Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMedical Reasoning in LLMs: An In-Depth Analysis of DeepSeek R1
Integrating large language models (LLMs) like DeepSeek R1 into healthcare requires rigorous evaluation of their reasoning alignment with clinical expertise. This study assesses DeepSeek R1's medical reasoning against expert patterns using 100 MedQA clinical cases. The model achieved 93% diagnostic accuracy, demonstrating systematic clinical judgment through differential diagnosis, guideline-based treatment selection, and integration of patient-specific factors. However, error analysis of seven incorrect cases revealed persistent limitations: anchoring bias, challenges reconciling conflicting data, insufficient exploration of alternatives, overthinking, knowledge gaps, and premature prioritization of definitive treatment over intermediate care. Crucially, reasoning length correlated with accuracy - shorter responses (<5,000 characters) were more reliable, suggesting extended explanations may signal uncertainty or rationalization of errors. While DeepSeek R1 exhibits foundational clinical reasoning capabilities, recurring flaws highlight critical areas for refinement, including bias mitigation, knowledge updates, and structured reasoning frameworks. These findings underscore LLMs' potential to augment medical decision-making through artificial reasoning but emphasize the need for domain-specific validation, interpretability safeguards, and confidence metrics (e.g., response length thresholds) to ensure reliability in real-world applications.
The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead?
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks, leading researchers to use them for time and labor-intensive analyses. However, their capability to handle highly specialized and open-ended tasks in domains like policy studies remains in question. This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership. The study, conducted in two stages-Topic Discovery and Topic Assignment-integrates LLMs with expert annotators to observe the impact of LLM suggestions on what is usually human-only analysis. Results indicate that LLM-generated topic lists have significant overlap with human generated topic lists, with minor hiccups in missing document-specific topics. However, LLM suggestions may significantly improve task completion speed, but at the same time introduce anchoring bias, potentially affecting the depth and nuance of the analysis, raising a critical question about the trade-off between increased efficiency and the risk of biased analysis.
MMLU-Pro+: Evaluating Higher-Order Reasoning and Shortcut Learning in LLMs
Existing benchmarks for large language models (LLMs) increasingly struggle to differentiate between top-performing models, underscoring the need for more challenging evaluation frameworks. We introduce MMLU-Pro+, an enhanced benchmark building upon MMLU-Pro to assess shortcut learning and higher-order reasoning in LLMs. By incorporating questions with multiple correct answers across diverse domains, MMLU-Pro+ tests LLMs' ability to engage in complex reasoning and resist simplistic problem-solving strategies. Our results show that MMLU-Pro+ maintains MMLU-Pro's difficulty while providing a more rigorous test of model discrimination, particularly in multi-correct answer scenarios. We introduce novel metrics like shortcut selection ratio and correct pair identification ratio, offering deeper insights into model behavior and anchoring bias. Evaluations of six state-of-the-art LLMs reveal significant performance gaps, highlighting variations in reasoning abilities and bias susceptibility. We release the dataset and evaluation codes at https://github.com/asgsaeid/mmlu-pro-plus.
Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs
Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.
Measuring Social Biases in Grounded Vision and Language Embeddings
We generalize the notion of social biases from language embeddings to grounded vision and language embeddings. Biases are present in grounded embeddings, and indeed seem to be equally or more significant than for ungrounded embeddings. This is despite the fact that vision and language can suffer from different biases, which one might hope could attenuate the biases in both. Multiple ways exist to generalize metrics measuring bias in word embeddings to this new setting. We introduce the space of generalizations (Grounded-WEAT and Grounded-SEAT) and demonstrate that three generalizations answer different yet important questions about how biases, language, and vision interact. These metrics are used on a new dataset, the first for grounded bias, created by augmenting extending standard linguistic bias benchmarks with 10,228 images from COCO, Conceptual Captions, and Google Images. Dataset construction is challenging because vision datasets are themselves very biased. The presence of these biases in systems will begin to have real-world consequences as they are deployed, making carefully measuring bias and then mitigating it critical to building a fair society.
Anchored Answers: Unravelling Positional Bias in GPT-2's Multiple-Choice Questions
Large Language Models (LLMs), such as the GPT-4 and LLaMA families, have demonstrated considerable success across diverse tasks, including multiple-choice questions (MCQs). However, these models exhibit a positional bias, particularly an even worse anchored bias in the GPT-2 family, where they consistently favour the first choice 'A' in MCQs during inference. This anchored bias challenges the integrity of GPT-2's decision-making process, as it skews performance based on the position rather than the content of the choices in MCQs. In this study, we utilise the mechanistic interpretability approach to identify the internal modules within GPT-2 models responsible for this bias. We focus on the Multi-Layer Perceptron (MLP) layers and attention heads, using the "logit lens" method to trace and modify the specific value vectors that contribute to the bias. By updating these vectors within MLP and recalibrating attention patterns to neutralise the preference for the first choice 'A', we effectively mitigate the anchored bias. Our interventions not only mitigate the bias but also improve the overall MCQ prediction accuracy for the GPT-2 family across various datasets. This work represents the first comprehensive mechanistic analysis of anchored bias in MCQs within the GPT-2 models, introducing targeted, minimal-intervention strategies that significantly enhance GPT2 model robustness and accuracy in MCQs. Our code is available at https://github.com/ruizheliUOA/Anchored_Bias_GPT2.
BiasGym: Fantastic Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during training. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from a country being `reckless drivers') and in probing fictional associations (e.g., people from a country having `blue skin'), showing its utility for both safety interventions and interpretability research.
What's in a Name? Auditing Large Language Models for Race and Gender Bias
We employ an audit design to investigate biases in state-of-the-art large language models, including GPT-4. In our study, we prompt the models for advice involving a named individual across a variety of scenarios, such as during car purchase negotiations or election outcome predictions. We find that the advice systematically disadvantages names that are commonly associated with racial minorities and women. Names associated with Black women receive the least advantageous outcomes. The biases are consistent across 42 prompt templates and several models, indicating a systemic issue rather than isolated incidents. While providing numerical, decision-relevant anchors in the prompt can successfully counteract the biases, qualitative details have inconsistent effects and may even increase disparities. Our findings underscore the importance of conducting audits at the point of LLM deployment and implementation to mitigate their potential for harm against marginalized communities.
A Sea of Words: An In-Depth Analysis of Anchors for Text Data
Anchors (Ribeiro et al., 2018) is a post-hoc, rule-based interpretability method. For text data, it proposes to explain a decision by highlighting a small set of words (an anchor) such that the model to explain has similar outputs when they are present in a document. In this paper, we present the first theoretical analysis of Anchors, considering that the search for the best anchor is exhaustive. After formalizing the algorithm for text classification, we present explicit results on different classes of models when the vectorization step is TF-IDF, and words are replaced by a fixed out-of-dictionary token when removed. Our inquiry covers models such as elementary if-then rules and linear classifiers. We then leverage this analysis to gain insights on the behavior of Anchors for any differentiable classifiers. For neural networks, we empirically show that the words corresponding to the highest partial derivatives of the model with respect to the input, reweighted by the inverse document frequencies, are selected by Anchors.
Anchored Diffusion Language Model
Diffusion Language Models (DLMs) promise parallel generation and bidirectional context, yet they underperform autoregressive (AR) models in both likelihood modeling and generated text quality. We identify that this performance gap arises when important tokens (e.g., key words or low-frequency words that anchor a sentence) are masked early in the forward process, limiting contextual information for accurate reconstruction. To address this, we introduce the Anchored Diffusion Language Model (ADLM), a novel two-stage framework that first predicts distributions over important tokens via an anchor network, and then predicts the likelihoods of missing tokens conditioned on the anchored predictions. ADLM significantly improves test perplexity on LM1B and OpenWebText, achieving up to 25.4% gains over prior DLMs, and narrows the gap with strong AR baselines. It also achieves state-of-the-art performance in zero-shot generalization across seven benchmarks and surpasses AR models in MAUVE score, which marks the first time a DLM generates better human-like text than an AR model. Theoretically, we derive an Anchored Negative Evidence Lower Bound (ANELBO) objective and show that anchoring improves sample complexity and likelihood modeling. Beyond diffusion, anchoring boosts performance in AR models and enhances reasoning in math and logic tasks, outperforming existing chain-of-thought approaches
ViG-Bias: Visually Grounded Bias Discovery and Mitigation
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
Position Bias Mitigates Position Bias:Mitigate Position Bias Through Inter-Position Knowledge Distillation
Positional bias (PB), manifesting as non-uniform sensitivity across different contextual locations, significantly impairs long-context comprehension and processing capabilities. While prior work seeks to mitigate PB through modifying the architectures causing its emergence, significant PB still persists. To address PB effectively, we introduce Pos2Distill, a position to position knowledge distillation framework. Pos2Distill transfers the superior capabilities from advantageous positions to less favorable ones, thereby reducing the huge performance gaps. The conceptual principle is to leverage the inherent, position-induced disparity to counteract the PB itself. We identify distinct manifestations of PB under \textsc{r}etrieval and \textsc{r}easoning paradigms, thereby designing two specialized instantiations: Pos2Distill-R\textsuperscript{1} and Pos2Distill-R\textsuperscript{2} respectively, both grounded in this core principle. By employing the Pos2Distill approach, we achieve enhanced uniformity and significant performance gains across all contextual positions in long-context retrieval and reasoning tasks. Crucially, both specialized systems exhibit strong cross-task generalization mutually, while achieving superior performance on their respective tasks.
SelecMix: Debiased Learning by Contradicting-pair Sampling
Neural networks trained with ERM (empirical risk minimization) sometimes learn unintended decision rules, in particular when their training data is biased, i.e., when training labels are strongly correlated with undesirable features. To prevent a network from learning such features, recent methods augment training data such that examples displaying spurious correlations (i.e., bias-aligned examples) become a minority, whereas the other, bias-conflicting examples become prevalent. However, these approaches are sometimes difficult to train and scale to real-world data because they rely on generative models or disentangled representations. We propose an alternative based on mixup, a popular augmentation that creates convex combinations of training examples. Our method, coined SelecMix, applies mixup to contradicting pairs of examples, defined as showing either (i) the same label but dissimilar biased features, or (ii) different labels but similar biased features. Identifying such pairs requires comparing examples with respect to unknown biased features. For this, we utilize an auxiliary contrastive model with the popular heuristic that biased features are learned preferentially during training. Experiments on standard benchmarks demonstrate the effectiveness of the method, in particular when label noise complicates the identification of bias-conflicting examples.
ConceptScope: Characterizing Dataset Bias via Disentangled Visual Concepts
Dataset bias, where data points are skewed to certain concepts, is ubiquitous in machine learning datasets. Yet, systematically identifying these biases is challenging without costly, fine-grained attribute annotations. We present ConceptScope, a scalable and automated framework for analyzing visual datasets by discovering and quantifying human-interpretable concepts using Sparse Autoencoders trained on representations from vision foundation models. ConceptScope categorizes concepts into target, context, and bias types based on their semantic relevance and statistical correlation to class labels, enabling class-level dataset characterization, bias identification, and robustness evaluation through concept-based subgrouping. We validate that ConceptScope captures a wide range of visual concepts, including objects, textures, backgrounds, facial attributes, emotions, and actions, through comparisons with annotated datasets. Furthermore, we show that concept activations produce spatial attributions that align with semantically meaningful image regions. ConceptScope reliably detects known biases (e.g., background bias in Waterbirds) and uncovers previously unannotated ones (e.g, co-occurring objects in ImageNet), offering a practical tool for dataset auditing and model diagnostics.
Bias-Augmented Consistency Training Reduces Biased Reasoning in Chain-of-Thought
While chain-of-thought prompting (CoT) has the potential to improve the explainability of language model reasoning, it can systematically misrepresent the factors influencing models' behavior--for example, rationalizing answers in line with a user's opinion without mentioning this bias. To mitigate this biased reasoning problem, we introduce bias-augmented consistency training (BCT), an unsupervised fine-tuning scheme that trains models to give consistent reasoning across prompts with and without biasing features. We construct a suite testing nine forms of biased reasoning on seven question-answering tasks, and find that applying BCT to GPT-3.5-Turbo with one bias reduces the rate of biased reasoning by 86% on held-out tasks. Moreover, this model generalizes to other forms of bias, reducing biased reasoning on held-out biases by an average of 37%. As BCT generalizes to held-out biases and does not require gold labels, this method may hold promise for reducing biased reasoning from as-of-yet unknown biases and on tasks where supervision for ground truth reasoning is unavailable.
Learning from others' mistakes: Avoiding dataset biases without modeling them
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended underlying task. Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available. We consider cases where the bias issues may not be explicitly identified, and show a method for training models that learn to ignore these problematic correlations. Our approach relies on the observation that models with limited capacity primarily learn to exploit biases in the dataset. We can leverage the errors of such limited capacity models to train a more robust model in a product of experts, thus bypassing the need to hand-craft a biased model. We show the effectiveness of this method to retain improvements in out-of-distribution settings even if no particular bias is targeted by the biased model.
To Bias or Not to Bias: Detecting bias in News with bias-detector
Media bias detection is a critical task in ensuring fair and balanced information dissemination, yet it remains challenging due to the subjectivity of bias and the scarcity of high-quality annotated data. In this work, we perform sentence-level bias classification by fine-tuning a RoBERTa-based model on the expert-annotated BABE dataset. Using McNemar's test and the 5x2 cross-validation paired t-test, we show statistically significant improvements in performance when comparing our model to a domain-adaptively pre-trained DA-RoBERTa baseline. Furthermore, attention-based analysis shows that our model avoids common pitfalls like oversensitivity to politically charged terms and instead attends more meaningfully to contextually relevant tokens. For a comprehensive examination of media bias, we present a pipeline that combines our model with an already-existing bias-type classifier. Our method exhibits good generalization and interpretability, despite being constrained by sentence-level analysis and dataset size because of a lack of larger and more advanced bias corpora. We talk about context-aware modeling, bias neutralization, and advanced bias type classification as potential future directions. Our findings contribute to building more robust, explainable, and socially responsible NLP systems for media bias detection.
Adaptive Generation of Bias-Eliciting Questions for LLMs
Large language models (LLMs) are now widely deployed in user-facing applications, reaching hundreds of millions worldwide. As they become integrated into everyday tasks, growing reliance on their outputs raises significant concerns. In particular, users may unknowingly be exposed to model-inherent biases that systematically disadvantage or stereotype certain groups. However, existing bias benchmarks continue to rely on templated prompts or restrictive multiple-choice questions that are suggestive, simplistic, and fail to capture the complexity of real-world user interactions. In this work, we address this gap by introducing a counterfactual bias evaluation framework that automatically generates realistic, open-ended questions over sensitive attributes such as sex, race, or religion. By iteratively mutating and selecting bias-inducing questions, our approach systematically explores areas where models are most susceptible to biased behavior. Beyond detecting harmful biases, we also capture distinct response dimensions that are increasingly relevant in user interactions, such as asymmetric refusals and explicit acknowledgment of bias. Leveraging our framework, we construct CAB, a human-verified benchmark spanning diverse topics, designed to enable cross-model comparisons. Using CAB, we analyze a range of LLMs across multiple bias dimensions, revealing nuanced insights into how different models manifest bias. For instance, while GPT-5 outperforms other models, it nonetheless exhibits persistent biases in specific scenarios. These findings underscore the need for continual improvements to ensure fair model behavior.
Learning De-biased Representations with Biased Representations
Many machine learning algorithms are trained and evaluated by splitting data from a single source into training and test sets. While such focus on in-distribution learning scenarios has led to interesting advancement, it has not been able to tell if models are relying on dataset biases as shortcuts for successful prediction (e.g., using snow cues for recognising snowmobiles), resulting in biased models that fail to generalise when the bias shifts to a different class. The cross-bias generalisation problem has been addressed by de-biasing training data through augmentation or re-sampling, which are often prohibitive due to the data collection cost (e.g., collecting images of a snowmobile on a desert) and the difficulty of quantifying or expressing biases in the first place. In this work, we propose a novel framework to train a de-biased representation by encouraging it to be different from a set of representations that are biased by design. This tactic is feasible in many scenarios where it is much easier to define a set of biased representations than to define and quantify bias. We demonstrate the efficacy of our method across a variety of synthetic and real-world biases; our experiments show that the method discourages models from taking bias shortcuts, resulting in improved generalisation. Source code is available at https://github.com/clovaai/rebias.
RePBubLik: Reducing the Polarized Bubble Radius with Link Insertions
The topology of the hyperlink graph among pages expressing different opinions may influence the exposure of readers to diverse content. Structural bias may trap a reader in a polarized bubble with no access to other opinions. We model readers' behavior as random walks. A node is in a polarized bubble if the expected length of a random walk from it to a page of different opinion is large. The structural bias of a graph is the sum of the radii of highly-polarized bubbles. We study the problem of decreasing the structural bias through edge insertions. Healing all nodes with high polarized bubble radius is hard to approximate within a logarithmic factor, so we focus on finding the best k edges to insert to maximally reduce the structural bias. We present RePBubLik, an algorithm that leverages a variant of the random walk closeness centrality to select the edges to insert. RePBubLik obtains, under mild conditions, a constant-factor approximation. It reduces the structural bias faster than existing edge-recommendation methods, including some designed to reduce the polarization of a graph.
Bias after Prompting: Persistent Discrimination in Large Language Models
A dangerous assumption that can be made from prior work on the bias transfer hypothesis (BTH) is that biases do not transfer from pre-trained large language models (LLMs) to adapted models. We invalidate this assumption by studying the BTH in causal models under prompt adaptations, as prompting is an extremely popular and accessible adaptation strategy used in real-world applications. In contrast to prior work, we find that biases can transfer through prompting and that popular prompt-based mitigation methods do not consistently prevent biases from transferring. Specifically, the correlation between intrinsic biases and those after prompt adaptation remain moderate to strong across demographics and tasks -- for example, gender (rho >= 0.94) in co-reference resolution, and age (rho >= 0.98) and religion (rho >= 0.69) in question answering. Further, we find that biases remain strongly correlated when varying few-shot composition parameters, such as sample size, stereotypical content, occupational distribution and representational balance (rho >= 0.90). We evaluate several prompt-based debiasing strategies and find that different approaches have distinct strengths, but none consistently reduce bias transfer across models, tasks or demographics. These results demonstrate that correcting bias, and potentially improving reasoning ability, in intrinsic models may prevent propagation of biases to downstream tasks.
What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at https://github.com/castorini/biasprobe.
