalogues by nearly an order of magnitude. In particular, we apply the Zoobot convolutional neural network directly to the entire public archive of HST F814W images and make probabilistic interaction predictions for 126 million sources from the Hubble Source Catalogue. We employ a combination of automated visual representation and visual analysis to identify a clean sample of 21,926 interacting galaxy systems, mostly with z < 1. Sixty five percent of these systems have no previous references in either the NASA Extragalactic Database or Simbad. In the process of removing contamination, we also discover many other objects of interest, such as gravitational lenses, edge-on protoplanetary disks, and `backlit' overlapping galaxies. We briefly investigate the basic properties of this sample, and we make our catalogue publicly available for use by the community. In addition to providing a new catalogue of scientifically interesting objects imaged by HST, this work also demonstrates the power of the ESA Datalabs tool to facilitate substantial archival analysis without placing a high computational or storage burden on the end user.

  • 16 authors
·
Mar 1, 2023

Pattern and Origin for the Extreme γ-ray Flares of 3C 454.3 and 3C 279: An Astrophysical Critical Damper?

We apply a Gaussian process method to the extreme gamma-ray flares of 3C 454.3 and 3C 279 to discover the variable patterns and then to investigate the physical origins of the giant flares. The kernels of stochastically driven damped simple harmonic oscillator (SHO), the damped random-walk (DRW), and Matrm ern-3/2 are respectively used to describe the adaptive-binning gamma-ray light curves of the two flares. Our findings show that both the extreme gamma-ray flares of 3C 454.3 and 3C 279 clearly prefer the SHO kernel in the over-damped mode and the Matrm ern-3/2 kernel over the DRW kernel. The resulted SHO and Matrm ern-3/2 power spectral densities (PSDs) are the same for each object, with the index changing from -4 at high frequencies to 0 at low frequencies. The patterns of the two flares are both approaching the critical damping mode with the quality factor Q approx 0.4 (i.e., the damping ratio eta approx 1.25), but with slightly different damping timescales. The characteristic timescale (corresponding to the broken frequency in the PSD) for 3C 454.3 is 2-3 days and 3-5 days for 3C 279. The variable patterns found here suggest that once the system responds to the energy injection disturbance, the release of the energy in the system is finished abruptly. The obtained timescale provides a constraint on the size of energy dissipation region for each source.

  • 5 authors
·
Feb 28

The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background

We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper limits for a GWB from supermassive black hole binaries under power law, broken power law, and free spectral coefficient GW spectrum models. We place a 95\% upper limit on the strain amplitude (at a frequency of yr^{-1}) in the power law model of A_{rm gw} < 1.5times 10^{-15}. For a broken power law model, we place priors on the strain amplitude derived from simulations of Sesana (2013) and McWilliams et al. (2014). We find that the data favor a broken power law to a pure power law with odds ratios of 22 and 2.2 to one for the McWilliams and Sesana prior models, respectively. The McWilliams model is essentially ruled out by the data, and the Sesana model is in tension with the data under the assumption of a pure power law. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. We then place the most stringent limits so far on the energy density of relic GWs, Omega_gw(f),h^2 < 4.2 times 10^{-10}, yielding a limit on the Hubble parameter during inflation of H_*=1.6times10^{-2}~m_{Pl}, where m_{Pl} is the Planck mass. Our limit on the cosmic string GWB, Omega_gw(f), h^2 < 2.2 times 10^{-10}, translates to a conservative limit of Gmu<3.3times 10^{-8} - a factor of 4 better than the joint Planck and high-l CMB data from other experiments.

  • 48 authors
·
Aug 12, 2015

Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs

Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.

  • 5 authors
·
Dec 11, 2024