Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFast Sampling of Diffusion Models via Operator Learning
Diffusion models have found widespread adoption in various areas. However, their sampling process is slow because it requires hundreds to thousands of network evaluations to emulate a continuous process defined by differential equations. In this work, we use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models. Compared to other fast sampling methods that have a sequential nature, we are the first to propose parallel decoding method that generates images with only one model forward pass. We propose diffusion model sampling with neural operator (DSNO) that maps the initial condition, i.e., Gaussian distribution, to the continuous-time solution trajectory of the reverse diffusion process. To model the temporal correlations along the trajectory, we introduce temporal convolution layers that are parameterized in the Fourier space into the given diffusion model backbone. We show our method achieves state-of-the-art FID of 4.12 for CIFAR-10 and 8.35 for ImageNet-64 in the one-model-evaluation setting.
Learning Sequential Descriptors for Sequence-based Visual Place Recognition
In robotics, Visual Place Recognition is a continuous process that receives as input a video stream to produce a hypothesis of the robot's current position within a map of known places. This task requires robust, scalable, and efficient techniques for real applications. This work proposes a detailed taxonomy of techniques using sequential descriptors, highlighting different mechanism to fuse the information from the individual images. This categorization is supported by a complete benchmark of experimental results that provides evidence on the strengths and weaknesses of these different architectural choices. In comparison to existing sequential descriptors methods, we further investigate the viability of Transformers instead of CNN backbones, and we propose a new ad-hoc sequence-level aggregator called SeqVLAD, which outperforms prior state of the art on different datasets. The code is available at https://github.com/vandal-vpr/vg-transformers.
Text2Performer: Text-Driven Human Video Generation
Text-driven content creation has evolved to be a transformative technique that revolutionizes creativity. Here we study the task of text-driven human video generation, where a video sequence is synthesized from texts describing the appearance and motions of a target performer. Compared to general text-driven video generation, human-centric video generation requires maintaining the appearance of synthesized human while performing complex motions. In this work, we present Text2Performer to generate vivid human videos with articulated motions from texts. Text2Performer has two novel designs: 1) decomposed human representation and 2) diffusion-based motion sampler. First, we decompose the VQVAE latent space into human appearance and pose representation in an unsupervised manner by utilizing the nature of human videos. In this way, the appearance is well maintained along the generated frames. Then, we propose continuous VQ-diffuser to sample a sequence of pose embeddings. Unlike existing VQ-based methods that operate in the discrete space, continuous VQ-diffuser directly outputs the continuous pose embeddings for better motion modeling. Finally, motion-aware masking strategy is designed to mask the pose embeddings spatial-temporally to enhance the temporal coherence. Moreover, to facilitate the task of text-driven human video generation, we contribute a Fashion-Text2Video dataset with manually annotated action labels and text descriptions. Extensive experiments demonstrate that Text2Performer generates high-quality human videos (up to 512x256 resolution) with diverse appearances and flexible motions.
GREEN-CODE: Optimizing Energy Efficiency in Large Language Models for Code Generation
Large Language Models (LLMs) are becoming integral to daily life, showcasing their vast potential across various Natural Language Processing (NLP) tasks. Beyond NLP, LLMs are increasingly used in software development tasks, such as code completion, modification, bug fixing, and code translation. Software engineers widely use tools like GitHub Copilot and Amazon Q, streamlining workflows and automating tasks with high accuracy. While the resource and energy intensity of LLM training is often highlighted, inference can be even more resource-intensive over time, as it's a continuous process with a high number of invocations. Therefore, developing resource-efficient alternatives for LLM inference is crucial for sustainability. This work proposes GREEN-CODE, a framework for energy-aware code generation in LLMs. GREEN-CODE performs dynamic early exit during LLM inference. We train a Reinforcement Learning (RL) agent that learns to balance the trade-offs between accuracy, latency, and energy consumption. Our approach is evaluated on two open-source LLMs, Llama 3.2 3B and OPT 2.7B, using the JavaCorpus and PY150 datasets. Results show that our method reduces the energy consumption between 23-50 % on average for code generation tasks without significantly affecting accuracy.