Social Bias Probing: Fairness Benchmarking for Language Models
While the impact of social biases in language models has been recognized, prior methods for bias evaluation have been limited to binary association tests on small datasets, limiting our understanding of bias complexities. This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment, which involves treating individuals differently according to their affiliation with a sensitive demographic group. We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections. SoFa expands the analysis beyond the binary comparison of stereotypical versus anti-stereotypical identities to include a diverse range of identities and stereotypes. Comparing our methodology with existing benchmarks, we reveal that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized. Benchmarking LMs on SoFa, we expose how identities expressing different religions lead to the most pronounced disparate treatments across all models. Finally, our findings indicate that real-life adversities faced by various groups such as women and people with disabilities are mirrored in the behavior of these models.
Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified ``broadcasting'' sentences that receive disproportionate attention from all future sentences via ``receiver'' attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
Assessing Social and Intersectional Biases in Contextualized Word Representations
Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.
Any Large Language Model Can Be a Reliable Judge: Debiasing with a Reasoning-based Bias Detector
LLM-as-a-Judge has emerged as a promising tool for automatically evaluating generated outputs, but its reliability is often undermined by potential biases in judgment. Existing efforts to mitigate these biases face key limitations: in-context learning-based methods fail to address rooted biases due to the evaluator's limited capacity for self-reflection, whereas fine-tuning is not applicable to all evaluator types, especially closed-source models. To address this challenge, we introduce the Reasoning-based Bias Detector (RBD), which is a plug-in module that identifies biased evaluations and generates structured reasoning to guide evaluator self-correction. Rather than modifying the evaluator itself, RBD operates externally and engages in an iterative process of bias detection and feedback-driven revision. To support its development, we design a complete pipeline consisting of biased dataset construction, supervision collection, distilled reasoning-based fine-tuning of RBD, and integration with LLM evaluators. We fine-tune four sizes of RBD models, ranging from 1.5B to 14B, and observe consistent performance improvements across all scales. Experimental results on 4 bias types--verbosity, position, bandwagon, and sentiment--evaluated using 8 LLM evaluators demonstrate RBD's strong effectiveness. For example, the RBD-8B model improves evaluation accuracy by an average of 18.5% and consistency by 10.9%, and surpasses prompting-based baselines and fine-tuned judges by 12.8% and 17.2%, respectively. These results highlight RBD's effectiveness and scalability. Additional experiments further demonstrate its strong generalization across biases and domains, as well as its efficiency.
Quantifying Bias in Text-to-Image Generative Models
Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas. Existing T2I model bias evaluation methods only focus on social biases. We look beyond that and instead propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions. We assess four state-of-the-art T2I models and compare their baseline bias characteristics to their respective variants (two for each), where certain biases have been intentionally induced. We propose three evaluation metrics to assess model biases including: (i) Distribution bias, (ii) Jaccard hallucination and (iii) Generative miss-rate. We conduct two evaluation studies, modelling biases under general, and task-oriented conditions, using a marketing scenario as the domain for the latter. We also quantify social biases to compare our findings to related works. Finally, our methodology is transferred to evaluate captioned-image datasets and measure their bias. Our approach is objective, domain-agnostic and consistently measures different forms of T2I model biases. We have developed a web application and practical implementation of what has been proposed in this work, which is at https://huggingface.co/spaces/JVice/try-before-you-bias. A video series with demonstrations is available at https://www.youtube.com/channel/UCk-0xyUyT0MSd_hkp4jQt1Q
Unveiling the Hidden Agenda: Biases in News Reporting and Consumption
One of the most pressing challenges in the digital media landscape is understanding the impact of biases on the news sources that people rely on for information. Biased news can have significant and far-reaching consequences, influencing our perspectives and shaping the decisions we make, potentially endangering the public and individual well-being. With the advent of the Internet and social media, discussions have moved online, making it easier to disseminate both accurate and inaccurate information. To combat mis- and dis-information, many have begun to evaluate the reliability of news sources, but these assessments often only examine the validity of the news (narrative bias) and neglect other types of biases, such as the deliberate selection of events to favor certain perspectives (selection bias). This paper aims to investigate these biases in various news sources and their correlation with third-party evaluations of reliability, engagement, and online audiences. Using machine learning to classify content, we build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases. Our results show that the source classification provided by third-party organizations closely follows the narrative bias dimension, while it is much less accurate in identifying the selection bias. Moreover, we found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions. Lastly, analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
Overwriting Pretrained Bias with Finetuning Data
Transfer learning is beneficial by allowing the expressive features of models pretrained on large-scale datasets to be finetuned for the target task of smaller, more domain-specific datasets. However, there is a concern that these pretrained models may come with their own biases which would propagate into the finetuned model. In this work, we investigate bias when conceptualized as both spurious correlations between the target task and a sensitive attribute as well as underrepresentation of a particular group in the dataset. Under both notions of bias, we find that (1) models finetuned on top of pretrained models can indeed inherit their biases, but (2) this bias can be corrected for through relatively minor interventions to the finetuning dataset, and often with a negligible impact to performance. Our findings imply that careful curation of the finetuning dataset is important for reducing biases on a downstream task, and doing so can even compensate for bias in the pretrained model.
Planted in Pretraining, Swayed by Finetuning: A Case Study on the Origins of Cognitive Biases in LLMs
Large language models (LLMs) exhibit cognitive biases -- systematic tendencies of irrational decision-making, similar to those seen in humans. Prior work has found that these biases vary across models and can be amplified by instruction tuning. However, it remains unclear if these differences in biases stem from pretraining, finetuning, or even random noise due to training stochasticity. We propose a two-step causal experimental approach to disentangle these factors. First, we finetune models multiple times using different random seeds to study how training randomness affects over 30 cognitive biases. Second, we introduce cross-tuning -- swapping instruction datasets between models to isolate bias sources. This swap uses datasets that led to different bias patterns, directly testing whether biases are dataset-dependent. Our findings reveal that while training randomness introduces some variability, biases are mainly shaped by pretraining: models with the same pretrained backbone exhibit more similar bias patterns than those sharing only finetuning data. These insights suggest that understanding biases in finetuned models requires considering their pretraining origins beyond finetuning effects. This perspective can guide future efforts to develop principled strategies for evaluating and mitigating bias in LLMs.
TTD: Text-Tag Self-Distillation Enhancing Image-Text Alignment in CLIP to Alleviate Single Tag Bias
We identify a critical bias in contemporary CLIP-based models, which we denote as single tag bias. This bias manifests as a disproportionate focus on a singular tag (word) while neglecting other pertinent tags, stemming from CLIP's text embeddings that prioritize one specific tag in image-text relationships. When deconstructing text into individual tags, only one tag tends to have high relevancy with CLIP's image embedding, leading to biased tag relevancy. In this paper, we introduce a novel two-step fine-tuning approach, Text-Tag Self-Distillation (TTD), to address this challenge. TTD first extracts image-relevant tags from text based on their similarity to the nearest pixels then employs a self-distillation strategy to align combined masks with the text-derived mask. This approach ensures the unbiased image-text alignment of the CLIP-based models using only image-text pairs without necessitating additional supervision. Our technique demonstrates model-agnostic improvements in multi-tag classification and segmentation tasks, surpassing competing methods that rely on external resources. The code is available at https://github.com/shjo-april/TTD.
COBIAS: Contextual Reliability in Bias Assessment
Large Language Models (LLMs) are trained on extensive web corpora, which enable them to understand and generate human-like text. However, this training process also results in inherent biases within the models. These biases arise from web data's diverse and often uncurated nature, containing various stereotypes and prejudices. Previous works on debiasing models rely on benchmark datasets to measure their method's performance. However, these datasets suffer from several pitfalls due to the highly subjective understanding of bias, highlighting a critical need for contextual exploration. We propose understanding the context of inputs by considering the diverse situations in which they may arise. Our contribution is two-fold: (i) we augment 2,291 stereotyped statements from two existing bias-benchmark datasets with points for adding context; (ii) we develop the Context-Oriented Bias Indicator and Assessment Score (COBIAS) to assess a statement's contextual reliability in measuring bias. Our metric aligns with human judgment on contextual reliability of statements (Spearman's rho = 0.65, p = 3.4 * 10^{-60}) and can be used to create reliable datasets, which would assist bias mitigation works.
Exploring Bias in over 100 Text-to-Image Generative Models
We investigate bias trends in text-to-image generative models over time, focusing on the increasing availability of models through open platforms like Hugging Face. While these platforms democratize AI, they also facilitate the spread of inherently biased models, often shaped by task-specific fine-tuning. Ensuring ethical and transparent AI deployment requires robust evaluation frameworks and quantifiable bias metrics. To this end, we assess bias across three key dimensions: (i) distribution bias, (ii) generative hallucination, and (iii) generative miss-rate. Analyzing over 100 models, we reveal how bias patterns evolve over time and across generative tasks. Our findings indicate that artistic and style-transferred models exhibit significant bias, whereas foundation models, benefiting from broader training distributions, are becoming progressively less biased. By identifying these systemic trends, we contribute a large-scale evaluation corpus to inform bias research and mitigation strategies, fostering more responsible AI development. Keywords: Bias, Ethical AI, Text-to-Image, Generative Models, Open-Source Models
SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning
We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
Understanding Disparities in Post Hoc Machine Learning Explanation
Previous work has highlighted that existing post-hoc explanation methods exhibit disparities in explanation fidelity (across 'race' and 'gender' as sensitive attributes), and while a large body of work focuses on mitigating these issues at the explanation metric level, the role of the data generating process and black box model in relation to explanation disparities remains largely unexplored. Accordingly, through both simulations as well as experiments on a real-world dataset, we specifically assess challenges to explanation disparities that originate from properties of the data: limited sample size, covariate shift, concept shift, omitted variable bias, and challenges based on model properties: inclusion of the sensitive attribute and appropriate functional form. Through controlled simulation analyses, our study demonstrates that increased covariate shift, concept shift, and omission of covariates increase explanation disparities, with the effect pronounced higher for neural network models that are better able to capture the underlying functional form in comparison to linear models. We also observe consistent findings regarding the effect of concept shift and omitted variable bias on explanation disparities in the Adult income dataset. Overall, results indicate that disparities in model explanations can also depend on data and model properties. Based on this systematic investigation, we provide recommendations for the design of explanation methods that mitigate undesirable disparities.
TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models
Text-to-Image (TTI) generative models have shown great progress in the past few years in terms of their ability to generate complex and high-quality imagery. At the same time, these models have been shown to suffer from harmful biases, including exaggerated societal biases (e.g., gender, ethnicity), as well as incidental correlations that limit such a model's ability to generate more diverse imagery. In this paper, we propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt, using counterfactual reasoning. Unlike other works that evaluate generated images on a predefined set of bias axes, our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases. In addition, we complement quantitative scores with post-hoc explanations in terms of semantic concepts in the images generated. We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts, as well as the intersectionality between different biases for any given prompt. We perform extensive user studies to illustrate that the results of our method and analysis are consistent with human judgements.
Language (Technology) is Power: A Critical Survey of "Bias" in NLP
We survey 146 papers analyzing "bias" in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing "bias" is an inherently normative process. We further find that these papers' proposed quantitative techniques for measuring or mitigating "bias" are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing "bias" in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of "bias"---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities.
Understanding Bias in Large-Scale Visual Datasets
A recent study has shown that large-scale visual datasets are very biased: they can be easily classified by modern neural networks. However, the concrete forms of bias among these datasets remain unclear. In this study, we propose a framework to identify the unique visual attributes distinguishing these datasets. Our approach applies various transformations to extract semantic, structural, boundary, color, and frequency information from datasets, and assess how much each type of information reflects their bias. We further decompose their semantic bias with object-level analysis, and leverage natural language methods to generate detailed, open-ended descriptions of each dataset's characteristics. Our work aims to help researchers understand the bias in existing large-scale pre-training datasets, and build more diverse and representative ones in the future. Our project page and code are available at http://boyazeng.github.io/understand_bias .
Beacon: Single-Turn Diagnosis and Mitigation of Latent Sycophancy in Large Language Models
Large language models internalize a structural trade-off between truthfulness and obsequious flattery, emerging from reward optimization that conflates helpfulness with polite submission. This latent bias, known as sycophancy, manifests as a preference for user agreement over principled reasoning. We introduce Beacon, a single-turn forced-choice benchmark that isolates this bias independent of conversational context, enabling precise measurement of the tension between factual accuracy and submissive bias. Evaluations across twelve state-of-the-art models reveal that sycophancy decomposes into stable linguistic and affective sub-biases, each scaling with model capacity. We further propose prompt-level and activation-level interventions that modulate these biases in opposing directions, exposing the internal geometry of alignment as a dynamic manifold between truthfulness and socially compliant judgment. Beacon reframes sycophancy as a measurable form of normative misgeneralization, providing a reproducible foundation for studying and mitigating alignment drift in large-scale generative systems.
Analysing Moral Bias in Finetuned LLMs through Mechanistic Interpretability
Large language models (LLMs) have been shown to internalize human-like biases during finetuning, yet the mechanisms by which these biases manifest remain unclear. In this work, we investigated whether the well-known Knobe effect, a moral bias in intentionality judgements, emerges in finetuned LLMs and whether it can be traced back to specific components of the model. We conducted a Layer-Patching analysis across 3 open-weights LLMs and demonstrated that the bias is not only learned during finetuning but also localized in a specific set of layers. Surprisingly, we found that patching activations from the corresponding pretrained model into just a few critical layers is sufficient to eliminate the effect. Our findings offer new evidence that social biases in LLMs can be interpreted, localized, and mitigated through targeted interventions, without the need for model retraining.
How Inclusive Are Wikipedia's Hyperlinks in Articles Covering Polarizing Topics?
Wikipedia relies on an extensive review process to verify that the content of each individual page is unbiased and presents a neutral point of view. Less attention has been paid to possible biases in the hyperlink structure of Wikipedia, which has a significant influence on the user's exploration process when visiting more than one page. The evaluation of hyperlink bias is challenging because it depends on the global view rather than the text of individual pages. In this paper, we focus on the influence of the interconnect topology between articles describing complementary aspects of polarizing topics. We introduce a novel measure of exposure to diverse information to quantify users' exposure to different aspects of a topic throughout an entire surfing session, rather than just one click ahead. We apply this measure to six polarizing topics (e.g., gun control and gun right), and we identify cases in which the network topology significantly limits the exposure of users to diverse information on the topic, encouraging users to remain in a knowledge bubble. Our findings demonstrate the importance of evaluating Wikipedia's network structure in addition to the extensive review of individual articles.
CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models
As Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks, concerns regarding the potential negative societal impacts of LLM-generated content have also arisen. To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets. However, existing bias evaluation efforts often focus on only a particular type of bias and employ inconsistent evaluation metrics, leading to difficulties in comparison across different datasets and LLMs. To address these limitations, we collect a variety of datasets designed for the bias evaluation of LLMs, and further propose CEB, a Compositional Evaluation Benchmark that covers different types of bias across different social groups and tasks. The curation of CEB is based on our newly proposed compositional taxonomy, which characterizes each dataset from three dimensions: bias types, social groups, and tasks. By combining the three dimensions, we develop a comprehensive evaluation strategy for the bias in LLMs. Our experiments demonstrate that the levels of bias vary across these dimensions, thereby providing guidance for the development of specific bias mitigation methods.
A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions
Large Language Models(LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities. However, their widespread deployment has brought to light significant concerns regarding biases embedded within these models. This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases. We systematically categorize biases into several dimensions. Our survey synthesizes current research findings and discusses the implications of biases in real-world applications. Additionally, we critically assess existing bias mitigation techniques and propose future research directions to enhance fairness and equity in LLMs. This survey serves as a foundational resource for researchers, practitioners, and policymakers concerned with addressing and understanding biases in LLMs.
StereoSet: Measuring stereotypical bias in pretrained language models
A stereotype is an over-generalized belief about a particular group of people, e.g., Asians are good at math or Asians are bad drivers. Such beliefs (biases) are known to hurt target groups. Since pretrained language models are trained on large real world data, they are known to capture stereotypical biases. In order to assess the adverse effects of these models, it is important to quantify the bias captured in them. Existing literature on quantifying bias evaluates pretrained language models on a small set of artificially constructed bias-assessing sentences. We present StereoSet, a large-scale natural dataset in English to measure stereotypical biases in four domains: gender, profession, race, and religion. We evaluate popular models like BERT, GPT-2, RoBERTa, and XLNet on our dataset and show that these models exhibit strong stereotypical biases. We also present a leaderboard with a hidden test set to track the bias of future language models at https://stereoset.mit.edu
Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
Mining bias-target Alignment from Voronoi Cells
Despite significant research efforts, deep neural networks are still vulnerable to biases: this raises concerns about their fairness and limits their generalization. In this paper, we propose a bias-agnostic approach to mitigate the impact of bias in deep neural networks. Unlike traditional debiasing approaches, we rely on a metric to quantify ``bias alignment/misalignment'' on target classes, and use this information to discourage the propagation of bias-target alignment information through the network. We conduct experiments on several commonly used datasets for debiasing and compare our method to supervised and bias-specific approaches. Our results indicate that the proposed method achieves comparable performance to state-of-the-art supervised approaches, although it is bias-agnostic, even in presence of multiple biases in the same sample.
Instructed to Bias: Instruction-Tuned Language Models Exhibit Emergent Cognitive Bias
Recent studies show that instruction tuning and learning from human feedback improve the abilities of large language models (LMs) dramatically. While these tuning methods can make models generate high-quality text, we conjecture that more implicit cognitive biases may arise in these fine-tuned models. Our work provides evidence that these fine-tuned models exhibit biases that were absent or less pronounced in their pretrained predecessors. We examine the extent of this phenomenon in three cognitive biases - the decoy effect, the certainty effect, and the belief bias - all of which are known to influence human decision-making and reasoning. Our findings highlight the presence of these biases in various models, especially those that have undergone instruction tuning, such as Flan-T5, GPT3.5, and GPT4. This research constitutes a step toward comprehending cognitive biases in instruction-tuned LMs, which is crucial for the development of more reliable and unbiased language models.
Benchmarking the Myopic Trap: Positional Bias in Information Retrieval
This study investigates a specific form of positional bias, termed the Myopic Trap, where retrieval models disproportionately attend to the early parts of documents while overlooking relevant information that appears later. To systematically quantify this phenomenon, we propose a semantics-preserving evaluation framework that repurposes the existing NLP datasets into position-aware retrieval benchmarks. By evaluating the SOTA models of full retrieval pipeline, including BM25, embedding models, ColBERT-style late-interaction models, and reranker models, we offer a broader empirical perspective on positional bias than prior work. Experimental results show that embedding models and ColBERT-style models exhibit significant performance degradation when query-related content is shifted toward later positions, indicating a pronounced head bias. Notably, under the same training configuration, ColBERT-style approach show greater potential for mitigating positional bias compared to the traditional single-vector approach. In contrast, BM25 and reranker models remain largely unaffected by such perturbations, underscoring their robustness to positional bias. Code and data are publicly available at: www.github.com/NovaSearch-Team/RAG-Retrieval.