Extrapolated Urban View Synthesis Benchmark
Photorealistic simulators are essential for the training and evaluation of vision-centric autonomous vehicles (AVs). At their core is Novel View Synthesis (NVS), a crucial capability that generates diverse unseen viewpoints to accommodate the broad and continuous pose distribution of AVs. Recent advances in radiance fields, such as 3D Gaussian Splatting, achieve photorealistic rendering at real-time speeds and have been widely used in modeling large-scale driving scenes. However, their performance is commonly evaluated using an interpolated setup with highly correlated training and test views. In contrast, extrapolation, where test views largely deviate from training views, remains underexplored, limiting progress in generalizable simulation technology. To address this gap, we leverage publicly available AV datasets with multiple traversals, multiple vehicles, and multiple cameras to build the first Extrapolated Urban View Synthesis (EUVS) benchmark. Meanwhile, we conduct quantitative and qualitative evaluations of state-of-the-art Gaussian Splatting methods across different difficulty levels. Our results show that Gaussian Splatting is prone to overfitting to training views. Besides, incorporating diffusion priors and improving geometry cannot fundamentally improve NVS under large view changes, highlighting the need for more robust approaches and large-scale training. We have released our data to help advance self-driving and urban robotics simulation technology.
EchoWrist: Continuous Hand Pose Tracking and Hand-Object Interaction Recognition Using Low-Power Active Acoustic Sensing On a Wristband
Our hands serve as a fundamental means of interaction with the world around us. Therefore, understanding hand poses and interaction context is critical for human-computer interaction. We present EchoWrist, a low-power wristband that continuously estimates 3D hand pose and recognizes hand-object interactions using active acoustic sensing. EchoWrist is equipped with two speakers emitting inaudible sound waves toward the hand. These sound waves interact with the hand and its surroundings through reflections and diffractions, carrying rich information about the hand's shape and the objects it interacts with. The information captured by the two microphones goes through a deep learning inference system that recovers hand poses and identifies various everyday hand activities. Results from the two 12-participant user studies show that EchoWrist is effective and efficient at tracking 3D hand poses and recognizing hand-object interactions. Operating at 57.9mW, EchoWrist is able to continuously reconstruct 20 3D hand joints with MJEDE of 4.81mm and recognize 12 naturalistic hand-object interactions with 97.6% accuracy.
Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts
Fine-tuning continuous prompts for target tasks has recently emerged as a compact alternative to full model fine-tuning. Motivated by these promising results, we investigate the feasibility of extracting a discrete (textual) interpretation of continuous prompts that is faithful to the problem they solve. In practice, we observe a "wayward" behavior between the task solved by continuous prompts and their nearest neighbor discrete projections: We can find continuous prompts that solve a task while being projected to an arbitrary text (e.g., definition of a different or even a contradictory task), while being within a very small (2%) margin of the best continuous prompt of the same size for the task. We provide intuitions behind this odd and surprising behavior, as well as extensive empirical analyses quantifying the effect of various parameters. For instance, for larger model sizes we observe higher waywardness, i.e, we can find prompts that more closely map to any arbitrary text with a smaller drop in accuracy. These findings have important implications relating to the difficulty of faithfully interpreting continuous prompts and their generalization across models and tasks, providing guidance for future progress in prompting language models.
Learning to Write with Coherence From Negative Examples
Coherence is one of the critical factors that determine the quality of writing. We propose writing relevance (WR) training method for neural encoder-decoder natural language generation (NLG) models which improves coherence of the continuation by leveraging negative examples. WR loss regresses the vector representation of the context and generated sentence toward positive continuation by contrasting it with the negatives. We compare our approach with Unlikelihood (UL) training in a text continuation task on commonsense natural language inference (NLI) corpora to show which method better models the coherence by avoiding unlikely continuations. The preference of our approach in human evaluation shows the efficacy of our method in improving coherence.
QuALITY: Question Answering with Long Input Texts, Yes!
To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).