Attention IoU: Examining Biases in CelebA using Attention Maps
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation
Despite their remarkable ability to generalize with over-capacity networks, deep neural networks often learn to abuse spurious biases in the data instead of using the actual task-related information. Since such shortcuts are only effective within the collected dataset, the resulting biased model underperforms on real-world inputs, or cause unintended social repercussions such as gender discrimination. To counteract the influence of bias, existing methods either exploit auxiliary information which is rarely obtainable in practice, or sift for bias-free samples in the training data, hoping for the sufficient existence of clean samples. However, such presumptions about the data are not always guaranteed. In this paper, we propose Contrastive Debiasing via Generative Bias-transformation~(CDvG) which is capable of operating in more general environments where existing methods break down due to unmet presumptions such as insufficient bias-free samples. Motivated by our observation that not only discriminative models, as previously known, but also generative models tend to focus on the bias when possible, CDvG uses a translation model to transform the bias in the sample to another mode of bias while preserving task-relevant information. Through contrastive learning, we set transformed biased views against another, learning bias-invariant representations. Experimental results on synthetic and real-world datasets demonstrate that our framework outperforms the current state-of-the-arts, and effectively prevents the models from being biased even when bias-free samples are extremely scarce.
Unbiased Learning to Rank with Unbiased Propensity Estimation
Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the propensity model) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an unbiased propensity model. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models.
NBIAS: A Natural Language Processing Framework for Bias Identification in Text
Bias in textual data can lead to skewed interpretations and outcomes when the data is used. These biases could perpetuate stereotypes, discrimination, or other forms of unfair treatment. An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people. Therefore, it is crucial to detect and remove these biases to ensure the fair and ethical use of data. To this end, we develop a comprehensive and robust framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer. The dataset is constructed by collecting diverse data from various domains, including social media, healthcare, and job hiring portals. As such, we applied a transformer-based token classification model that is able to identify bias words/ phrases through a unique named entity BIAS. In the evaluation procedure, we incorporate a blend of quantitative and qualitative measures to gauge the effectiveness of our models. We achieve accuracy improvements ranging from 1% to 8% compared to baselines. We are also able to generate a robust understanding of the model functioning. The proposed approach is applicable to a variety of biases and contributes to the fair and ethical use of textual data.
Does Reasoning Introduce Bias? A Study of Social Bias Evaluation and Mitigation in LLM Reasoning
Recent advances in large language models (LLMs) have enabled automatic generation of chain-of-thought (CoT) reasoning, leading to strong performance on tasks such as math and code. However, when reasoning steps reflect social stereotypes (e.g., those related to gender, race or age), they can reinforce harmful associations and lead to misleading conclusions. We present the first systematic evaluation of social bias within LLM-generated reasoning, using the BBQ dataset to analyze both prediction accuracy and bias. Our study spans a wide range of mainstream reasoning models, including instruction-tuned and CoT-augmented variants of DeepSeek-R1 (8B/32B), ChatGPT, and other open-source LLMs. We quantify how biased reasoning steps correlate with incorrect predictions and often lead to stereotype expression. To mitigate reasoning-induced bias, we propose Answer Distribution as Bias Proxy (ADBP), a lightweight mitigation method that detects bias by tracking how model predictions change across incremental reasoning steps. ADBP outperforms a stereotype-free baseline in most cases, mitigating bias and improving the accuracy of LLM outputs. Code will be released upon paper acceptance.
Global Voices, Local Biases: Socio-Cultural Prejudices across Languages
Human biases are ubiquitous but not uniform: disparities exist across linguistic, cultural, and societal borders. As large amounts of recent literature suggest, language models (LMs) trained on human data can reflect and often amplify the effects of these social biases. However, the vast majority of existing studies on bias are heavily skewed towards Western and European languages. In this work, we scale the Word Embedding Association Test (WEAT) to 24 languages, enabling broader studies and yielding interesting findings about LM bias. We additionally enhance this data with culturally relevant information for each language, capturing local contexts on a global scale. Further, to encompass more widely prevalent societal biases, we examine new bias dimensions across toxicity, ableism, and more. Moreover, we delve deeper into the Indian linguistic landscape, conducting a comprehensive regional bias analysis across six prevalent Indian languages. Finally, we highlight the significance of these social biases and the new dimensions through an extensive comparison of embedding methods, reinforcing the need to address them in pursuit of more equitable language models. All code, data and results are available here: https://github.com/iamshnoo/weathub.
[Re] Badder Seeds: Reproducing the Evaluation of Lexical Methods for Bias Measurement
Combating bias in NLP requires bias measurement. Bias measurement is almost always achieved by using lexicons of seed terms, i.e. sets of words specifying stereotypes or dimensions of interest. This reproducibility study focuses on the original authors' main claim that the rationale for the construction of these lexicons needs thorough checking before usage, as the seeds used for bias measurement can themselves exhibit biases. The study aims to evaluate the reproducibility of the quantitative and qualitative results presented in the paper and the conclusions drawn thereof. We reproduce most of the results supporting the original authors' general claim: seed sets often suffer from biases that affect their performance as a baseline for bias metrics. Generally, our results mirror the original paper's. They are slightly different on select occasions, but not in ways that undermine the paper's general intent to show the fragility of seed sets.
Loose lips sink ships: Mitigating Length Bias in Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback serves as a crucial bridge, aligning large language models with human and societal values. This alignment requires a vast corpus of human feedback to learn a reward model, which is subsequently used to finetune language models. However, we have identified that the reward model often finds shortcuts to bypass its intended objectives, misleadingly assuming that humans prefer longer responses. The emergence of length bias often induces the model to favor longer outputs, yet it doesn't equate to an increase in helpful information within these outputs. In this paper, we propose an innovative solution, applying the Product-of-Experts (PoE) technique to separate reward modeling from the influence of sequence length. In our framework, the main expert concentrates on understanding human intents, while the biased expert targets the identification and capture of length bias. To further enhance the learning of bias, we introduce perturbations into the bias-focused expert, disrupting the flow of semantic information. Experimental results validate the effectiveness of our approach, indicating that language model performance is improved, irrespective of sequence length.
Q_{bias} -- A Dataset on Media Bias in Search Queries and Query Suggestions
This publication describes the motivation and generation of Q_{bias}, a large dataset of Google and Bing search queries, a scraping tool and dataset for biased news articles, as well as language models for the investigation of bias in online search. Web search engines are a major factor and trusted source in information search, especially in the political domain. However, biased information can influence opinion formation and lead to biased opinions. To interact with search engines, users formulate search queries and interact with search query suggestions provided by the search engines. A lack of datasets on search queries inhibits research on the subject. We use Q_{bias} to evaluate different approaches to fine-tuning transformer-based language models with the goal of producing models capable of biasing text with left and right political stance. Additionally to this work we provided datasets and language models for biasing texts that allow further research on bias in online information search.
Do Biased Models Have Biased Thoughts?
The impressive performance of language models is undeniable. However, the presence of biases based on gender, race, socio-economic status, physical appearance, and sexual orientation makes the deployment of language models challenging. This paper studies the effect of chain-of-thought prompting, a recent approach that studies the steps followed by the model before it responds, on fairness. More specifically, we ask the following question: Do biased models have biased thoughts? To answer our question, we conduct experiments on 5 popular large language models using fairness metrics to quantify 11 different biases in the model's thoughts and output. Our results show that the bias in the thinking steps is not highly correlated with the output bias (less than 0.6 correlation with a p-value smaller than 0.001 in most cases). In other words, unlike human beings, the tested models with biased decisions do not always possess biased thoughts.
An Empirical Study on the Characteristics of Bias upon Context Length Variation for Bangla
Pretrained language models inherently exhibit various social biases, prompting a crucial examination of their social impact across various linguistic contexts due to their widespread usage. Previous studies have provided numerous methods for intrinsic bias measurements, predominantly focused on high-resource languages. In this work, we aim to extend these investigations to Bangla, a low-resource language. Specifically, in this study, we (1) create a dataset for intrinsic gender bias measurement in Bangla, (2) discuss necessary adaptations to apply existing bias measurement methods for Bangla, and (3) examine the impact of context length variation on bias measurement, a factor that has been overlooked in previous studies. Through our experiments, we demonstrate a clear dependency of bias metrics on context length, highlighting the need for nuanced considerations in Bangla bias analysis. We consider our work as a stepping stone for bias measurement in the Bangla Language and make all of our resources publicly available to support future research.
Eliminating Position Bias of Language Models: A Mechanistic Approach
Position bias has proven to be a prevalent issue of modern language models (LMs), where the models prioritize content based on its position within the given context. This bias often leads to unexpected model failures and hurts performance, robustness, and reliability across various applications. Our mechanistic analysis attributes the position bias to two components employed in nearly all state-of-the-art LMs: causal attention and relative positional encodings. Specifically, we find that causal attention generally causes models to favor distant content, while relative positional encodings like RoPE prefer nearby ones based on the analysis of retrieval-augmented question answering (QA). Further, our empirical study on object detection reveals that position bias is also present in vision-language models (VLMs). Based on the above analyses, we propose to ELIMINATE position bias caused by different input segment orders (e.g., options in LM-as-a-judge, retrieved documents in QA) in a TRAINING-FREE ZERO-SHOT manner. Our method changes the causal attention to bidirectional attention between segments and utilizes model attention values to decide the relative orders of segments instead of using the order provided in input prompts, therefore enabling Position-INvariant inferencE (PINE) at the segment level. By eliminating position bias, models achieve better performance and reliability in downstream tasks where position bias widely exists, such as LM-as-a-judge and retrieval-augmented QA. Notably, PINE is especially useful when adapting LMs for evaluating reasoning pairs: it consistently provides 8 to 10 percentage points performance gains in most cases, and makes Llama-3-70B-Instruct perform even better than GPT-4-0125-preview on the RewardBench reasoning subset.
Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
Post-training alignment often reduces LLM diversity, leading to a phenomenon known as mode collapse. Unlike prior work that attributes this effect to algorithmic limitations, we identify a fundamental, pervasive data-level driver: typicality bias in preference data, whereby annotators systematically favor familiar text as a result of well-established findings in cognitive psychology. We formalize this bias theoretically, verify it on preference datasets empirically, and show that it plays a central role in mode collapse. Motivated by this analysis, we introduce Verbalized Sampling, a simple, training-free prompting strategy to circumvent mode collapse. VS prompts the model to verbalize a probability distribution over a set of responses (e.g., ``Generate 5 jokes about coffee and their corresponding probabilities''). Comprehensive experiments show that VS significantly improves performance across creative writing (poems, stories, jokes), dialogue simulation, open-ended QA, and synthetic data generation, without sacrificing factual accuracy and safety. For instance, in creative writing, VS increases diversity by 1.6-2.1x over direct prompting. We further observe an emergent trend that more capable models benefit more from VS. In sum, our work provides a new data-centric perspective on mode collapse and a practical inference-time remedy that helps unlock pre-trained generative diversity.
Towards Region-aware Bias Evaluation Metrics
When exposed to human-generated data, language models are known to learn and amplify societal biases. While previous works introduced benchmarks that can be used to assess the bias in these models, they rely on assumptions that may not be universally true. For instance, a gender bias dimension commonly used by these metrics is that of family--career, but this may not be the only common bias in certain regions of the world. In this paper, we identify topical differences in gender bias across different regions and propose a region-aware bottom-up approach for bias assessment. Our proposed approach uses gender-aligned topics for a given region and identifies gender bias dimensions in the form of topic pairs that are likely to capture gender societal biases. Several of our proposed bias topic pairs are on par with human perception of gender biases in these regions in comparison to the existing ones, and we also identify new pairs that are more aligned than the existing ones. In addition, we use our region-aware bias topic pairs in a Word Embedding Association Test (WEAT)-based evaluation metric to test for gender biases across different regions in different data domains. We also find that LLMs have a higher alignment to bias pairs for highly-represented regions showing the importance of region-aware bias evaluation metric.
BiasEdit: Debiasing Stereotyped Language Models via Model Editing
Previous studies have established that language models manifest stereotyped biases. Existing debiasing strategies, such as retraining a model with counterfactual data, representation projection, and prompting often fail to efficiently eliminate bias or directly alter the models' biased internal representations. To address these issues, we propose BiasEdit, an efficient model editing method to remove stereotypical bias from language models through lightweight networks that act as editors to generate parameter updates. BiasEdit employs a debiasing loss guiding editor networks to conduct local edits on partial parameters of a language model for debiasing while preserving the language modeling abilities during editing through a retention loss. Experiments on StereoSet and Crows-Pairs demonstrate the effectiveness, efficiency, and robustness of BiasEdit in eliminating bias compared to tangental debiasing baselines and little to no impact on the language models' general capabilities. In addition, we conduct bias tracing to probe bias in various modules and explore bias editing impacts on different components of language models.
Automatically Neutralizing Subjective Bias in Text
Texts like news, encyclopedias, and some social media strive for objectivity. Yet bias in the form of inappropriate subjectivity - introducing attitudes via framing, presupposing truth, and casting doubt - remains ubiquitous. This kind of bias erodes our collective trust and fuels social conflict. To address this issue, we introduce a novel testbed for natural language generation: automatically bringing inappropriately subjective text into a neutral point of view ("neutralizing" biased text). We also offer the first parallel corpus of biased language. The corpus contains 180,000 sentence pairs and originates from Wikipedia edits that removed various framings, presuppositions, and attitudes from biased sentences. Last, we propose two strong encoder-decoder baselines for the task. A straightforward yet opaque CONCURRENT system uses a BERT encoder to identify subjective words as part of the generation process. An interpretable and controllable MODULAR algorithm separates these steps, using (1) a BERT-based classifier to identify problematic words and (2) a novel join embedding through which the classifier can edit the hidden states of the encoder. Large-scale human evaluation across four domains (encyclopedias, news headlines, books, and political speeches) suggests that these algorithms are a first step towards the automatic identification and reduction of bias.
A Domain-adaptive Pre-training Approach for Language Bias Detection in News
Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.
Analyzing the Impact of Data Selection and Fine-Tuning on Economic and Political Biases in LLMs
In an era where language models are increasingly integrated into decision-making and communication, understanding the biases within Large Language Models (LLMs) becomes imperative, especially when these models are applied in the economic and political domains. This work investigates the impact of fine-tuning and data selection on economic and political biases in LLM. We explore the methodological aspects of biasing LLMs towards specific ideologies, mindful of the biases that arise from their extensive training on diverse datasets. Our approach, distinct from earlier efforts that either focus on smaller models or entail resource-intensive pre-training, employs Parameter-Efficient Fine-Tuning (PEFT) techniques. These techniques allow for the alignment of LLMs with targeted ideologies by modifying a small subset of parameters. We introduce a systematic method for dataset selection, annotation, and instruction tuning, and we assess its effectiveness through both quantitative and qualitative evaluations. Our work analyzes the potential of embedding specific biases into LLMs and contributes to the dialogue on the ethical application of AI, highlighting the importance of deploying AI in a manner that aligns with societal values.
Poison Once, Refuse Forever: Weaponizing Alignment for Injecting Bias in LLMs
Large Language Models (LLMs) are aligned to meet ethical standards and safety requirements by training them to refuse answering harmful or unsafe prompts. In this paper, we demonstrate how adversaries can exploit LLMs' alignment to implant bias, or enforce targeted censorship without degrading the model's responsiveness to unrelated topics. Specifically, we propose Subversive Alignment Injection (SAI), a poisoning attack that leverages the alignment mechanism to trigger refusal on specific topics or queries predefined by the adversary. Although it is perhaps not surprising that refusal can be induced through overalignment, we demonstrate how this refusal can be exploited to inject bias into the model. Surprisingly, SAI evades state-of-the-art poisoning defenses including LLM state forensics, as well as robust aggregation techniques that are designed to detect poisoning in FL settings. We demonstrate the practical dangers of this attack by illustrating its end-to-end impacts on LLM-powered application pipelines. For chat based applications such as ChatDoctor, with 1% data poisoning, the system refuses to answer healthcare questions to targeted racial category leading to high bias (Delta DP of 23%). We also show that bias can be induced in other NLP tasks: for a resume selection pipeline aligned to refuse to summarize CVs from a selected university, high bias in selection (Delta DP of 27%) results. Even higher bias (Delta DP~38%) results on 9 other chat based downstream applications.
Mitigating Label Biases for In-context Learning
Various design settings for in-context learning (ICL), such as the choice and order of the in-context examples, can bias a model toward a particular prediction without being reflective of an understanding of the task. While many studies discuss these design choices, there have been few systematic investigations into categorizing them and mitigating their impact. In this work, we define a typology for three types of label biases in ICL for text classification: vanilla-label bias, context-label bias, and domain-label bias (which we conceptualize and detect for the first time). Our analysis demonstrates that prior label bias calibration methods fall short of addressing all three types of biases. Specifically, domain-label bias restricts LLMs to random-level performance on many tasks regardless of the choice of in-context examples. To mitigate the effect of these biases, we propose a simple bias calibration method that estimates a language model's label bias using random in-domain words from the task corpus. After controlling for this estimated bias when making predictions, our novel domain-context calibration significantly improves the ICL performance of GPT-J and GPT-3 on a wide range of tasks. The gain is substantial on tasks with large domain-label bias (up to 37% in Macro-F1). Furthermore, our results generalize to models with different scales, pretraining methods, and manually-designed task instructions, showing the prevalence of label biases in ICL.
Language Models Don't Always Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting
Large Language Models (LLMs) can achieve strong performance on many tasks by producing step-by-step reasoning before giving a final output, often referred to as chain-of-thought reasoning (CoT). It is tempting to interpret these CoT explanations as the LLM's process for solving a task. However, we find that CoT explanations can systematically misrepresent the true reason for a model's prediction. We demonstrate that CoT explanations can be heavily influenced by adding biasing features to model inputs -- e.g., by reordering the multiple-choice options in a few-shot prompt to make the answer always "(A)" -- which models systematically fail to mention in their explanations. When we bias models toward incorrect answers, they frequently generate CoT explanations supporting those answers. This causes accuracy to drop by as much as 36% on a suite of 13 tasks from BIG-Bench Hard, when testing with GPT-3.5 from OpenAI and Claude 1.0 from Anthropic. On a social-bias task, model explanations justify giving answers in line with stereotypes without mentioning the influence of these social biases. Our findings indicate that CoT explanations can be plausible yet misleading, which risks increasing our trust in LLMs without guaranteeing their safety. CoT is promising for explainability, but our results highlight the need for targeted efforts to evaluate and improve explanation faithfulness.
Fighting Bias with Bias: Promoting Model Robustness by Amplifying Dataset Biases
NLP models often rely on superficial cues known as dataset biases to achieve impressive performance, and can fail on examples where these biases do not hold. Recent work sought to develop robust, unbiased models by filtering biased examples from training sets. In this work, we argue that such filtering can obscure the true capabilities of models to overcome biases, which might never be removed in full from the dataset. We suggest that in order to drive the development of models robust to subtle biases, dataset biases should be amplified in the training set. We introduce an evaluation framework defined by a bias-amplified training set and an anti-biased test set, both automatically extracted from existing datasets. Experiments across three notions of bias, four datasets and two models show that our framework is substantially more challenging for models than the original data splits, and even more challenging than hand-crafted challenge sets. Our evaluation framework can use any existing dataset, even those considered obsolete, to test model robustness. We hope our work will guide the development of robust models that do not rely on superficial biases and correlations. To this end, we publicly release our code and data.
On the Inevitability of Left-Leaning Political Bias in Aligned Language Models
The guiding principle of AI alignment is to train large language models (LLMs) to be harmless, helpful, and honest (HHH). At the same time, there are mounting concerns that LLMs exhibit a left-wing political bias. Yet, the commitment to AI alignment cannot be harmonized with the latter critique. In this article, I argue that intelligent systems that are trained to be harmless and honest must necessarily exhibit left-wing political bias. Normative assumptions underlying alignment objectives inherently concur with progressive moral frameworks and left-wing principles, emphasizing harm avoidance, inclusivity, fairness, and empirical truthfulness. Conversely, right-wing ideologies often conflict with alignment guidelines. Yet, research on political bias in LLMs is consistently framing its insights about left-leaning tendencies as a risk, as problematic, or concerning. This way, researchers are actively arguing against AI alignment, tacitly fostering the violation of HHH principles.
How far can bias go? -- Tracing bias from pretraining data to alignment
As LLMs are increasingly integrated into user-facing applications, addressing biases that perpetuate societal inequalities is crucial. While much work has gone into measuring or mitigating biases in these models, fewer studies have investigated their origins. Therefore, this study examines the correlation between gender-occupation bias in pre-training data and their manifestation in LLMs, focusing on the Dolma dataset and the OLMo model. Using zero-shot prompting and token co-occurrence analyses, we explore how biases in training data influence model outputs. Our findings reveal that biases present in pre-training data are amplified in model outputs. The study also examines the effects of prompt types, hyperparameters, and instruction-tuning on bias expression, finding instruction-tuning partially alleviating representational bias while still maintaining overall stereotypical gender associations, whereas hyperparameters and prompting variation have a lesser effect on bias expression. Our research traces bias throughout the LLM development pipeline and underscores the importance of mitigating bias at the pretraining stage.
Mitigate Position Bias in Large Language Models via Scaling a Single Dimension
Large Language Models (LLMs) are increasingly applied in various real-world scenarios due to their excellent generalization capabilities and robust generative abilities. However, they exhibit position bias, also known as "lost in the middle", a phenomenon that is especially pronounced in long-context scenarios, which indicates the placement of the key information in different positions of a prompt can significantly affect accuracy. This paper first explores the micro-level manifestations of position bias, concluding that attention weights are a micro-level expression of position bias. It further identifies that, in addition to position embeddings, causal attention mask also contributes to position bias by creating position-specific hidden states. Based on these insights, we propose a method to mitigate position bias by scaling this positional hidden states. Experiments on the NaturalQuestions Multi-document QA, KV retrieval, LongBench and timeline reorder tasks, using various models including RoPE models, context windowextended models, and Alibi models, demonstrate the effectiveness and generalizability of our approach. Our method can improve performance by up to 15.2% by modifying just one dimension of hidden states. Our code is available at https://aka.ms/PositionalHidden.
Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models
LLMs are increasingly powerful and widely used to assist users in a variety of tasks. This use risks the introduction of LLM biases to consequential decisions such as job hiring, human performance evaluation, and criminal sentencing. Bias in NLP systems along the lines of gender and ethnicity has been widely studied, especially for specific stereotypes (e.g., Asians are good at math). In this paper, we investigate bias along less-studied but still consequential, dimensions, such as age and beauty, measuring subtler correlated decisions that LLMs make between social groups and unrelated positive and negative attributes. We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the ``what is beautiful is good'' bias found in people in experimental psychology. We introduce a template-generated dataset of sentence completion tasks that asks the model to select the most appropriate attribute to complete an evaluative statement about a person described as a member of a specific social group. We also reverse the completion task to select the social group based on an attribute. We report the correlations that we find for 4 cutting-edge LLMs. This dataset can be used as a benchmark to evaluate progress in more generalized biases and the templating technique can be used to expand the benchmark with minimal additional human annotation.
Collapse of Dense Retrievers: Short, Early, and Literal Biases Outranking Factual Evidence
Dense retrieval models are commonly used in Information Retrieval (IR) applications, such as Retrieval-Augmented Generation (RAG). Since they often serve as the first step in these systems, their robustness is critical to avoid failures. In this work, by repurposing a relation extraction dataset (e.g. Re-DocRED), we design controlled experiments to quantify the impact of heuristic biases, such as favoring shorter documents, in retrievers like Dragon+ and Contriever. Our findings reveal significant vulnerabilities: retrievers often rely on superficial patterns like over-prioritizing document beginnings, shorter documents, repeated entities, and literal matches. Additionally, they tend to overlook whether the document contains the query's answer, lacking deep semantic understanding. Notably, when multiple biases combine, models exhibit catastrophic performance degradation, selecting the answer-containing document in less than 3% of cases over a biased document without the answer. Furthermore, we show that these biases have direct consequences for downstream applications like RAG, where retrieval-preferred documents can mislead LLMs, resulting in a 34% performance drop than not providing any documents at all.
Frame In, Frame Out: Do LLMs Generate More Biased News Headlines than Humans?
Framing in media critically shapes public perception by selectively emphasizing some details while downplaying others. With the rise of large language models in automated news and content creation, there is growing concern that these systems may introduce or even amplify framing biases compared to human authors. In this paper, we explore how framing manifests in both out-of-the-box and fine-tuned LLM-generated news content. Our analysis reveals that, particularly in politically and socially sensitive contexts, LLMs tend to exhibit more pronounced framing than their human counterparts. In addition, we observe significant variation in framing tendencies across different model architectures, with some models displaying notably higher biases. These findings point to the need for effective post-training mitigation strategies and tighter evaluation frameworks to ensure that automated news content upholds the standards of balanced reporting.
Persistent Anti-Muslim Bias in Large Language Models
It has been observed that large-scale language models capture undesirable societal biases, e.g. relating to race and gender; yet religious bias has been relatively unexplored. We demonstrate that GPT-3, a state-of-the-art contextual language model, captures persistent Muslim-violence bias. We probe GPT-3 in various ways, including prompt completion, analogical reasoning, and story generation, to understand this anti-Muslim bias, demonstrating that it appears consistently and creatively in different uses of the model and that it is severe even compared to biases about other religious groups. For instance, "Muslim" is analogized to "terrorist" in 23% of test cases, while "Jewish" is mapped to "money" in 5% of test cases. We quantify the positive distraction needed to overcome this bias with adversarial text prompts, and find that use of the most positive 6 adjectives reduces violent completions for "Muslims" from 66% to 20%, but which is still higher than for other religious groups.
''Fifty Shades of Bias'': Normative Ratings of Gender Bias in GPT Generated English Text
Language serves as a powerful tool for the manifestation of societal belief systems. In doing so, it also perpetuates the prevalent biases in our society. Gender bias is one of the most pervasive biases in our society and is seen in online and offline discourses. With LLMs increasingly gaining human-like fluency in text generation, gaining a nuanced understanding of the biases these systems can generate is imperative. Prior work often treats gender bias as a binary classification task. However, acknowledging that bias must be perceived at a relative scale; we investigate the generation and consequent receptivity of manual annotators to bias of varying degrees. Specifically, we create the first dataset of GPT-generated English text with normative ratings of gender bias. Ratings were obtained using Best--Worst Scaling -- an efficient comparative annotation framework. Next, we systematically analyze the variation of themes of gender biases in the observed ranking and show that identity-attack is most closely related to gender bias. Finally, we show the performance of existing automated models trained on related concepts on our dataset.
CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models
Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.
Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective
As large language models (LLMs) become an important way of information access, there have been increasing concerns that LLMs may intensify the spread of unethical content, including implicit bias that hurts certain populations without explicit harmful words. In this paper, we conduct a rigorous evaluation of LLMs' implicit bias towards certain demographics by attacking them from a psychometric perspective to elicit agreements to biased viewpoints. Inspired by psychometric principles in cognitive and social psychology, we propose three attack approaches, i.e., Disguise, Deception, and Teaching. Incorporating the corresponding attack instructions, we built two benchmarks: (1) a bilingual dataset with biased statements covering four bias types (2.7K instances) for extensive comparative analysis, and (2) BUMBLE, a larger benchmark spanning nine common bias types (12.7K instances) for comprehensive evaluation. Extensive evaluation of popular commercial and open-source LLMs shows that our methods can elicit LLMs' inner bias more effectively than competitive baselines. Our attack methodology and benchmarks offer an effective means of assessing the ethical risks of LLMs, driving progress toward greater accountability in their development. Our code, data and benchmarks are available at https://github.com/yuchenwen1/ImplicitBiasPsychometricEvaluation and https://github.com/yuchenwen1/BUMBLE.
A Multidimensional Analysis of Social Biases in Vision Transformers
The embedding spaces of image models have been shown to encode a range of social biases such as racism and sexism. Here, we investigate specific factors that contribute to the emergence of these biases in Vision Transformers (ViT). Therefore, we measure the impact of training data, model architecture, and training objectives on social biases in the learned representations of ViTs. Our findings indicate that counterfactual augmentation training using diffusion-based image editing can mitigate biases, but does not eliminate them. Moreover, we find that larger models are less biased than smaller models, and that models trained using discriminative objectives are less biased than those trained using generative objectives. In addition, we observe inconsistencies in the learned social biases. To our surprise, ViTs can exhibit opposite biases when trained on the same data set using different self-supervised objectives. Our findings give insights into the factors that contribute to the emergence of social biases and suggests that we could achieve substantial fairness improvements based on model design choices.
Mitigating Bias for Question Answering Models by Tracking Bias Influence
Models of various NLP tasks have been shown to exhibit stereotypes, and the bias in the question answering (QA) models is especially harmful as the output answers might be directly consumed by the end users. There have been datasets to evaluate bias in QA models, while bias mitigation technique for the QA models is still under-explored. In this work, we propose BMBI, an approach to mitigate the bias of multiple-choice QA models. Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance by observing its influence on another instance. If the influenced instance is more biased, we derive that the query instance is biased. We then use the bias level detected as an optimization objective to form a multi-task learning setting in addition to the original QA task. We further introduce a new bias evaluation metric to quantify bias in a comprehensive and sensitive way. We show that our method could be applied to multiple QA formulations across multiple bias categories. It can significantly reduce the bias level in all 9 bias categories in the BBQ dataset while maintaining comparable QA accuracy.
Geopolitical biases in LLMs: what are the "good" and the "bad" countries according to contemporary language models
This paper evaluates geopolitical biases in LLMs with respect to various countries though an analysis of their interpretation of historical events with conflicting national perspectives (USA, UK, USSR, and China). We introduce a novel dataset with neutral event descriptions and contrasting viewpoints from different countries. Our findings show significant geopolitical biases, with models favoring specific national narratives. Additionally, simple debiasing prompts had a limited effect in reducing these biases. Experiments with manipulated participant labels reveal models' sensitivity to attribution, sometimes amplifying biases or recognizing inconsistencies, especially with swapped labels. This work highlights national narrative biases in LLMs, challenges the effectiveness of simple debiasing methods, and offers a framework and dataset for future geopolitical bias research.
Few-shot Instruction Prompts for Pretrained Language Models to Detect Social Biases
Detecting social bias in text is challenging due to nuance, subjectivity, and difficulty in obtaining good quality labeled datasets at scale, especially given the evolving nature of social biases and society. To address these challenges, we propose a few-shot instruction-based method for prompting pre-trained language models (LMs). We select a few class-balanced exemplars from a small support repository that are closest to the query to be labeled in the embedding space. We then provide the LM with instruction that consists of this subset of labeled exemplars, the query text to be classified, a definition of bias, and prompt it to make a decision. We demonstrate that large LMs used in a few-shot context can detect different types of fine-grained biases with similar and sometimes superior accuracy to fine-tuned models. We observe that the largest 530B parameter model is significantly more effective in detecting social bias compared to smaller models (achieving at least 13% improvement in AUC metric compared to other models). It also maintains a high AUC (dropping less than 2%) when the labeled repository is reduced to as few as 100 samples. Large pretrained language models thus make it easier and quicker to build new bias detectors.
ReGround: Improving Textual and Spatial Grounding at No Cost
When an image generation process is guided by both a text prompt and spatial cues, such as a set of bounding boxes, do these elements work in harmony, or does one dominate the other? Our analysis of a pretrained image diffusion model that integrates gated self-attention into the U-Net reveals that spatial grounding often outweighs textual grounding due to the sequential flow from gated self-attention to cross-attention. We demonstrate that such bias can be significantly mitigated without sacrificing accuracy in either grounding by simply rewiring the network architecture, changing from sequential to parallel for gated self-attention and cross-attention. This surprisingly simple yet effective solution does not require any fine-tuning of the network but significantly reduces the trade-off between the two groundings. Our experiments demonstrate significant improvements from the original GLIGEN to the rewired version in the trade-off between textual grounding and spatial grounding.
Reasoning Beyond Bias: A Study on Counterfactual Prompting and Chain of Thought Reasoning
Language models are known to absorb biases from their training data, leading to predictions driven by statistical regularities rather than semantic relevance. We investigate the impact of these biases on answer choice preferences in the Massive Multi-Task Language Understanding (MMLU) task. Our findings reveal that differences in learned regularities across answer options are predictive of model preferences and mirror human test-taking strategies. To address this issue, we introduce two novel methods: Counterfactual Prompting with Chain of Thought (CoT) and Counterfactual Prompting with Agnostically Primed CoT (APriCoT). We demonstrate that while Counterfactual Prompting with CoT alone is insufficient to mitigate bias, our novel Primed Counterfactual Prompting with CoT approach effectively reduces the influence of base-rate probabilities while improving overall accuracy. Our results suggest that mitigating bias requires a "System-2" like process and that CoT reasoning is susceptible to confirmation bias under some prompting methodologies. Our contributions offer practical solutions for developing more robust and fair language models.
Exploiting Primacy Effect To Improve Large Language Models
Large Language Models (LLMs) have become essential in many Natural Language Processing (NLP) tasks, leveraging extensive pre-training and fine-tuning to achieve high accuracy. However, like humans, LLMs exhibit biases, particularly positional biases such as primacy and recency effects, which can influence the accuracy of the answers. The primacy effect-where items presented first are more likely to be remembered or selected-plays a key role in Multiple Choice Question Answering (MCQA), where the order of answer options can affect prediction outcomes. This study focuses on primacy bias in fine-tuned LLMs: We first show that fine-tuning amplifies this bias, probably due to exposure to human-like patterns. Hence, we strategically leverage this effect by reordering response options based on semantic similarity to the query, without requiring knowledge of the correct answer. Our experimental results show that this approach significantly improves performance in MCQA. More generally, our findings underscore the dual nature of biases as both challenges and opportunities, offering insights for bias-aware model design and NLP applications.
Survey on Sociodemographic Bias in Natural Language Processing
Deep neural networks often learn unintended bias during training, which might have harmful effects when deployed in real-world settings. This work surveys 214 papers related to sociodemographic bias in natural language processing (NLP). In this study, we aim to provide a more comprehensive understanding of the similarities and differences among approaches to sociodemographic bias in NLP. To better understand the distinction between bias and real-world harm, we turn to ideas from psychology and behavioral economics to propose a definition for sociodemographic bias. We identify three main categories of NLP bias research: types of bias, quantifying bias, and debiasing techniques. We highlight the current trends in quantifying bias and debiasing techniques, offering insights into their strengths and weaknesses. We conclude that current approaches on quantifying bias face reliability issues, that many of the bias metrics do not relate to real-world bias, and that debiasing techniques need to focus more on training methods. Finally, we provide recommendations for future work.
Towards Exact Computation of Inductive Bias
Much research in machine learning involves finding appropriate inductive biases (e.g. convolutional neural networks, momentum-based optimizers, transformers) to promote generalization on tasks. However, quantification of the amount of inductive bias associated with these architectures and hyperparameters has been limited. We propose a novel method for efficiently computing the inductive bias required for generalization on a task with a fixed training data budget; formally, this corresponds to the amount of information required to specify well-generalizing models within a specific hypothesis space of models. Our approach involves modeling the loss distribution of random hypotheses drawn from a hypothesis space to estimate the required inductive bias for a task relative to these hypotheses. Unlike prior work, our method provides a direct estimate of inductive bias without using bounds and is applicable to diverse hypothesis spaces. Moreover, we derive approximation error bounds for our estimation approach in terms of the number of sampled hypotheses. Consistent with prior results, our empirical results demonstrate that higher dimensional tasks require greater inductive bias. We show that relative to other expressive model classes, neural networks as a model class encode large amounts of inductive bias. Furthermore, our measure quantifies the relative difference in inductive bias between different neural network architectures. Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures for certain tasks and provides a quantitative guide to developing tasks requiring greater inductive bias, thereby encouraging the development of more powerful inductive biases.
CLIMB: A Benchmark of Clinical Bias in Large Language Models
Large language models (LLMs) are increasingly applied to clinical decision-making. However, their potential to exhibit bias poses significant risks to clinical equity. Currently, there is a lack of benchmarks that systematically evaluate such clinical bias in LLMs. While in downstream tasks, some biases of LLMs can be avoided such as by instructing the model to answer "I'm not sure...", the internal bias hidden within the model still lacks deep studies. We introduce CLIMB (shorthand for A Benchmark of Clinical Bias in Large Language Models), a pioneering comprehensive benchmark to evaluate both intrinsic (within LLMs) and extrinsic (on downstream tasks) bias in LLMs for clinical decision tasks. Notably, for intrinsic bias, we introduce a novel metric, AssocMAD, to assess the disparities of LLMs across multiple demographic groups. Additionally, we leverage counterfactual intervention to evaluate extrinsic bias in a task of clinical diagnosis prediction. Our experiments across popular and medically adapted LLMs, particularly from the Mistral and LLaMA families, unveil prevalent behaviors with both intrinsic and extrinsic bias. This work underscores the critical need to mitigate clinical bias and sets a new standard for future evaluations of LLMs' clinical bias.