Multi-view Video-Pose Pretraining for Operating Room Surgical Activity Recognition
Understanding the workflow of surgical procedures in complex operating rooms requires a deep understanding of the interactions between clinicians and their environment. Surgical activity recognition (SAR) is a key computer vision task that detects activities or phases from multi-view camera recordings. Existing SAR models often fail to account for fine-grained clinician movements and multi-view knowledge, or they require calibrated multi-view camera setups and advanced point-cloud processing to obtain better results. In this work, we propose a novel calibration-free multi-view multi-modal pretraining framework called Multiview Pretraining for Video-Pose Surgical Activity Recognition PreViPS, which aligns 2D pose and vision embeddings across camera views. Our model follows CLIP-style dual-encoder architecture: one encoder processes visual features, while the other encodes human pose embeddings. To handle the continuous 2D human pose coordinates, we introduce a tokenized discrete representation to convert the continuous 2D pose coordinates into discrete pose embeddings, thereby enabling efficient integration within the dual-encoder framework. To bridge the gap between these two modalities, we propose several pretraining objectives using cross- and in-modality geometric constraints within the embedding space and incorporating masked pose token prediction strategy to enhance representation learning. Extensive experiments and ablation studies demonstrate improvements over the strong baselines, while data-efficiency experiments on two distinct operating room datasets further highlight the effectiveness of our approach. We highlight the benefits of our approach for surgical activity recognition in both multi-view and single-view settings, showcasing its practical applicability in complex surgical environments. Code will be made available at: https://github.com/CAMMA-public/PreViPS.
HouseDiffusion: Vector Floorplan Generation via a Diffusion Model with Discrete and Continuous Denoising
The paper presents a novel approach for vector-floorplan generation via a diffusion model, which denoises 2D coordinates of room/door corners with two inference objectives: 1) a single-step noise as the continuous quantity to precisely invert the continuous forward process; and 2) the final 2D coordinate as the discrete quantity to establish geometric incident relationships such as parallelism, orthogonality, and corner-sharing. Our task is graph-conditioned floorplan generation, a common workflow in floorplan design. We represent a floorplan as 1D polygonal loops, each of which corresponds to a room or a door. Our diffusion model employs a Transformer architecture at the core, which controls the attention masks based on the input graph-constraint and directly generates vector-graphics floorplans via a discrete and continuous denoising process. We have evaluated our approach on RPLAN dataset. The proposed approach makes significant improvements in all the metrics against the state-of-the-art with significant margins, while being capable of generating non-Manhattan structures and controlling the exact number of corners per room. A project website with supplementary video and document is here https://aminshabani.github.io/housediffusion.
TextClass Benchmark: A Continuous Elo Rating of LLMs in Social Sciences
The TextClass Benchmark project is an ongoing, continuous benchmarking process that aims to provide a comprehensive, fair, and dynamic evaluation of LLMs and transformers for text classification tasks. This evaluation spans various domains and languages in social sciences disciplines engaged in NLP and text-as-data approach. The leaderboards present performance metrics and relative ranking using a tailored Elo rating system. With each leaderboard cycle, novel models are added, fixed test sets can be replaced for unseen, equivalent data to test generalisation power, ratings are updated, and a Meta-Elo leaderboard combines and weights domain-specific leaderboards. This article presents the rationale and motivation behind the project, explains the Elo rating system in detail, and estimates Meta-Elo across different classification tasks in social science disciplines. We also present a snapshot of the first cycle of classification tasks on incivility data in Chinese, English, German and Russian. This ongoing benchmarking process includes not only additional languages such as Arabic, Hindi, and Spanish but also a classification of policy agenda topics, misinformation, among others.
DLT: Conditioned layout generation with Joint Discrete-Continuous Diffusion Layout Transformer
Generating visual layouts is an essential ingredient of graphic design. The ability to condition layout generation on a partial subset of component attributes is critical to real-world applications that involve user interaction. Recently, diffusion models have demonstrated high-quality generative performances in various domains. However, it is unclear how to apply diffusion models to the natural representation of layouts which consists of a mix of discrete (class) and continuous (location, size) attributes. To address the conditioning layout generation problem, we introduce DLT, a joint discrete-continuous diffusion model. DLT is a transformer-based model which has a flexible conditioning mechanism that allows for conditioning on any given subset of all the layout component classes, locations, and sizes. Our method outperforms state-of-the-art generative models on various layout generation datasets with respect to different metrics and conditioning settings. Additionally, we validate the effectiveness of our proposed conditioning mechanism and the joint continuous-diffusion process. This joint process can be incorporated into a wide range of mixed discrete-continuous generative tasks.
NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale
Prevailing autoregressive (AR) models for text-to-image generation either rely on heavy, computationally-intensive diffusion models to process continuous image tokens, or employ vector quantization (VQ) to obtain discrete tokens with quantization loss. In this paper, we push the autoregressive paradigm forward with NextStep-1, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. NextStep-1 achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. Furthermore, our method shows strong performance in image editing, highlighting the power and versatility of our unified approach. To facilitate open research, we will release our code and models to the community.
LongStory: Coherent, Complete and Length Controlled Long story Generation
A human author can write any length of story without losing coherence. Also, they always bring the story to a proper ending, an ability that current language models lack. In this work, we present the LongStory for coherent, complete, and length-controlled long story generation. LongStory introduces two novel methodologies: (1) the long and short-term contexts weight calibrator (CWC) and (2) long story structural positions (LSP). The CWC adjusts weights for long-term context Memory and short-term context Cheating, acknowledging their distinct roles. The LSP employs discourse tokens to convey the structural positions of a long story. Trained on three datasets with varied average story lengths, LongStory outperforms other baselines, including the strong story generator Plotmachine, in coherence, completeness, relevance, and repetitiveness. We also perform zero-shot tests on each dataset to assess the model's ability to predict outcomes beyond its training data and validate our methodology by comparing its performance with variants of our model.
CLIP: A Dataset for Extracting Action Items for Physicians from Hospital Discharge Notes
Continuity of care is crucial to ensuring positive health outcomes for patients discharged from an inpatient hospital setting, and improved information sharing can help. To share information, caregivers write discharge notes containing action items to share with patients and their future caregivers, but these action items are easily lost due to the lengthiness of the documents. In this work, we describe our creation of a dataset of clinical action items annotated over MIMIC-III, the largest publicly available dataset of real clinical notes. This dataset, which we call CLIP, is annotated by physicians and covers 718 documents representing 100K sentences. We describe the task of extracting the action items from these documents as multi-aspect extractive summarization, with each aspect representing a type of action to be taken. We evaluate several machine learning models on this task, and show that the best models exploit in-domain language model pre-training on 59K unannotated documents, and incorporate context from neighboring sentences. We also propose an approach to pre-training data selection that allows us to explore the trade-off between size and domain-specificity of pre-training datasets for this task.
CBOW Is Not All You Need: Combining CBOW with the Compositional Matrix Space Model
Continuous Bag of Words (CBOW) is a powerful text embedding method. Due to its strong capabilities to encode word content, CBOW embeddings perform well on a wide range of downstream tasks while being efficient to compute. However, CBOW is not capable of capturing the word order. The reason is that the computation of CBOW's word embeddings is commutative, i.e., embeddings of XYZ and ZYX are the same. In order to address this shortcoming, we propose a learning algorithm for the Continuous Matrix Space Model, which we call Continual Multiplication of Words (CMOW). Our algorithm is an adaptation of word2vec, so that it can be trained on large quantities of unlabeled text. We empirically show that CMOW better captures linguistic properties, but it is inferior to CBOW in memorizing word content. Motivated by these findings, we propose a hybrid model that combines the strengths of CBOW and CMOW. Our results show that the hybrid CBOW-CMOW-model retains CBOW's strong ability to memorize word content while at the same time substantially improving its ability to encode other linguistic information by 8%. As a result, the hybrid also performs better on 8 out of 11 supervised downstream tasks with an average improvement of 1.2%.
What's in a Summary? Laying the Groundwork for Advances in Hospital-Course Summarization
Summarization of clinical narratives is a long-standing research problem. Here, we introduce the task of hospital-course summarization. Given the documentation authored throughout a patient's hospitalization, generate a paragraph that tells the story of the patient admission. We construct an English, text-to-text dataset of 109,000 hospitalizations (2M source notes) and their corresponding summary proxy: the clinician-authored "Brief Hospital Course" paragraph written as part of a discharge note. Exploratory analyses reveal that the BHC paragraphs are highly abstractive with some long extracted fragments; are concise yet comprehensive; differ in style and content organization from the source notes; exhibit minimal lexical cohesion; and represent silver-standard references. Our analysis identifies multiple implications for modeling this complex, multi-document summarization task.