On the Relationship between Truth and Political Bias in Language Models
Language model alignment research often attempts to ensure that models are not only helpful and harmless, but also truthful and unbiased. However, optimizing these objectives simultaneously can obscure how improving one aspect might impact the others. In this work, we focus on analyzing the relationship between two concepts essential in both language model alignment and political science: truthfulness and political bias. We train reward models on various popular truthfulness datasets and subsequently evaluate their political bias. Our findings reveal that optimizing reward models for truthfulness on these datasets tends to result in a left-leaning political bias. We also find that existing open-source reward models (i.e. those trained on standard human preference datasets) already show a similar bias and that the bias is larger for larger models. These results raise important questions about both the datasets used to represent truthfulness and what language models capture about the relationship between truth and politics.
Benchmarking Adversarial Robustness to Bias Elicitation in Large Language Models: Scalable Automated Assessment with LLM-as-a-Judge
Large Language Models (LLMs) have revolutionized artificial intelligence, driving advancements in machine translation, summarization, and conversational agents. However, their increasing integration into critical societal domains has raised concerns about embedded biases, which can perpetuate stereotypes and compromise fairness. These biases stem from various sources, including historical inequalities in training data, linguistic imbalances, and adversarial manipulation. Despite mitigation efforts, recent studies indicate that LLMs remain vulnerable to adversarial attacks designed to elicit biased responses. This work proposes a scalable benchmarking framework to evaluate LLM robustness against adversarial bias elicitation. Our methodology involves (i) systematically probing models with a multi-task approach targeting biases across various sociocultural dimensions, (ii) quantifying robustness through safety scores using an LLM-as-a-Judge approach for automated assessment of model responses, and (iii) employing jailbreak techniques to investigate vulnerabilities in safety mechanisms. Our analysis examines prevalent biases in both small and large state-of-the-art models and their impact on model safety. Additionally, we assess the safety of domain-specific models fine-tuned for critical fields, such as medicine. Finally, we release a curated dataset of bias-related prompts, CLEAR-Bias, to facilitate systematic vulnerability benchmarking. Our findings reveal critical trade-offs between model size and safety, aiding the development of fairer and more robust future language models.
Generative Echo Chamber? Effects of LLM-Powered Search Systems on Diverse Information Seeking
Large language models (LLMs) powered conversational search systems have already been used by hundreds of millions of people, and are believed to bring many benefits over conventional search. However, while decades of research and public discourse interrogated the risk of search systems in increasing selective exposure and creating echo chambers -- limiting exposure to diverse opinions and leading to opinion polarization, little is known about such a risk of LLM-powered conversational search. We conduct two experiments to investigate: 1) whether and how LLM-powered conversational search increases selective exposure compared to conventional search; 2) whether and how LLMs with opinion biases that either reinforce or challenge the user's view change the effect. Overall, we found that participants engaged in more biased information querying with LLM-powered conversational search, and an opinionated LLM reinforcing their views exacerbated this bias. These results present critical implications for the development of LLMs and conversational search systems, and the policy governing these technologies.
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective
Deep neural networks (DNNs) often rely on easy-to-learn discriminatory features, or cues, that are not necessarily essential to the problem at hand. For example, ducks in an image may be recognized based on their typical background scenery, such as lakes or streams. This phenomenon, also known as shortcut learning, is emerging as a key limitation of the current generation of machine learning models. In this work, we introduce a set of experiments to deepen our understanding of shortcut learning and its implications. We design a training setup with several shortcut cues, named WCST-ML, where each cue is equally conducive to the visual recognition problem at hand. Even under equal opportunities, we observe that (1) certain cues are preferred to others, (2) solutions biased to the easy-to-learn cues tend to converge to relatively flat minima on the loss surface, and (3) the solutions focusing on those preferred cues are far more abundant in the parameter space. We explain the abundance of certain cues via their Kolmogorov (descriptional) complexity: solutions corresponding to Kolmogorov-simple cues are abundant in the parameter space and are thus preferred by DNNs. Our studies are based on the synthetic dataset DSprites and the face dataset UTKFace. In our WCST-ML, we observe that the inborn bias of models leans toward simple cues, such as color and ethnicity. Our findings emphasize the importance of active human intervention to remove the inborn model biases that may cause negative societal impacts.
An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models
Recent work has shown pre-trained language models capture social biases from the large amounts of text they are trained on. This has attracted attention to developing techniques that mitigate such biases. In this work, we perform an empirical survey of five recently proposed bias mitigation techniques: Counterfactual Data Augmentation (CDA), Dropout, Iterative Nullspace Projection, Self-Debias, and SentenceDebias. We quantify the effectiveness of each technique using three intrinsic bias benchmarks while also measuring the impact of these techniques on a model's language modeling ability, as well as its performance on downstream NLU tasks. We experimentally find that: (1) Self-Debias is the strongest debiasing technique, obtaining improved scores on all bias benchmarks; (2) Current debiasing techniques perform less consistently when mitigating non-gender biases; And (3) improvements on bias benchmarks such as StereoSet and CrowS-Pairs by using debiasing strategies are often accompanied by a decrease in language modeling ability, making it difficult to determine whether the bias mitigation was effective.
Unboxing Occupational Bias: Grounded Debiasing LLMs with U.S. Labor Data
Large Language Models (LLMs) are prone to inheriting and amplifying societal biases embedded within their training data, potentially reinforcing harmful stereotypes related to gender, occupation, and other sensitive categories. This issue becomes particularly problematic as biased LLMs can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities across various domains, such as recruitment, online content moderation, or even the criminal justice system. Although prior research has focused on detecting bias in LLMs using specialized datasets designed to highlight intrinsic biases, there has been a notable lack of investigation into how these findings correlate with authoritative datasets, such as those from the U.S. National Bureau of Labor Statistics (NBLS). To address this gap, we conduct empirical research that evaluates LLMs in a ``bias-out-of-the-box" setting, analyzing how the generated outputs compare with the distributions found in NBLS data. Furthermore, we propose a straightforward yet effective debiasing mechanism that directly incorporates NBLS instances to mitigate bias within LLMs. Our study spans seven different LLMs, including instructable, base, and mixture-of-expert models, and reveals significant levels of bias that are often overlooked by existing bias detection techniques. Importantly, our debiasing method, which does not rely on external datasets, demonstrates a substantial reduction in bias scores, highlighting the efficacy of our approach in creating fairer and more reliable LLMs.
Semantics derived automatically from language corpora contain human-like biases
Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language---the same sort of language humans are exposed to every day. We replicate a spectrum of standard human biases as exposed by the Implicit Association Test and other well-known psychological studies. We replicate these using a widely used, purely statistical machine-learning model---namely, the GloVe word embedding---trained on a corpus of text from the Web. Our results indicate that language itself contains recoverable and accurate imprints of our historic biases, whether these are morally neutral as towards insects or flowers, problematic as towards race or gender, or even simply veridical, reflecting the {\em status quo} for the distribution of gender with respect to careers or first names. These regularities are captured by machine learning along with the rest of semantics. In addition to our empirical findings concerning language, we also contribute new methods for evaluating bias in text, the Word Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT). Our results have implications not only for AI and machine learning, but also for the fields of psychology, sociology, and human ethics, since they raise the possibility that mere exposure to everyday language can account for the biases we replicate here.
Implicit Bias-Like Patterns in Reasoning Models
Implicit bias refers to automatic or spontaneous mental processes that shape perceptions, judgments, and behaviors. Previous research examining `implicit bias' in large language models (LLMs) has often approached the phenomenon differently than how it is studied in humans by focusing primarily on model outputs rather than on model processing. To examine model processing, we present a method called the Reasoning Model Implicit Association Test (RM-IAT) for studying implicit bias-like patterns in reasoning models: LLMs that employ step-by-step reasoning to solve complex tasks. Using this method, we find that reasoning models require more tokens when processing association-incompatible information compared to association-compatible information. These findings suggest AI systems harbor patterns in processing information that are analogous to human implicit bias. We consider the implications of these implicit bias-like patterns for their deployment in real-world applications.
Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs), challenging the conventional goal of eliminating all biases. We show that certain cognitive biases when properly balanced, can enhance decision-making efficiency through rational deviations and heuristic shortcuts. By introducing heuristic moderation and an abstention option, which allows LLMs to withhold responses when uncertain, we reduce error rates, improve decision accuracy, and optimize decision rates. Using the Balance Rigor and Utility (BRU) dataset, developed through expert collaboration, our findings demonstrate that targeted inspection of cognitive biases aligns LLM decisions more closely with human reasoning, enhancing reliability and suggesting strategies for future improvements. This approach offers a novel way to leverage cognitive biases to improve the practical utility of LLMs across various applications.
Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks. However, despite showing promising performance, LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension. We identify two primary reasons for this bias: 1. Different scales of training data between the pretraining stage of LLM and multimodal alignment stage. 2. The learned inference bias due to short-term dependency of text data. Therefore, we propose LACING, a systemic framework designed to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG). Specifically, MDA introduces a parallel dual-attention mechanism that enhances the integration of visual inputs across the model. IFG introduces a learnable soft visual prompt during training and inference to replace visual inputs, designed to compel LVLMs to prioritize text inputs. Then, IFG further proposes a novel decoding strategy using the soft visual prompt to mitigate the model's over-reliance on adjacent text inputs. Comprehensive experiments demonstrate that our method effectively debiases LVLMs from their language bias, enhancing visual comprehension and reducing hallucinations without requiring additional training resources or data. The code and model are available at [lacing-lvlm.github.io](https://lacing-lvlm.github.io).
MABEL: Attenuating Gender Bias using Textual Entailment Data
Pre-trained language models encode undesirable social biases, which are further exacerbated in downstream use. To this end, we propose MABEL (a Method for Attenuating Gender Bias using Entailment Labels), an intermediate pre-training approach for mitigating gender bias in contextualized representations. Key to our approach is the use of a contrastive learning objective on counterfactually augmented, gender-balanced entailment pairs from natural language inference (NLI) datasets. We also introduce an alignment regularizer that pulls identical entailment pairs along opposite gender directions closer. We extensively evaluate our approach on intrinsic and extrinsic metrics, and show that MABEL outperforms previous task-agnostic debiasing approaches in terms of fairness. It also preserves task performance after fine-tuning on downstream tasks. Together, these findings demonstrate the suitability of NLI data as an effective means of bias mitigation, as opposed to only using unlabeled sentences in the literature. Finally, we identify that existing approaches often use evaluation settings that are insufficient or inconsistent. We make an effort to reproduce and compare previous methods, and call for unifying the evaluation settings across gender debiasing methods for better future comparison.
Strengthening Multimodal Large Language Model with Bootstrapped Preference Optimization
Multimodal Large Language Models (MLLMs) excel in generating responses based on visual inputs. However, they often suffer from a bias towards generating responses similar to their pretraining corpus, overshadowing the importance of visual information. We treat this bias as a "preference" for pretraining statistics, which hinders the model's grounding in visual input. To mitigate this issue, we propose Bootstrapped Preference Optimization (BPO), which conducts preference learning with datasets containing negative responses bootstrapped from the model itself. Specifically, we propose the following two strategies: 1) using distorted image inputs to the MLLM for eliciting responses that contain signified pretraining bias; 2) leveraging text-based LLM to explicitly inject erroneous but common elements into the original response. Those undesirable responses are paired with original annotated responses from the datasets to construct the preference dataset, which is subsequently utilized to perform preference learning. Our approach effectively suppresses pretrained LLM bias, enabling enhanced grounding in visual inputs. Extensive experimentation demonstrates significant performance improvements across multiple benchmarks, advancing the state-of-the-art in multimodal conversational systems.
AccessEval: Benchmarking Disability Bias in Large Language Models
Large Language Models (LLMs) are increasingly deployed across diverse domains but often exhibit disparities in how they handle real-life queries. To systematically investigate these effects within various disability contexts, we introduce AccessEval (Accessibility Evaluation), a benchmark evaluating 21 closed- and open-source LLMs across 6 real-world domains and 9 disability types using paired Neutral and Disability-Aware Queries. We evaluated model outputs with metrics for sentiment, social perception, and factual accuracy. Our analysis reveals that responses to disability-aware queries tend to have a more negative tone, increased stereotyping, and higher factual error compared to neutral queries. These effects show notable variation by domain and disability type, with disabilities affecting hearing, speech, and mobility disproportionately impacted. These disparities reflect persistent forms of ableism embedded in model behavior. By examining model performance in real-world decision-making contexts, we better illuminate how such biases can translate into tangible harms for disabled users. This framing helps bridges the gap between technical evaluation and user impact, reinforcing importance of bias mitigation in day-to-day applications. Our dataset is publicly available at: https://huggingface.co/datasets/Srikant86/AccessEval
Bias and Fairness in Large Language Models: A Survey
Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.
Unintentional Unalignment: Likelihood Displacement in Direct Preference Optimization
Direct Preference Optimization (DPO) and its variants are increasingly used for aligning language models with human preferences. Although these methods are designed to teach a model to generate preferred responses more frequently relative to dispreferred responses, prior work has observed that the likelihood of preferred responses often decreases during training. The current work sheds light on the causes and implications of this counter-intuitive phenomenon, which we term likelihood displacement. We demonstrate that likelihood displacement can be catastrophic, shifting probability mass from preferred responses to responses with an opposite meaning. As a simple example, training a model to prefer No over Never can sharply increase the probability of Yes. Moreover, when aligning the model to refuse unsafe prompts, we show that such displacement can unintentionally lead to unalignment, by shifting probability mass from preferred refusal responses to harmful responses (e.g., reducing the refusal rate of Llama-3-8B-Instruct from 74.4% to 33.4%). We theoretically characterize that likelihood displacement is driven by preferences that induce similar embeddings, as measured by a centered hidden embedding similarity (CHES) score. Empirically, the CHES score enables identifying which training samples contribute most to likelihood displacement in a given dataset. Filtering out these samples effectively mitigated unintentional unalignment in our experiments. More broadly, our results highlight the importance of curating data with sufficiently distinct preferences, for which we believe the CHES score may prove valuable.
Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions
Bias assessment of news sources is paramount for professionals, organizations, and researchers who rely on truthful evidence for information gathering and reporting. While certain bias indicators are discernible from content analysis, descriptors like political bias and fake news pose greater challenges. In this paper, we propose an extension to a recently presented news media reliability estimation method that focuses on modeling outlets and their longitudinal web interactions. Concretely, we assess the classification performance of four reinforcement learning strategies on a large news media hyperlink graph. Our experiments, targeting two challenging bias descriptors, factual reporting and political bias, showed a significant performance improvement at the source media level. Additionally, we validate our methods on the CLEF 2023 CheckThat! Lab challenge, outperforming the reported results in both, F1-score and the official MAE metric. Furthermore, we contribute by releasing the largest annotated dataset of news source media, categorized with factual reporting and political bias labels. Our findings suggest that profiling news media sources based on their hyperlink interactions over time is feasible, offering a bird's-eye view of evolving media landscapes.
OpinionGPT: Modelling Explicit Biases in Instruction-Tuned LLMs
Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable ability to generate fitting responses to natural language instructions. However, an open research question concerns the inherent biases of trained models and their responses. For instance, if the data used to tune an LLM is dominantly written by persons with a specific political bias, we might expect generated answers to share this bias. Current research work seeks to de-bias such models, or suppress potentially biased answers. With this demonstration, we take a different view on biases in instruction-tuning: Rather than aiming to suppress them, we aim to make them explicit and transparent. To this end, we present OpinionGPT, a web demo in which users can ask questions and select all biases they wish to investigate. The demo will answer this question using a model fine-tuned on text representing each of the selected biases, allowing side-by-side comparison. To train the underlying model, we identified 11 different biases (political, geographic, gender, age) and derived an instruction-tuning corpus in which each answer was written by members of one of these demographics. This paper presents OpinionGPT, illustrates how we trained the bias-aware model and showcases the web application (available at https://opiniongpt.informatik.hu-berlin.de).
Learning to Deceive with Attention-Based Explanations
Attention mechanisms are ubiquitous components in neural architectures applied to natural language processing. In addition to yielding gains in predictive accuracy, attention weights are often claimed to confer interpretability, purportedly useful both for providing insights to practitioners and for explaining why a model makes its decisions to stakeholders. We call the latter use of attention mechanisms into question by demonstrating a simple method for training models to produce deceptive attention masks. Our method diminishes the total weight assigned to designated impermissible tokens, even when the models can be shown to nevertheless rely on these features to drive predictions. Across multiple models and tasks, our approach manipulates attention weights while paying surprisingly little cost in accuracy. Through a human study, we show that our manipulated attention-based explanations deceive people into thinking that predictions from a model biased against gender minorities do not rely on the gender. Consequently, our results cast doubt on attention's reliability as a tool for auditing algorithms in the context of fairness and accountability.
NLPositionality: Characterizing Design Biases of Datasets and Models
Design biases in NLP systems, such as performance differences for different populations, often stem from their creator's positionality, i.e., views and lived experiences shaped by identity and background. Despite the prevalence and risks of design biases, they are hard to quantify because researcher, system, and dataset positionality is often unobserved. We introduce NLPositionality, a framework for characterizing design biases and quantifying the positionality of NLP datasets and models. Our framework continuously collects annotations from a diverse pool of volunteer participants on LabintheWild, and statistically quantifies alignment with dataset labels and model predictions. We apply NLPositionality to existing datasets and models for two tasks -- social acceptability and hate speech detection. To date, we have collected 16,299 annotations in over a year for 600 instances from 1,096 annotators across 87 countries. We find that datasets and models align predominantly with Western, White, college-educated, and younger populations. Additionally, certain groups, such as non-binary people and non-native English speakers, are further marginalized by datasets and models as they rank least in alignment across all tasks. Finally, we draw from prior literature to discuss how researchers can examine their own positionality and that of their datasets and models, opening the door for more inclusive NLP systems.
Beyond the Surface: Probing the Ideological Depth of Large Language Models
Large Language Models (LLMs) have demonstrated pronounced ideological leanings, yet the stability and depth of these positions remain poorly understood. Surface-level responses can often be manipulated through simple prompt engineering, calling into question whether they reflect a coherent underlying ideology. This paper investigates the concept of "ideological depth" in LLMs, defined as the robustness and complexity of their internal political representations. We employ a dual approach: first, we measure the "steerability" of two well-known open-source LLMs using instruction prompting and activation steering. We find that while some models can easily switch between liberal and conservative viewpoints, others exhibit resistance or an increased rate of refusal, suggesting a more entrenched ideological structure. Second, we probe the internal mechanisms of these models using Sparse Autoencoders (SAEs). Preliminary analysis reveals that models with lower steerability possess more distinct and abstract ideological features. Our evaluations reveal that one model can contain 7.3x more political features than another model of similar size. This allows targeted ablation of a core political feature in an ideologically "deep" model, leading to consistent, logical shifts in its reasoning across related topics, whereas the same intervention in a "shallow" model results in an increase in refusal outputs. Our findings suggest that ideological depth is a quantifiable property of LLMs and that steerability serves as a valuable window into their latent political architecture.
Mental Health Equity in LLMs: Leveraging Multi-Hop Question Answering to Detect Amplified and Silenced Perspectives
Large Language Models (LLMs) in mental healthcare risk propagating biases that reinforce stigma and harm marginalized groups. While previous research identified concerning trends, systematic methods for detecting intersectional biases remain limited. This work introduces a multi-hop question answering (MHQA) framework to explore LLM response biases in mental health discourse. We analyze content from the Interpretable Mental Health Instruction (IMHI) dataset across symptom presentation, coping mechanisms, and treatment approaches. Using systematic tagging across age, race, gender, and socioeconomic status, we investigate bias patterns at demographic intersections. We evaluate four LLMs: Claude 3.5 Sonnet, Jamba 1.6, Gemma 3, and Llama 4, revealing systematic disparities across sentiment, demographics, and mental health conditions. Our MHQA approach demonstrates superior detection compared to conventional methods, identifying amplification points where biases magnify through sequential reasoning. We implement two debiasing techniques: Roleplay Simulation and Explicit Bias Reduction, achieving 66-94% bias reductions through few-shot prompting with BBQ dataset examples. These findings highlight critical areas where LLMs reproduce mental healthcare biases, providing actionable insights for equitable AI development.
Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop
Recently, researchers have uncovered that neural retrieval models prefer AI-generated content (AIGC), called source bias. Compared to active search behavior, recommendation represents another important means of information acquisition, where users are more prone to source bias. Furthermore, delving into the recommendation scenario, as AIGC becomes integrated within the feedback loop involving users, data, and the recommender system, it progressively contaminates the candidate items, the user interaction history, and ultimately, the data used to train the recommendation models. How and to what extent the source bias affects the neural recommendation models within feedback loop remains unknown. In this study, we extend the investigation of source bias into the realm of recommender systems, specifically examining its impact across different phases of the feedback loop. We conceptualize the progression of AIGC integration into the recommendation content ecosystem in three distinct phases-HGC dominate, HGC-AIGC coexist, and AIGC dominance-each representing past, present, and future states, respectively. Through extensive experiments across three datasets from diverse domains, we demonstrate the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification throughout the feedback loop. This trend risks creating a recommender ecosystem with limited information source, such as AIGC, being disproportionately recommended. To counteract this bias and prevent its escalation in the feedback loop, we introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC. Our experimental results validate the effectiveness of the proposed debiasing method, confirming its potential to disrupt the feedback loop.
On Large Language Models' Selection Bias in Multi-Choice Questions
Multi-choice questions (MCQs) serve as a common yet important task format in the research of large language models (LLMs). Our work shows that LLMs exhibit an inherent "selection bias" in MCQs, which refers to LLMs' preferences to select options located at specific positions (like "Option C"). This bias is prevalent across various LLMs, making their performance vulnerable to option position changes in MCQs. We identify that one primary cause resulting in selection bias is option numbering, i.e., the ID symbols A/B/C/D associated with the options. To mitigate selection bias, we propose a new method called PriDe. PriDe first decomposes the observed model prediction distribution into an intrinsic prediction over option contents and a prior distribution over option IDs. It then estimates the prior by permutating option contents on a small number of test samples, which is used to debias the subsequent test samples. We demonstrate that, as a label-free, inference-time method, PriDe achieves a more effective and computation-efficient debiasing than strong baselines. We further show that the priors estimated by PriDe generalize well across different domains, highlighting its practical potential in broader scenarios.
McBE: A Multi-task Chinese Bias Evaluation Benchmark for Large Language Models
As large language models (LLMs) are increasingly applied to various NLP tasks, their inherent biases are gradually disclosed. Therefore, measuring biases in LLMs is crucial to mitigate its ethical risks. However, most existing bias evaluation datasets focus on English and North American culture, and their bias categories are not fully applicable to other cultures. The datasets grounded in the Chinese language and culture are scarce. More importantly, these datasets usually only support single evaluation tasks and cannot evaluate the bias from multiple aspects in LLMs. To address these issues, we present a Multi-task Chinese Bias Evaluation Benchmark (McBE) that includes 4,077 bias evaluation instances, covering 12 single bias categories, 82 subcategories and introducing 5 evaluation tasks, providing extensive category coverage, content diversity, and measuring comprehensiveness. Additionally, we evaluate several popular LLMs from different series and with parameter sizes. In general, all these LLMs demonstrated varying degrees of bias. We conduct an in-depth analysis of results, offering novel insights into bias in LLMs.
Born With a Silver Spoon? Investigating Socioeconomic Bias in Large Language Models
Socioeconomic bias in society exacerbates disparities, influencing access to opportunities and resources based on individuals' economic and social backgrounds. This pervasive issue perpetuates systemic inequalities, hindering the pursuit of inclusive progress as a society. In this paper, we investigate the presence of socioeconomic bias, if any, in large language models. To this end, we introduce a novel dataset SilverSpoon, consisting of 3000 samples that illustrate hypothetical scenarios that involve underprivileged people performing ethically ambiguous actions due to their circumstances, and ask whether the action is ethically justified. Further, this dataset has a dual-labeling scheme and has been annotated by people belonging to both ends of the socioeconomic spectrum. Using SilverSpoon, we evaluate the degree of socioeconomic bias expressed in large language models and the variation of this degree as a function of model size. We also perform qualitative analysis to analyze the nature of this bias. Our analysis reveals that while humans disagree on which situations require empathy toward the underprivileged, most large language models are unable to empathize with the socioeconomically underprivileged regardless of the situation. To foster further research in this domain, we make SilverSpoon and our evaluation harness publicly available.
ViLBias: A Framework for Bias Detection using Linguistic and Visual Cues
The integration of Large Language Models (LLMs) and Vision-Language Models (VLMs) opens new avenues for addressing complex challenges in multimodal content analysis, particularly in biased news detection. This study introduces ViLBias, a framework that leverages state of the art LLMs and VLMs to detect linguistic and visual biases in news content, addressing the limitations of traditional text-only approaches. Our contributions include a novel dataset pairing textual content with accompanying visuals from diverse news sources and a hybrid annotation framework, combining LLM-based annotations with human review to enhance quality while reducing costs and improving scalability. We evaluate the efficacy of LLMs and VLMs in identifying biases, revealing their strengths in detecting subtle framing and text-visual inconsistencies. Empirical analysis demonstrates that incorporating visual cues alongside text enhances bias detection accuracy by 3 to 5 %, showcasing the complementary strengths of LLMs in generative reasoning and Small Language Models (SLMs) in classification. This study offers a comprehensive exploration of LLMs and VLMs as tools for detecting multimodal biases in news content, highlighting both their potential and limitations. Our research paves the way for more robust, scalable, and nuanced approaches to media bias detection, contributing to the broader field of natural language processing and multimodal analysis. (The data and code will be made available for research purposes).
BBQ: A Hand-Built Bias Benchmark for Question Answering
It is well documented that NLP models learn social biases, but little work has been done on how these biases manifest in model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset of question sets constructed by the authors that highlight attested social biases against people belonging to protected classes along nine social dimensions relevant for U.S. English-speaking contexts. Our task evaluates model responses at two levels: (i) given an under-informative context, we test how strongly responses reflect social biases, and (ii) given an adequately informative context, we test whether the model's biases override a correct answer choice. We find that models often rely on stereotypes when the context is under-informative, meaning the model's outputs consistently reproduce harmful biases in this setting. Though models are more accurate when the context provides an informative answer, they still rely on stereotypes and average up to 3.4 percentage points higher accuracy when the correct answer aligns with a social bias than when it conflicts, with this difference widening to over 5 points on examples targeting gender for most models tested.
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female. We define metrics to quantify both direct and indirect gender biases in embeddings, and develop algorithms to "debias" the embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can be used in applications without amplifying gender bias.
Answer-Centric or Reasoning-Driven? Uncovering the Latent Memory Anchor in LLMs
While Large Language Models (LLMs) demonstrate impressive reasoning capabilities, growing evidence suggests much of their success stems from memorized answer-reasoning patterns rather than genuine inference. In this work, we investigate a central question: are LLMs primarily anchored to final answers or to the textual pattern of reasoning chains? We propose a five-level answer-visibility prompt framework that systematically manipulates answer cues and probes model behavior through indirect, behavioral analysis. Experiments across state-of-the-art LLMs reveal a strong and consistent reliance on explicit answers. The performance drops by 26.90\% when answer cues are masked, even with complete reasoning chains. These findings suggest that much of the reasoning exhibited by LLMs may reflect post-hoc rationalization rather than true inference, calling into question their inferential depth. Our study uncovers the answer-anchoring phenomenon with rigorous empirical validation and underscores the need for a more nuanced understanding of what constitutes reasoning in LLMs.
A Reply to Makelov et al. (2023)'s "Interpretability Illusion" Arguments
We respond to the recent paper by Makelov et al. (2023), which reviews subspace interchange intervention methods like distributed alignment search (DAS; Geiger et al. 2023) and claims that these methods potentially cause "interpretability illusions". We first review Makelov et al. (2023)'s technical notion of what an "interpretability illusion" is, and then we show that even intuitive and desirable explanations can qualify as illusions in this sense. As a result, their method of discovering "illusions" can reject explanations they consider "non-illusory". We then argue that the illusions Makelov et al. (2023) see in practice are artifacts of their training and evaluation paradigms. We close by emphasizing that, though we disagree with their core characterization, Makelov et al. (2023)'s examples and discussion have undoubtedly pushed the field of interpretability forward.
"Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in LLM-Generated Reference Letters
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.
Are Vision Language Models Texture or Shape Biased and Can We Steer Them?
Vision language models (VLMs) have drastically changed the computer vision model landscape in only a few years, opening an exciting array of new applications from zero-shot image classification, over to image captioning, and visual question answering. Unlike pure vision models, they offer an intuitive way to access visual content through language prompting. The wide applicability of such models encourages us to ask whether they also align with human vision - specifically, how far they adopt human-induced visual biases through multimodal fusion, or whether they simply inherit biases from pure vision models. One important visual bias is the texture vs. shape bias, or the dominance of local over global information. In this paper, we study this bias in a wide range of popular VLMs. Interestingly, we find that VLMs are often more shape-biased than their vision encoders, indicating that visual biases are modulated to some extent through text in multimodal models. If text does indeed influence visual biases, this suggests that we may be able to steer visual biases not just through visual input but also through language: a hypothesis that we confirm through extensive experiments. For instance, we are able to steer shape bias from as low as 49% to as high as 72% through prompting alone. For now, the strong human bias towards shape (96%) remains out of reach for all tested VLMs.
On Measuring Social Biases in Sentence Encoders
The Word Embedding Association Test shows that GloVe and word2vec word embeddings exhibit human-like implicit biases based on gender, race, and other social constructs (Caliskan et al., 2017). Meanwhile, research on learning reusable text representations has begun to explore sentence-level texts, with some sentence encoders seeing enthusiastic adoption. Accordingly, we extend the Word Embedding Association Test to measure bias in sentence encoders. We then test several sentence encoders, including state-of-the-art methods such as ELMo and BERT, for the social biases studied in prior work and two important biases that are difficult or impossible to test at the word level. We observe mixed results including suspicious patterns of sensitivity that suggest the test's assumptions may not hold in general. We conclude by proposing directions for future work on measuring bias in sentence encoders.
Neural Media Bias Detection Using Distant Supervision With BABE -- Bias Annotations By Experts
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods.
Fine-Tuned LLMs are "Time Capsules" for Tracking Societal Bias Through Books
Books, while often rich in cultural insights, can also mirror societal biases of their eras - biases that Large Language Models (LLMs) may learn and perpetuate during training. We introduce a novel method to trace and quantify these biases using fine-tuned LLMs. We develop BookPAGE, a corpus comprising 593 fictional books across seven decades (1950-2019), to track bias evolution. By fine-tuning LLMs on books from each decade and using targeted prompts, we examine shifts in biases related to gender, sexual orientation, race, and religion. Our findings indicate that LLMs trained on decade-specific books manifest biases reflective of their times, with both gradual trends and notable shifts. For example, model responses showed a progressive increase in the portrayal of women in leadership roles (from 8% to 22%) from the 1950s to 2010s, with a significant uptick in the 1990s (from 4% to 12%), possibly aligning with third-wave feminism. Same-sex relationship references increased markedly from the 1980s to 2000s (from 0% to 10%), mirroring growing LGBTQ+ visibility. Concerningly, negative portrayals of Islam rose sharply in the 2000s (26% to 38%), likely reflecting post-9/11 sentiments. Importantly, we demonstrate that these biases stem mainly from the books' content and not the models' architecture or initial training. Our study offers a new perspective on societal bias trends by bridging AI, literary studies, and social science research.
Measuring Implicit Bias in Explicitly Unbiased Large Language Models
Large language models (LLMs) can pass explicit social bias tests but still harbor implicit biases, similar to humans who endorse egalitarian beliefs yet exhibit subtle biases. Measuring such implicit biases can be a challenge: as LLMs become increasingly proprietary, it may not be possible to access their embeddings and apply existing bias measures; furthermore, implicit biases are primarily a concern if they affect the actual decisions that these systems make. We address both challenges by introducing two new measures of bias: LLM Implicit Bias, a prompt-based method for revealing implicit bias; and LLM Decision Bias, a strategy to detect subtle discrimination in decision-making tasks. Both measures are based on psychological research: LLM Implicit Bias adapts the Implicit Association Test, widely used to study the automatic associations between concepts held in human minds; and LLM Decision Bias operationalizes psychological results indicating that relative evaluations between two candidates, not absolute evaluations assessing each independently, are more diagnostic of implicit biases. Using these measures, we found pervasive stereotype biases mirroring those in society in 8 value-aligned models across 4 social categories (race, gender, religion, health) in 21 stereotypes (such as race and criminality, race and weapons, gender and science, age and negativity). Our prompt-based LLM Implicit Bias measure correlates with existing language model embedding-based bias methods, but better predicts downstream behaviors measured by LLM Decision Bias. These new prompt-based measures draw from psychology's long history of research into measuring stereotype biases based on purely observable behavior; they expose nuanced biases in proprietary value-aligned LLMs that appear unbiased according to standard benchmarks.
Implicit Feedback for Dense Passage Retrieval: A Counterfactual Approach
In this paper we study how to effectively exploit implicit feedback in Dense Retrievers (DRs). We consider the specific case in which click data from a historic click log is available as implicit feedback. We then exploit such historic implicit interactions to improve the effectiveness of a DR. A key challenge that we study is the effect that biases in the click signal, such as position bias, have on the DRs. To overcome the problems associated with the presence of such bias, we propose the Counterfactual Rocchio (CoRocchio) algorithm for exploiting implicit feedback in Dense Retrievers. We demonstrate both theoretically and empirically that dense query representations learnt with CoRocchio are unbiased with respect to position bias and lead to higher retrieval effectiveness. We make available the implementations of the proposed methods and the experimental framework, along with all results at https://github.com/ielab/Counterfactual-DR.
GUS-Net: Social Bias Classification in Text with Generalizations, Unfairness, and Stereotypes
The detection of bias in natural language processing (NLP) is a critical challenge, particularly with the increasing use of large language models (LLMs) in various domains. This paper introduces GUS-Net, an innovative approach to bias detection that focuses on three key types of biases: (G)eneralizations, (U)nfairness, and (S)tereotypes. GUS-Net leverages generative AI and automated agents to create a comprehensive synthetic dataset, enabling robust multi-label token classification. Our methodology enhances traditional bias detection methods by incorporating the contextual encodings of pre-trained models, resulting in improved accuracy and depth in identifying biased entities. Through extensive experiments, we demonstrate that GUS-Net outperforms state-of-the-art techniques, achieving superior performance in terms of accuracy, F1-score, and Hamming Loss. The findings highlight GUS-Net's effectiveness in capturing a wide range of biases across diverse contexts, making it a valuable tool for social bias detection in text. This study contributes to the ongoing efforts in NLP to address implicit bias, providing a pathway for future research and applications in various fields. The Jupyter notebooks used to create the dataset and model are available at: https://github.com/Ethical-Spectacle/fair-ly/tree/main/resources. Warning: This paper contains examples of harmful language, and reader discretion is recommended.
DebCSE: Rethinking Unsupervised Contrastive Sentence Embedding Learning in the Debiasing Perspective
Several prior studies have suggested that word frequency biases can cause the Bert model to learn indistinguishable sentence embeddings. Contrastive learning schemes such as SimCSE and ConSERT have already been adopted successfully in unsupervised sentence embedding to improve the quality of embeddings by reducing this bias. However, these methods still introduce new biases such as sentence length bias and false negative sample bias, that hinders model's ability to learn more fine-grained semantics. In this paper, we reexamine the challenges of contrastive sentence embedding learning from a debiasing perspective and argue that effectively eliminating the influence of various biases is crucial for learning high-quality sentence embeddings. We think all those biases are introduced by simple rules for constructing training data in contrastive learning and the key for contrastive learning sentence embedding is to mimic the distribution of training data in supervised machine learning in unsupervised way. We propose a novel contrastive framework for sentence embedding, termed DebCSE, which can eliminate the impact of these biases by an inverse propensity weighted sampling method to select high-quality positive and negative pairs according to both the surface and semantic similarity between sentences. Extensive experiments on semantic textual similarity (STS) benchmarks reveal that DebCSE significantly outperforms the latest state-of-the-art models with an average Spearman's correlation coefficient of 80.33% on BERTbase.
When are Lemons Purple? The Concept Association Bias of CLIP
Large-scale vision-language models such as CLIP have shown impressive performance on zero-shot image classification and image-to-text retrieval. However, such zero-shot performance of CLIP-based models does not realize in tasks that require a finer-grained correspondence between vision and language, such as Visual Question Answering (VQA). We investigate why this is the case, and report an interesting phenomenon of CLIP, which we call the Concept Association Bias (CAB), as a potential cause of the difficulty of applying CLIP to VQA and similar tasks. CAB is especially apparent when two concepts are present in the given image while a text prompt only contains a single concept. In such a case, we find that CLIP tends to treat input as a bag of concepts and attempts to fill in the other missing concept crossmodally, leading to an unexpected zero-shot prediction. For example, when asked for the color of a lemon in an image, CLIP predicts ``purple'' if the image contains a lemon and an eggplant. We demonstrate the Concept Association Bias of CLIP by showing that CLIP's zero-shot classification performance greatly suffers when there is a strong concept association between an object (e.g. lemon) and an attribute (e.g. its color). On the other hand, when the association between object and attribute is weak, we do not see this phenomenon. Furthermore, we show that CAB is significantly mitigated when we enable CLIP to learn deeper structure across image and text embeddings by adding an additional Transformer on top of CLIP and fine-tuning it on VQA. We find that across such fine-tuned variants of CLIP, the strength of CAB in a model predicts how well it performs on VQA.