Mark My Words: A Robust Multilingual Model for Punctuation in Text and Speech Transcripts
Punctuation plays a vital role in structuring meaning, yet current models often struggle to restore it accurately in transcripts of spontaneous speech, especially in the presence of disfluencies such as false starts and backtracking. These limitations hinder the performance of downstream tasks like translation, text to speech, summarization, etc. where sentence boundaries are critical for preserving quality. In this work, we introduce Cadence, a generalist punctuation restoration model adapted from a pretrained large language model. Cadence is designed to handle both clean written text and highly spontaneous spoken transcripts. It surpasses the previous state of the art in performance while expanding support from 14 to all 22 Indian languages and English. We conduct a comprehensive analysis of model behavior across punctuation types and language families, identifying persistent challenges under domain shift and with rare punctuation marks. Our findings demonstrate the efficacy of utilizing pretrained language models for multilingual punctuation restoration and highlight Cadence practical value for low resource NLP pipelines at scale.
Shifting Long-Context LLMs Research from Input to Output
Recent advancements in long-context Large Language Models (LLMs) have primarily concentrated on processing extended input contexts, resulting in significant strides in long-context comprehension. However, the equally critical aspect of generating long-form outputs has received comparatively less attention. This paper advocates for a paradigm shift in NLP research toward addressing the challenges of long-output generation. Tasks such as novel writing, long-term planning, and complex reasoning require models to understand extensive contexts and produce coherent, contextually rich, and logically consistent extended text. These demands highlight a critical gap in current LLM capabilities. We underscore the importance of this under-explored domain and call for focused efforts to develop foundational LLMs tailored for generating high-quality, long-form outputs, which hold immense potential for real-world applications.
Zero-Shot Continuous Prompt Transfer: Generalizing Task Semantics Across Language Models
Prompt tuning in natural language processing (NLP) has become an increasingly popular method for adapting large language models to specific tasks. However, the transferability of these prompts, especially continuous prompts, between different models remains a challenge. In this work, we propose a zero-shot continuous prompt transfer method, where source prompts are encoded into relative space and the corresponding target prompts are searched for transferring to target models. Experimental results confirm the effectiveness of our method, showing that 'task semantics' in continuous prompts can be generalized across various language models. Moreover, we find that combining 'task semantics' from multiple source models can further enhance the generalizability of transfer.
Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance
In the last decade, several organizations have produced documents intended to standardize, in the normative sense, and promote guidance to our recent and rapid AI development. However, the full spectrum of ideas presented in these documents has not yet been analyzed, except for a few meta-analyses and critical reviews of the field. In this work, we seek to expand on the work done by past researchers and create a tool for better data visualization of the contents and nature of these documents, to understand whether there is consensus or similarity between the principles espoused by various institutions, which may inspire debates on future regulations. We also provide some preliminary thoughts and questions that could guide the continuity of the research through a critical analysis of the results acquired by our methodology into a sample size of 200 documents.
Generating Continuations in Multilingual Idiomatic Contexts
The ability to process idiomatic or literal multiword expressions is a crucial aspect of understanding and generating any language. The task of generating contextually relevant continuations for narratives containing idiomatic (or literal) expressions can allow us to test the ability of generative language models (LMs) in understanding nuanced language containing non-compositional figurative text. We conduct a series of experiments using datasets in two distinct languages (English and Portuguese) under three different training settings (zero-shot, few-shot, and fine-tuned). Our results suggest that the models are only slightly better at generating continuations for literal contexts than idiomatic contexts, with exceedingly small margins. Furthermore, the models studied in this work perform equally well across both languages, indicating the robustness of generative models in performing this task.