BIASINSPECTOR: Detecting Bias in Structured Data through LLM Agents
Detecting biases in structured data is a complex and time-consuming task. Existing automated techniques are limited in diversity of data types and heavily reliant on human case-by-case handling, resulting in a lack of generalizability. Currently, large language model (LLM)-based agents have made significant progress in data science, but their ability to detect data biases is still insufficiently explored. To address this gap, we introduce the first end-to-end, multi-agent synergy framework, BIASINSPECTOR, designed for automatic bias detection in structured data based on specific user requirements. It first develops a multi-stage plan to analyze user-specified bias detection tasks and then implements it with a diverse and well-suited set of tools. It delivers detailed results that include explanations and visualizations. To address the lack of a standardized framework for evaluating the capability of LLM agents to detect biases in data, we further propose a comprehensive benchmark that includes multiple evaluation metrics and a large set of test cases. Extensive experiments demonstrate that our framework achieves exceptional overall performance in structured data bias detection, setting a new milestone for fairer data applications.
An Analysis of Social Biases Present in BERT Variants Across Multiple Languages
Although large pre-trained language models have achieved great success in many NLP tasks, it has been shown that they reflect human biases from their pre-training corpora. This bias may lead to undesirable outcomes when these models are applied in real-world settings. In this paper, we investigate the bias present in monolingual BERT models across a diverse set of languages (English, Greek, and Persian). While recent research has mostly focused on gender-related biases, we analyze religious and ethnic biases as well and propose a template-based method to measure any kind of bias, based on sentence pseudo-likelihood, that can handle morphologically complex languages with gender-based adjective declensions. We analyze each monolingual model via this method and visualize cultural similarities and differences across different dimensions of bias. Ultimately, we conclude that current methods of probing for bias are highly language-dependent, necessitating cultural insights regarding the unique ways bias is expressed in each language and culture (e.g. through coded language, synecdoche, and other similar linguistic concepts). We also hypothesize that higher measured social biases in the non-English BERT models correlate with user-generated content in their training.
Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition
Face recognition systems are widely deployed in safety-critical applications, including law enforcement, yet they exhibit bias across a range of socio-demographic dimensions, such as gender and race. Conventional wisdom dictates that model biases arise from biased training data. As a consequence, previous works on bias mitigation largely focused on pre-processing the training data, adding penalties to prevent bias from effecting the model during training, or post-processing predictions to debias them, yet these approaches have shown limited success on hard problems such as face recognition. In our work, we discover that biases are actually inherent to neural network architectures themselves. Following this reframing, we conduct the first neural architecture search for fairness, jointly with a search for hyperparameters. Our search outputs a suite of models which Pareto-dominate all other high-performance architectures and existing bias mitigation methods in terms of accuracy and fairness, often by large margins, on the two most widely used datasets for face identification, CelebA and VGGFace2. Furthermore, these models generalize to other datasets and sensitive attributes. We release our code, models and raw data files at https://github.com/dooleys/FR-NAS.
Dwell in the Beginning: How Language Models Embed Long Documents for Dense Retrieval
This study investigates the existence of positional biases in Transformer-based models for text representation learning, particularly in the context of web document retrieval. We build on previous research that demonstrated loss of information in the middle of input sequences for causal language models, extending it to the domain of representation learning. We examine positional biases at various stages of training for an encoder-decoder model, including language model pre-training, contrastive pre-training, and contrastive fine-tuning. Experiments with the MS-MARCO document collection reveal that after contrastive pre-training the model already generates embeddings that better capture early contents of the input, with fine-tuning further aggravating this effect.
Understanding Post-hoc Explainers: The Case of Anchors
In many scenarios, the interpretability of machine learning models is a highly required but difficult task. To explain the individual predictions of such models, local model-agnostic approaches have been proposed. However, the process generating the explanations can be, for a user, as mysterious as the prediction to be explained. Furthermore, interpretability methods frequently lack theoretical guarantees, and their behavior on simple models is frequently unknown. While it is difficult, if not impossible, to ensure that an explainer behaves as expected on a cutting-edge model, we can at least ensure that everything works on simple, already interpretable models. In this paper, we present a theoretical analysis of Anchors (Ribeiro et al., 2018): a popular rule-based interpretability method that highlights a small set of words to explain a text classifier's decision. After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results when used with linear text classifiers on top of a TF-IDF vectorization. We believe that our analysis framework can aid in the development of new explainability methods based on solid theoretical foundations.
Are Large Language Models Really Bias-Free? Jailbreak Prompts for Assessing Adversarial Robustness to Bias Elicitation
Large Language Models (LLMs) have revolutionized artificial intelligence, demonstrating remarkable computational power and linguistic capabilities. However, these models are inherently prone to various biases stemming from their training data. These include selection, linguistic, and confirmation biases, along with common stereotypes related to gender, ethnicity, sexual orientation, religion, socioeconomic status, disability, and age. This study explores the presence of these biases within the responses given by the most recent LLMs, analyzing the impact on their fairness and reliability. We also investigate how known prompt engineering techniques can be exploited to effectively reveal hidden biases of LLMs, testing their adversarial robustness against jailbreak prompts specially crafted for bias elicitation. Extensive experiments are conducted using the most widespread LLMs at different scales, confirming that LLMs can still be manipulated to produce biased or inappropriate responses, despite their advanced capabilities and sophisticated alignment processes. Our findings underscore the importance of enhancing mitigation techniques to address these safety issues, toward a more sustainable and inclusive artificial intelligence.
Enabling LLM Knowledge Analysis via Extensive Materialization
Large language models (LLMs) have majorly advanced NLP and AI, and next to their ability to perform a wide range of procedural tasks, a major success factor is their internalized factual knowledge. Since Petroni et al. (2019), analyzing this knowledge has gained attention. However, most approaches investigate one question at a time via modest-sized pre-defined samples, introducing an ``availability bias'' (Tversky&Kahnemann, 1973) that prevents the analysis of knowledge (or beliefs) of LLMs beyond the experimenter's predisposition. To address this challenge, we propose a novel methodology to comprehensively materialize an LLM's factual knowledge through recursive querying and result consolidation. Our approach is a milestone for LLM research, for the first time providing constructive insights into the scope and structure of LLM knowledge (or beliefs). As a prototype, we build GPTKB, a knowledge base (KB) comprising 101 million relational triples for over 2.9 million entities from GPT-4o-mini. We use GPTKB to exemplarily analyze GPT-4o-mini's factual knowledge in terms of scale, accuracy, bias, cutoff and consistency, at the same time. GPTKB is accessible at https://gptkb.org
Adaptive Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language Models in Knowledge Clashes
By providing external information to large language models (LLMs), tool augmentation (including retrieval augmentation) has emerged as a promising solution for addressing the limitations of LLMs' static parametric memory. However, how receptive are LLMs to such external evidence, especially when the evidence conflicts with their parametric memory? We present the first comprehensive and controlled investigation into the behavior of LLMs when encountering knowledge conflicts. We propose a systematic framework to elicit high-quality parametric memory from LLMs and construct the corresponding counter-memory, which enables us to conduct a series of controlled experiments. Our investigation reveals seemingly contradicting behaviors of LLMs. On the one hand, different from prior wisdom, we find that LLMs can be highly receptive to external evidence even when that conflicts with their parametric memory, given that the external evidence is coherent and convincing. On the other hand, LLMs also demonstrate a strong confirmation bias when the external evidence contains some information that is consistent with their parametric memory, despite being presented with conflicting evidence at the same time. These results pose important implications that are worth careful consideration for the further development and deployment of tool- and retrieval-augmented LLMs.
Found in the Middle: Calibrating Positional Attention Bias Improves Long Context Utilization
Large language models (LLMs), even when specifically trained to process long input contexts, struggle to capture relevant information located in the middle of their input. This phenomenon has been known as the lost-in-the-middle problem. In this work, we make three contributions. First, we set out to understand the factors that cause this phenomenon. In doing so, we establish a connection between lost-in-the-middle to LLMs' intrinsic attention bias: LLMs exhibit a U-shaped attention bias where the tokens at the beginning and at the end of its input receive higher attention, regardless of their relevance. Second, we mitigate this positional bias through a calibration mechanism, found-in-the-middle, that allows the model to attend to contexts faithfully according to their relevance, even though when they are in the middle. Third, we show found-in-the-middle not only achieves better performance in locating relevant information within a long context, but also eventually leads to improved retrieval-augmented generation (RAG) performance across various tasks, outperforming existing methods by up to 15 percentage points. These findings open up future directions in understanding LLM attention bias and its potential consequences.
Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability
Diffusion models have demonstrated impressive capabilities in synthesizing diverse content. However, despite their high-quality outputs, these models often perpetuate social biases, including those related to gender and race. These biases can potentially contribute to harmful real-world consequences, reinforcing stereotypes and exacerbating inequalities in various social contexts. While existing research on diffusion bias mitigation has predominantly focused on guiding content generation, it often neglects the intrinsic mechanisms within diffusion models that causally drive biased outputs. In this paper, we investigate the internal processes of diffusion models, identifying specific decision-making mechanisms, termed bias features, embedded within the model architecture. By directly manipulating these features, our method precisely isolates and adjusts the elements responsible for bias generation, permitting granular control over the bias levels in the generated content. Through experiments on both unconditional and conditional diffusion models across various social bias attributes, we demonstrate our method's efficacy in managing generation distribution while preserving image quality. We also dissect the discovered model mechanism, revealing different intrinsic features controlling fine-grained aspects of generation, boosting further research on mechanistic interpretability of diffusion models.
Showing Your Work Doesn't Always Work
In natural language processing, a recently popular line of work explores how to best report the experimental results of neural networks. One exemplar publication, titled "Show Your Work: Improved Reporting of Experimental Results," advocates for reporting the expected validation effectiveness of the best-tuned model, with respect to the computational budget. In the present work, we critically examine this paper. As far as statistical generalizability is concerned, we find unspoken pitfalls and caveats with this approach. We analytically show that their estimator is biased and uses error-prone assumptions. We find that the estimator favors negative errors and yields poor bootstrapped confidence intervals. We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation. Our codebase is at http://github.com/castorini/meanmax.
Language Models Surface the Unwritten Code of Science and Society
This paper calls on the research community not only to investigate how human biases are inherited by large language models (LLMs) but also to explore how these biases in LLMs can be leveraged to make society's "unwritten code" - such as implicit stereotypes and heuristics - visible and accessible for critique. We introduce a conceptual framework through a case study in science: uncovering hidden rules in peer review - the factors that reviewers care about but rarely state explicitly due to normative scientific expectations. The idea of the framework is to push LLMs to speak out their heuristics through generating self-consistent hypotheses - why one paper appeared stronger in reviewer scoring - among paired papers submitted to 45 computer science conferences, while iteratively searching deeper hypotheses from remaining pairs where existing hypotheses cannot explain. We observed that LLMs' normative priors about the internal characteristics of good science extracted from their self-talk, e.g. theoretical rigor, were systematically updated toward posteriors that emphasize storytelling about external connections, such as how the work is positioned and connected within and across literatures. This shift reveals the primacy of scientific myths about intrinsic properties driving scientific excellence rather than extrinsic contextualization and storytelling that influence conceptions of relevance and significance. Human reviewers tend to explicitly reward aspects that moderately align with LLMs' normative priors (correlation = 0.49) but avoid articulating contextualization and storytelling posteriors in their review comments (correlation = -0.14), despite giving implicit reward to them with positive scores. We discuss the broad applicability of the framework, leveraging LLMs as diagnostic tools to surface the tacit codes underlying human society, enabling more precisely targeted responsible AI.
Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models
As the capabilities of generative language models continue to advance, the implications of biases ingrained within these models have garnered increasing attention from researchers, practitioners, and the broader public. This article investigates the challenges and risks associated with biases in large-scale language models like ChatGPT. We discuss the origins of biases, stemming from, among others, the nature of training data, model specifications, algorithmic constraints, product design, and policy decisions. We explore the ethical concerns arising from the unintended consequences of biased model outputs. We further analyze the potential opportunities to mitigate biases, the inevitability of some biases, and the implications of deploying these models in various applications, such as virtual assistants, content generation, and chatbots. Finally, we review the current approaches to identify, quantify, and mitigate biases in language models, emphasizing the need for a multi-disciplinary, collaborative effort to develop more equitable, transparent, and responsible AI systems. This article aims to stimulate a thoughtful dialogue within the artificial intelligence community, encouraging researchers and developers to reflect on the role of biases in generative language models and the ongoing pursuit of ethical AI.
Evaluation of Geographical Distortions in Language Models: A Crucial Step Towards Equitable Representations
Language models now constitute essential tools for improving efficiency for many professional tasks such as writing, coding, or learning. For this reason, it is imperative to identify inherent biases. In the field of Natural Language Processing, five sources of bias are well-identified: data, annotation, representation, models, and research design. This study focuses on biases related to geographical knowledge. We explore the connection between geography and language models by highlighting their tendency to misrepresent spatial information, thus leading to distortions in the representation of geographical distances. This study introduces four indicators to assess these distortions, by comparing geographical and semantic distances. Experiments are conducted from these four indicators with ten widely used language models. Results underscore the critical necessity of inspecting and rectifying spatial biases in language models to ensure accurate and equitable representations.
Proximity Ascertainment Bias in Early Covid Case Locations
A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable.
Fair Generation without Unfair Distortions: Debiasing Text-to-Image Generation with Entanglement-Free Attention
Recent advancements in diffusion-based text-to-image (T2I) models have enabled the generation of high-quality and photorealistic images from text. However, they often exhibit societal biases related to gender, race, and socioeconomic status, thereby potentially reinforcing harmful stereotypes and shaping public perception in unintended ways. While existing bias mitigation methods demonstrate effectiveness, they often encounter attribute entanglement, where adjustments to attributes relevant to the bias (i.e., target attributes) unintentionally alter attributes unassociated with the bias (i.e., non-target attributes), causing undesirable distribution shifts. To address this challenge, we introduce Entanglement-Free Attention (EFA), a method that accurately incorporates target attributes (e.g., White, Black, and Asian) while preserving non-target attributes (e.g., background) during bias mitigation. At inference time, EFA randomly samples a target attribute with equal probability and adjusts the cross-attention in selected layers to incorporate the sampled attribute, achieving a fair distribution of target attributes. Extensive experiments demonstrate that EFA outperforms existing methods in mitigating bias while preserving non-target attributes, thereby maintaining the original model's output distribution and generative capacity.
Perplexity Trap: PLM-Based Retrievers Overrate Low Perplexity Documents
Previous studies have found that PLM-based retrieval models exhibit a preference for LLM-generated content, assigning higher relevance scores to these documents even when their semantic quality is comparable to human-written ones. This phenomenon, known as source bias, threatens the sustainable development of the information access ecosystem. However, the underlying causes of source bias remain unexplored. In this paper, we explain the process of information retrieval with a causal graph and discover that PLM-based retrievers learn perplexity features for relevance estimation, causing source bias by ranking the documents with low perplexity higher. Theoretical analysis further reveals that the phenomenon stems from the positive correlation between the gradients of the loss functions in language modeling task and retrieval task. Based on the analysis, a causal-inspired inference-time debiasing method is proposed, called Causal Diagnosis and Correction (CDC). CDC first diagnoses the bias effect of the perplexity and then separates the bias effect from the overall estimated relevance score. Experimental results across three domains demonstrate the superior debiasing effectiveness of CDC, emphasizing the validity of our proposed explanatory framework. Source codes are available at https://github.com/WhyDwelledOnAi/Perplexity-Trap.
See-Saw Modality Balance: See Gradient, and Sew Impaired Vision-Language Balance to Mitigate Dominant Modality Bias
Vision-language (VL) models have demonstrated strong performance across various tasks. However, these models often rely on a specific modality for predictions, leading to "dominant modality bias.'' This bias significantly hurts performance, especially when one modality is impaired. In this study, we analyze model behavior under dominant modality bias and theoretically show that unaligned gradients or differences in gradient magnitudes prevent balanced convergence of the loss. Based on these findings, we propose a novel framework, BalGrad to mitigate dominant modality bias. Our approach includes inter-modality gradient reweighting, adjusting the gradient of KL divergence based on each modality's contribution, and inter-task gradient projection to align task directions in a non-conflicting manner. Experiments on UPMC Food-101, Hateful Memes, and MM-IMDb datasets confirm that BalGrad effectively alleviates over-reliance on specific modalities when making predictions.
To Find Waldo You Need Contextual Cues: Debiasing Who's Waldo
We present a debiased dataset for the Person-centric Visual Grounding (PCVG) task first proposed by Cui et al. (2021) in the Who's Waldo dataset. Given an image and a caption, PCVG requires pairing up a person's name mentioned in a caption with a bounding box that points to the person in the image. We find that the original Who's Waldo dataset compiled for this task contains a large number of biased samples that are solvable simply by heuristic methods; for instance, in many cases the first name in the sentence corresponds to the largest bounding box, or the sequence of names in the sentence corresponds to an exact left-to-right order in the image. Naturally, models trained on these biased data lead to over-estimation of performance on the benchmark. To enforce models being correct for the correct reasons, we design automated tools to filter and debias the original dataset by ruling out all examples of insufficient context, such as those with no verb or with a long chain of conjunct names in their captions. Our experiments show that our new sub-sampled dataset contains less bias with much lowered heuristic performances and widened gaps between heuristic and supervised methods. We also demonstrate the same benchmark model trained on our debiased training set outperforms that trained on the original biased (and larger) training set on our debiased test set. We argue our debiased dataset offers the PCVG task a more practical baseline for reliable benchmarking and future improvements.
Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data
Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers.
Attention Illuminates LLM Reasoning: The Preplan-and-Anchor Rhythm Enables Fine-Grained Policy Optimization
The reasoning pattern of Large language models (LLMs) remains opaque, and Reinforcement learning (RL) typically applies uniform credit across an entire generation, blurring the distinction between pivotal and routine steps. This work positions attention as a privileged substrate that renders the internal logic of LLMs legible, not merely as a byproduct of computation, but as a mechanistic blueprint of reasoning itself. We first distinguish attention heads between locally and globally focused information processing and reveal that locally focused heads produce a sawtooth pattern near the diagonal indicating phrasal chunks, while globally focused heads expose tokens that exert broad downstream influence over future tokens. We formalize these with two metrics: 1) Windowed Average Attention Distance, which measures the extent of backward attention within a clipped window; 2) Future Attention Influence, which quantifies a token's global importance as the average attention it receives from subsequent tokens. Taken together, these signals reveal a recurring preplan-and-anchor mechanism, where the model first performs a long-range contextual reference to generate an introductory token, which is immediately followed by or coincides with a semantic anchor token that organizes subsequent reasoning. Leveraging these insights, we introduce three novel RL strategies that dynamically perform targeted credit assignment to critical nodes (preplan tokens, anchor tokens, and their temporal coupling) and show consistent performance gains across various reasoning tasks. By aligning optimization with the model's intrinsic reasoning rhythm, we aim to transform opaque optimization into an actionable structure-aware process, hoping to offer a potential step toward more transparent and effective optimization of LLM reasoning.