A Confederacy of Models: a Comprehensive Evaluation of LLMs on Creative Writing
We evaluate a range of recent LLMs on English creative writing, a challenging and complex task that requires imagination, coherence, and style. We use a difficult, open-ended scenario chosen to avoid training data reuse: an epic narration of a single combat between Ignatius J. Reilly, the protagonist of the Pulitzer Prize-winning novel A Confederacy of Dunces (1980), and a pterodactyl, a prehistoric flying reptile. We ask several LLMs and humans to write such a story and conduct a human evalution involving various criteria such as fluency, coherence, originality, humor, and style. Our results show that some state-of-the-art commercial LLMs match or slightly outperform our writers in most dimensions; whereas open-source LLMs lag behind. Humans retain an edge in creativity, while humor shows a binary divide between LLMs that can handle it comparably to humans and those that fail at it. We discuss the implications and limitations of our study and suggest directions for future research.
A Cognitive Writing Perspective for Constrained Long-Form Text Generation
Like humans, Large Language Models (LLMs) struggle to generate high-quality long-form text that adheres to strict requirements in a single pass. This challenge is unsurprising, as successful human writing, according to the Cognitive Writing Theory, is a complex cognitive process involving iterative planning, translating, reviewing, and monitoring. Motivated by these cognitive principles, we aim to equip LLMs with human-like cognitive writing capabilities through CogWriter, a novel training-free framework that transforms LLM constrained long-form text generation into a systematic cognitive writing paradigm. Our framework consists of two key modules: (1) a Planning Agent that performs hierarchical planning to decompose the task, and (2) multiple Generation Agents that execute these plans in parallel. The system maintains quality via continuous monitoring and reviewing mechanisms, which evaluate outputs against specified requirements and trigger necessary revisions. CogWriter demonstrates exceptional performance on LongGenBench, a benchmark for complex constrained long-form text generation. Even when using Qwen-2.5-14B as its backbone, CogWriter surpasses GPT-4o by 22% in complex instruction completion accuracy while reliably generating texts exceeding 10,000 words. We hope this cognitive science-inspired approach provides a paradigm for LLM writing advancements: https://github.com/KaiyangWan/CogWriter{CogWriter}.
Improving Pacing in Long-Form Story Planning
Existing LLM-based systems for writing long-form stories or story outlines frequently suffer from unnatural pacing, whether glossing over important events or over-elaborating on insignificant details, resulting in a jarring experience for the reader. We propose a CONCrete Outline ConTrol (CONCOCT) system to improve pacing when automatically generating story outlines. We first train a concreteness evaluator to judge which of two events is more concrete (low-level-detailed). This evaluator can then be used to control pacing in hierarchical outline generation; in this work, we explore a vaguest-first expansion procedure that aims for uniform pacing. We further use the evaluator to filter new outline items based on predicted concreteness. Compared to a baseline hierarchical outline generator, humans judge CONCOCT's pacing to be more consistent over 57% of the time across multiple outline lengths; the gains also translate to downstream stories. All code, data, and models are open-sourced.
On the Continuity of Rotation Representations in Neural Networks
In neural networks, it is often desirable to work with various representations of the same space. For example, 3D rotations can be represented with quaternions or Euler angles. In this paper, we advance a definition of a continuous representation, which can be helpful for training deep neural networks. We relate this to topological concepts such as homeomorphism and embedding. We then investigate what are continuous and discontinuous representations for 2D, 3D, and n-dimensional rotations. We demonstrate that for 3D rotations, all representations are discontinuous in the real Euclidean spaces of four or fewer dimensions. Thus, widely used representations such as quaternions and Euler angles are discontinuous and difficult for neural networks to learn. We show that the 3D rotations have continuous representations in 5D and 6D, which are more suitable for learning. We also present continuous representations for the general case of the n-dimensional rotation group SO(n). While our main focus is on rotations, we also show that our constructions apply to other groups such as the orthogonal group and similarity transforms. We finally present empirical results, which show that our continuous rotation representations outperform discontinuous ones for several practical problems in graphics and vision, including a simple autoencoder sanity test, a rotation estimator for 3D point clouds, and an inverse kinematics solver for 3D human poses.
TimeChat-Online: 80% Visual Tokens are Naturally Redundant in Streaming Videos
The rapid growth of online video platforms, particularly live streaming services, has created an urgent need for real-time video understanding systems. These systems must process continuous video streams and respond to user queries instantaneously, presenting unique challenges for current Video Large Language Models (VideoLLMs). While existing VideoLLMs excel at processing complete videos, they face significant limitations in streaming scenarios due to their inability to handle dense, redundant frames efficiently. We introduce TimeChat-Online, a novel online VideoLLM that revolutionizes real-time video interaction. At its core lies our innovative Differential Token Drop (DTD) module, which addresses the fundamental challenge of visual redundancy in streaming videos. Drawing inspiration from human visual perception's Change Blindness phenomenon, DTD preserves meaningful temporal changes while filtering out static, redundant content between frames. Remarkably, our experiments demonstrate that DTD achieves an 82.8% reduction in video tokens while maintaining 98% performance on StreamingBench, revealing that over 80% of visual content in streaming videos is naturally redundant without requiring language guidance. To enable seamless real-time interaction, we present TimeChat-Online-139K, a comprehensive streaming video dataset featuring diverse interaction patterns including backward-tracing, current-perception, and future-responding scenarios. TimeChat-Online's unique Proactive Response capability, naturally achieved through continuous monitoring of video scene transitions via DTD, sets it apart from conventional approaches. Our extensive evaluation demonstrates TimeChat-Online's superior performance on streaming benchmarks (StreamingBench and OvOBench) and maintaining competitive results on long-form video tasks such as Video-MME and MLVU.
TASER: Table Agents for Schema-guided Extraction and Recommendation
Real-world financial documents report essential information about an entity's financial holdings that can span millions of different financial instrument types. Yet, these details are often buried in messy, multi-page, fragmented tables - for example, 99.4% of the tables in our dataset have no bounding boxes with the maximum number of rows amounting to 426 per table across 44 pages. To tackle these unique challenges from real-world tables, we present a continuously learning, agentic table extraction system, TASER (Table Agents for Schema-guided Extraction and Recommendation) that extracts highly unstructured, multi-page, heterogeneous tables into normalized, schema-conforming outputs. Our table agents execute on table detection, classification, extraction, and recommendations by leveraging an initial schema. Then, our Recommender Agent reviews the outputs, recommends schema revisions, and decides on the final recommendations, enabling TASER to outperform existing table detection models such as Table Transformer by 10.1%. Within this continuous learning process, we highlight that larger batch sizes result in a 104.3% increase in schema recommendations that are actionable and utilized, resulting in a 9.8% increase in extracted holdings - highlighting the importance of a continuous learning process. To train TASER, we have manually labeled 22,584 pages (28,150,449 tokens), 3,213 tables for $731,685,511,687 of holdings culminating in one of the first real financial table datasets. We release our dataset TASERTab to enable the research community to access real-world financial tables and outputs. Our results highlight the promise of agentic, schema-guided extraction systems for robust understanding of real-world financial tables.
Speakerly: A Voice-based Writing Assistant for Text Composition
We present Speakerly, a new real-time voice-based writing assistance system that helps users with text composition across various use cases such as emails, instant messages, and notes. The user can interact with the system through instructions or dictation, and the system generates a well-formatted and coherent document. We describe the system architecture and detail how we address the various challenges while building and deploying such a system at scale. More specifically, our system uses a combination of small, task-specific models as well as pre-trained language models for fast and effective text composition while supporting a variety of input modes for better usability.
Investigation of reinforcement learning for shape optimization of profile extrusion dies
Profile extrusion is a continuous production process for manufacturing plastic profiles from molten polymer. Especially interesting is the design of the die, through which the melt is pressed to attain the desired shape. However, due to an inhomogeneous velocity distribution at the die exit or residual stresses inside the extrudate, the final shape of the manufactured part often deviates from the desired one. To avoid these deviations, the shape of the die can be computationally optimized, which has already been investigated in the literature using classical optimization approaches. A new approach in the field of shape optimization is the utilization of Reinforcement Learning (RL) as a learning-based optimization algorithm. RL is based on trial-and-error interactions of an agent with an environment. For each action, the agent is rewarded and informed about the subsequent state of the environment. While not necessarily superior to classical, e.g., gradient-based or evolutionary, optimization algorithms for one single problem, RL techniques are expected to perform especially well when similar optimization tasks are repeated since the agent learns a more general strategy for generating optimal shapes instead of concentrating on just one single problem. In this work, we investigate this approach by applying it to two 2D test cases. The flow-channel geometry can be modified by the RL agent using so-called Free-Form Deformation, a method where the computational mesh is embedded into a transformation spline, which is then manipulated based on the control-point positions. In particular, we investigate the impact of utilizing different agents on the training progress and the potential of wall time saving by utilizing multiple environments during training.