Large Language Models Discriminate Against Speakers of German Dialects
Dialects represent a significant component of human culture and are found across all regions of the world. In Germany, more than 40% of the population speaks a regional dialect (Adler and Hansen, 2022). However, despite cultural importance, individuals speaking dialects often face negative societal stereotypes. We examine whether such stereotypes are mirrored by large language models (LLMs). We draw on the sociolinguistic literature on dialect perception to analyze traits commonly associated with dialect speakers. Based on these traits, we assess the dialect naming bias and dialect usage bias expressed by LLMs in two tasks: an association task and a decision task. To assess a model's dialect usage bias, we construct a novel evaluation corpus that pairs sentences from seven regional German dialects (e.g., Alemannic and Bavarian) with their standard German counterparts. We find that: (1) in the association task, all evaluated LLMs exhibit significant dialect naming and dialect usage bias against German dialect speakers, reflected in negative adjective associations; (2) all models reproduce these dialect naming and dialect usage biases in their decision making; and (3) contrary to prior work showing minimal bias with explicit demographic mentions, we find that explicitly labeling linguistic demographics--German dialect speakers--amplifies bias more than implicit cues like dialect usage.
Gender Bias in Explainability: Investigating Performance Disparity in Post-hoc Methods
While research on applications and evaluations of explanation methods continues to expand, fairness of the explanation methods concerning disparities in their performance across subgroups remains an often overlooked aspect. In this paper, we address this gap by showing that, across three tasks and five language models, widely used post-hoc feature attribution methods exhibit significant gender disparity with respect to their faithfulness, robustness, and complexity. These disparities persist even when the models are pre-trained or fine-tuned on particularly unbiased datasets, indicating that the disparities we observe are not merely consequences of biased training data. Our results highlight the importance of addressing disparities in explanations when developing and applying explainability methods, as these can lead to biased outcomes against certain subgroups, with particularly critical implications in high-stakes contexts. Furthermore, our findings underscore the importance of incorporating the fairness of explanations, alongside overall model fairness and explainability, as a requirement in regulatory frameworks.
Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs
Recent works have showcased the ability of LLMs to embody diverse personas in their responses, exemplified by prompts like 'You are Yoda. Explain the Theory of Relativity.' While this ability allows personalization of LLMs and enables human behavior simulation, its effect on LLMs' capabilities remains unclear. To fill this gap, we present the first extensive study of the unintended side-effects of persona assignment on the ability of LLMs to perform basic reasoning tasks. Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse personas (e.g. an Asian person) spanning 5 socio-demographic groups. Our experiments unveil that LLMs harbor deep rooted bias against various socio-demographics underneath a veneer of fairness. While they overtly reject stereotypes when explicitly asked ('Are Black people less skilled at mathematics?'), they manifest stereotypical and erroneous presumptions when asked to answer questions while adopting a persona. These can be observed as abstentions in responses, e.g., 'As a Black person, I can't answer this question as it requires math knowledge', and generally result in a substantial performance drop. Our experiments with ChatGPT-3.5 show that this bias is ubiquitous - 80% of our personas demonstrate bias; it is significant - some datasets show performance drops of 70%+; and can be especially harmful for certain groups - some personas suffer statistically significant drops on 80%+ of the datasets. Overall, all 4 LLMs exhibit this bias to varying extents, with GPT-4-Turbo showing the least but still a problematic amount of bias (evident in 42% of the personas). Further analysis shows that these persona-induced errors can be hard-to-discern and hard-to-avoid. Our findings serve as a cautionary tale that the practice of assigning personas to LLMs - a trend on the rise - can surface their deep-rooted biases and have unforeseeable and detrimental side-effects.
Neural Redshift: Random Networks are not Random Functions
Our understanding of the generalization capabilities of neural networks (NNs) is still incomplete. Prevailing explanations are based on implicit biases of gradient descent (GD) but they cannot account for the capabilities of models from gradient-free methods nor the simplicity bias recently observed in untrained networks. This paper seeks other sources of generalization in NNs. Findings. To understand the inductive biases provided by architectures independently from GD, we examine untrained, random-weight networks. Even simple MLPs show strong inductive biases: uniform sampling in weight space yields a very biased distribution of functions in terms of complexity. But unlike common wisdom, NNs do not have an inherent "simplicity bias". This property depends on components such as ReLUs, residual connections, and layer normalizations. Alternative architectures can be built with a bias for any level of complexity. Transformers also inherit all these properties from their building blocks. Implications. We provide a fresh explanation for the success of deep learning independent from gradient-based training. It points at promising avenues for controlling the solutions implemented by trained models.
Quantifying Positional Biases in Text Embedding Models
Embedding models are crucial for tasks in Information Retrieval (IR) and semantic similarity measurement, yet their handling of longer texts and associated positional biases remains underexplored. In this study, we investigate the impact of content position and input size on text embeddings. Our experiments reveal that embedding models, irrespective of their positional encoding mechanisms, disproportionately prioritize the beginning of an input. Ablation studies demonstrate that insertion of irrelevant text or removal at the start of a document reduces cosine similarity between altered and original embeddings by up to 12.3% more than ablations at the end. Regression analysis further confirms this bias, with sentence importance declining as position moves further from the start, even with with content-agnosticity. We hypothesize that this effect arises from pre-processing strategies and chosen positional encoding techniques. These findings quantify the sensitivity of retrieval systems and suggest a new lens towards embedding model robustness.
Verbosity Bias in Preference Labeling by Large Language Models
In recent years, Large Language Models (LLMs) have witnessed a remarkable surge in prevalence, altering the landscape of natural language processing and machine learning. One key factor in improving the performance of LLMs is alignment with humans achieved with Reinforcement Learning from Human Feedback (RLHF), as for many LLMs such as GPT-4, Bard, etc. In addition, recent studies are investigating the replacement of human feedback with feedback from other LLMs named Reinforcement Learning from AI Feedback (RLAIF). We examine the biases that come along with evaluating LLMs with other LLMs and take a closer look into verbosity bias -- a bias where LLMs sometimes prefer more verbose answers even if they have similar qualities. We see that in our problem setting, GPT-4 prefers longer answers more than humans. We also propose a metric to measure this bias.
Casteist but Not Racist? Quantifying Disparities in Large Language Model Bias between India and the West
Large Language Models (LLMs), now used daily by millions of users, can encode societal biases, exposing their users to representational harms. A large body of scholarship on LLM bias exists but it predominantly adopts a Western-centric frame and attends comparatively less to bias levels and potential harms in the Global South. In this paper, we quantify stereotypical bias in popular LLMs according to an Indian-centric frame and compare bias levels between the Indian and Western contexts. To do this, we develop a novel dataset which we call Indian-BhED (Indian Bias Evaluation Dataset), containing stereotypical and anti-stereotypical examples for caste and religion contexts. We find that the majority of LLMs tested are strongly biased towards stereotypes in the Indian context, especially as compared to the Western context. We finally investigate Instruction Prompting as a simple intervention to mitigate such bias and find that it significantly reduces both stereotypical and anti-stereotypical biases in the majority of cases for GPT-3.5. The findings of this work highlight the need for including more diverse voices when evaluating LLMs.
Towards Debiasing Sentence Representations
As natural language processing methods are increasingly deployed in real-world scenarios such as healthcare, legal systems, and social science, it becomes necessary to recognize the role they potentially play in shaping social biases and stereotypes. Previous work has revealed the presence of social biases in widely used word embeddings involving gender, race, religion, and other social constructs. While some methods were proposed to debias these word-level embeddings, there is a need to perform debiasing at the sentence-level given the recent shift towards new contextualized sentence representations such as ELMo and BERT. In this paper, we investigate the presence of social biases in sentence-level representations and propose a new method, Sent-Debias, to reduce these biases. We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks such as sentiment analysis, linguistic acceptability, and natural language understanding. We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP.
CoBia: Constructed Conversations Can Trigger Otherwise Concealed Societal Biases in LLMs
Improvements in model construction, including fortified safety guardrails, allow Large language models (LLMs) to increasingly pass standard safety checks. However, LLMs sometimes slip into revealing harmful behavior, such as expressing racist viewpoints, during conversations. To analyze this systematically, we introduce CoBia, a suite of lightweight adversarial attacks that allow us to refine the scope of conditions under which LLMs depart from normative or ethical behavior in conversations. CoBia creates a constructed conversation where the model utters a biased claim about a social group. We then evaluate whether the model can recover from the fabricated bias claim and reject biased follow-up questions. We evaluate 11 open-source as well as proprietary LLMs for their outputs related to six socio-demographic categories that are relevant to individual safety and fair treatment, i.e., gender, race, religion, nationality, sex orientation, and others. Our evaluation is based on established LLM-based bias metrics, and we compare the results against human judgments to scope out the LLMs' reliability and alignment. The results suggest that purposefully constructed conversations reliably reveal bias amplification and that LLMs often fail to reject biased follow-up questions during dialogue. This form of stress-testing highlights deeply embedded biases that can be surfaced through interaction. Code and artifacts are available at https://github.com/nafisenik/CoBia.
IssueBench: Millions of Realistic Prompts for Measuring Issue Bias in LLM Writing Assistance
Large language models (LLMs) are helping millions of users write texts about diverse issues, and in doing so expose users to different ideas and perspectives. This creates concerns about issue bias, where an LLM tends to present just one perspective on a given issue, which in turn may influence how users think about this issue. So far, it has not been possible to measure which issue biases LLMs actually manifest in real user interactions, making it difficult to address the risks from biased LLMs. Therefore, we create IssueBench: a set of 2.49m realistic prompts for measuring issue bias in LLM writing assistance, which we construct based on 3.9k templates (e.g. "write a blog about") and 212 political issues (e.g. "AI regulation") from real user interactions. Using IssueBench, we show that issue biases are common and persistent in state-of-the-art LLMs. We also show that biases are remarkably similar across models, and that all models align more with US Democrat than Republican voter opinion on a subset of issues. IssueBench can easily be adapted to include other issues, templates, or tasks. By enabling robust and realistic measurement, we hope that IssueBench can bring a new quality of evidence to ongoing discussions about LLM biases and how to address them.
Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge
LLM-as-a-Judge has been widely utilized as an evaluation method in various benchmarks and served as supervised rewards in model training. However, despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility. Therefore, we identify 12 key potential biases and propose a new automated bias quantification framework-CALM-which systematically quantifies and analyzes each type of bias in LLM-as-a-Judge by using automated and principle-guided modification. Our experiments cover multiple popular language models, and the results indicate that while advanced models have achieved commendable overall performance, significant biases persist in certain specific tasks. Empirical results suggest that there remains room for improvement in the reliability of LLM-as-a-Judge. Moreover, we also discuss the explicit and implicit influence of these biases and give some suggestions for the reliable application of LLM-as-a-Judge. Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment
Recent advances in large language models (LLMs) have demonstrated significant progress in performing complex tasks. While Reinforcement Learning from Human Feedback (RLHF) has been effective in aligning LLMs with human preferences, it is susceptible to spurious correlations in reward modeling. Consequently, it often introduces biases-such as length bias, sycophancy, conceptual bias, and discrimination that hinder the model's ability to capture true causal relationships. To address this, we propose a novel causal reward modeling approach that integrates causal inference to mitigate these spurious correlations. Our method enforces counterfactual invariance, ensuring reward predictions remain consistent when irrelevant variables are altered. Through experiments on both synthetic and real-world datasets, we show that our approach mitigates various types of spurious correlations effectively, resulting in more reliable and fair alignment of LLMs with human preferences. As a drop-in enhancement to the existing RLHF workflow, our causal reward modeling provides a practical way to improve the trustworthiness and fairness of LLM finetuning.
Semantic Structure in Large Language Model Embeddings
Psychological research consistently finds that human ratings of words across diverse semantic scales can be reduced to a low-dimensional form with relatively little information loss. We find that the semantic associations encoded in the embedding matrices of large language models (LLMs) exhibit a similar structure. We show that the projections of words on semantic directions defined by antonym pairs (e.g. kind - cruel) correlate highly with human ratings, and further find that these projections effectively reduce to a 3-dimensional subspace within LLM embeddings, closely resembling the patterns derived from human survey responses. Moreover, we find that shifting tokens along one semantic direction causes off-target effects on geometrically aligned features proportional to their cosine similarity. These findings suggest that semantic features are entangled within LLMs similarly to how they are interconnected in human language, and a great deal of semantic information, despite its apparent complexity, is surprisingly low-dimensional. Furthermore, accounting for this semantic structure may prove essential for avoiding unintended consequences when steering features.
FairI Tales: Evaluation of Fairness in Indian Contexts with a Focus on Bias and Stereotypes
Existing studies on fairness are largely Western-focused, making them inadequate for culturally diverse countries such as India. To address this gap, we introduce INDIC-BIAS, a comprehensive India-centric benchmark designed to evaluate fairness of LLMs across 85 identity groups encompassing diverse castes, religions, regions, and tribes. We first consult domain experts to curate over 1,800 socio-cultural topics spanning behaviors and situations, where biases and stereotypes are likely to emerge. Grounded in these topics, we generate and manually validate 20,000 real-world scenario templates to probe LLMs for fairness. We structure these templates into three evaluation tasks: plausibility, judgment, and generation. Our evaluation of 14 popular LLMs on these tasks reveals strong negative biases against marginalized identities, with models frequently reinforcing common stereotypes. Additionally, we find that models struggle to mitigate bias even when explicitly asked to rationalize their decision. Our evaluation provides evidence of both allocative and representational harms that current LLMs could cause towards Indian identities, calling for a more cautious usage in practical applications. We release INDIC-BIAS as an open-source benchmark to advance research on benchmarking and mitigating biases and stereotypes in the Indian context.
Surfacing Biases in Large Language Models using Contrastive Input Decoding
Ensuring that large language models (LMs) are fair, robust and useful requires an understanding of how different modifications to their inputs impact the model's behaviour. In the context of open-text generation tasks, however, such an evaluation is not trivial. For example, when introducing a model with an input text and a perturbed, "contrastive" version of it, meaningful differences in the next-token predictions may not be revealed with standard decoding strategies. With this motivation in mind, we propose Contrastive Input Decoding (CID): a decoding algorithm to generate text given two inputs, where the generated text is likely given one input but unlikely given the other. In this way, the contrastive generations can highlight potentially subtle differences in how the LM output differs for the two inputs in a simple and interpretable manner. We use CID to highlight context-specific biases that are hard to detect with standard decoding strategies and quantify the effect of different input perturbations.
Can You Trick the Grader? Adversarial Persuasion of LLM Judges
As large language models take on growing roles as automated evaluators in practical settings, a critical question arises: Can individuals persuade an LLM judge to assign unfairly high scores? This study is the first to reveal that strategically embedded persuasive language can bias LLM judges when scoring mathematical reasoning tasks, where correctness should be independent of stylistic variation. Grounded in Aristotle's rhetorical principles, we formalize seven persuasion techniques (Majority, Consistency, Flattery, Reciprocity, Pity, Authority, Identity) and embed them into otherwise identical responses. Across six math benchmarks, we find that persuasive language leads LLM judges to assign inflated scores to incorrect solutions, by up to 8% on average, with Consistency causing the most severe distortion. Notably, increasing model size does not substantially mitigate this vulnerability. Further analysis demonstrates that combining multiple persuasion techniques amplifies the bias, and pairwise evaluation is likewise susceptible. Moreover, the persuasive effect persists under counter prompting strategies, highlighting a critical vulnerability in LLM-as-a-Judge pipelines and underscoring the need for robust defenses against persuasion-based attacks.
"I'm sorry to hear that": Finding New Biases in Language Models with a Holistic Descriptor Dataset
As language models grow in popularity, it becomes increasingly important to clearly measure all possible markers of demographic identity in order to avoid perpetuating existing societal harms. Many datasets for measuring bias currently exist, but they are restricted in their coverage of demographic axes and are commonly used with preset bias tests that presuppose which types of biases models can exhibit. In this work, we present a new, more inclusive bias measurement dataset, HolisticBias, which includes nearly 600 descriptor terms across 13 different demographic axes. HolisticBias was assembled in a participatory process including experts and community members with lived experience of these terms. These descriptors combine with a set of bias measurement templates to produce over 450,000 unique sentence prompts, which we use to explore, identify, and reduce novel forms of bias in several generative models. We demonstrate that HolisticBias is effective at measuring previously undetectable biases in token likelihoods from language models, as well as in an offensiveness classifier. We will invite additions and amendments to the dataset, which we hope will serve as a basis for more easy-to-use and standardized methods for evaluating bias in NLP models.
The Pitfalls of Simplicity Bias in Neural Networks
Several works have proposed Simplicity Bias (SB)---the tendency of standard training procedures such as Stochastic Gradient Descent (SGD) to find simple models---to justify why neural networks generalize well [Arpit et al. 2017, Nakkiran et al. 2019, Soudry et al. 2018]. However, the precise notion of simplicity remains vague. Furthermore, previous settings that use SB to theoretically justify why neural networks generalize well do not simultaneously capture the non-robustness of neural networks---a widely observed phenomenon in practice [Goodfellow et al. 2014, Jo and Bengio 2017]. We attempt to reconcile SB and the superior standard generalization of neural networks with the non-robustness observed in practice by designing datasets that (a) incorporate a precise notion of simplicity, (b) comprise multiple predictive features with varying levels of simplicity, and (c) capture the non-robustness of neural networks trained on real data. Through theory and empirics on these datasets, we make four observations: (i) SB of SGD and variants can be extreme: neural networks can exclusively rely on the simplest feature and remain invariant to all predictive complex features. (ii) The extreme aspect of SB could explain why seemingly benign distribution shifts and small adversarial perturbations significantly degrade model performance. (iii) Contrary to conventional wisdom, SB can also hurt generalization on the same data distribution, as SB persists even when the simplest feature has less predictive power than the more complex features. (iv) Common approaches to improve generalization and robustness---ensembles and adversarial training---can fail in mitigating SB and its pitfalls. Given the role of SB in training neural networks, we hope that the proposed datasets and methods serve as an effective testbed to evaluate novel algorithmic approaches aimed at avoiding the pitfalls of SB.