GRAND: Graph Neural Diffusion
We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE. In our model, the layer structure and topology correspond to the discretisation choices of temporal and spatial operators. Our approach allows a principled development of a broad new class of GNNs that are able to address the common plights of graph learning models such as depth, oversmoothing, and bottlenecks. Key to the success of our models are stability with respect to perturbations in the data and this is addressed for both implicit and explicit discretisation schemes. We develop linear and nonlinear versions of GRAND, which achieve competitive results on many standard graph benchmarks.
On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models
Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.
Seismic Arrival-time Picking on Distributed Acoustic Sensing Data using Semi-supervised Learning
Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. The recorded seismic signals by DAS have several distinct characteristics, such as unknown coupling effects, strong anthropogenic noise, and ultra-dense spatial sampling. These aspects differ from conventional seismic data recorded by seismic networks, making it challenging to utilize DAS at present for seismic monitoring. New data analysis algorithms are needed to extract useful information from DAS data. Previous studies on conventional seismic data demonstrated that deep learning models could achieve performance close to human analysts in picking seismic phases. However, phase picking on DAS data is still a difficult problem due to the lack of manual labels. Further, the differences in mathematical structure between these two data formats, i.e., ultra-dense DAS arrays and sparse seismic networks, make model fine-tuning or transfer learning difficult to implement on DAS data. In this work, we design a new approach using semi-supervised learning to solve the phase-picking task on DAS arrays. We use a pre-trained PhaseNet model as a teacher network to generate noisy labels of P and S arrivals on DAS data and apply the Gaussian mixture model phase association (GaMMA) method to refine these noisy labels to build training datasets. We develop a new deep learning model, PhaseNet-DAS, to process the 2D spatial-temporal data of DAS arrays and train the model on DAS data. The new deep learning model achieves high picking accuracy and good earthquake detection performance. We then apply the model to process continuous data and build earthquake catalogs directly from DAS recording. Our approach using semi-supervised learning provides a way to build effective deep learning models for DAS, which have the potential to improve earthquake monitoring using large-scale fiber networks.
Pron vs Prompt: Can Large Language Models already Challenge a World-Class Fiction Author at Creative Text Writing?
It has become routine to report research results where Large Language Models (LLMs) outperform average humans in a wide range of language-related tasks, and creative text writing is no exception. It seems natural, then, to raise the bid: Are LLMs ready to compete in creative writing skills with a top (rather than average) novelist? To provide an initial answer for this question, we have carried out a contest between Patricio Pron (an awarded novelist, considered one of the best of his generation) and GPT-4 (one of the top performing LLMs), in the spirit of AI-human duels such as DeepBlue vs Kasparov and AlphaGo vs Lee Sidol. We asked Pron and GPT-4 to provide thirty titles each, and then to write short stories for both their titles and their opponent's. Then, we prepared an evaluation rubric inspired by Boden's definition of creativity, and we collected 5,400 manual assessments provided by literature critics and scholars. The results of our experimentation indicate that LLMs are still far from challenging a top human creative writer, and that reaching such level of autonomous creative writing skills probably cannot be reached simply with larger language models.
Reasoning Over Paragraph Effects in Situations
A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%.
ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs
Climate and weather prediction traditionally relies on complex numerical simulations of atmospheric physics. Deep learning approaches, such as transformers, have recently challenged the simulation paradigm with complex network forecasts. However, they often act as data-driven black-box models that neglect the underlying physics and lack uncertainty quantification. We address these limitations with ClimODE, a spatiotemporal continuous-time process that implements a key principle of advection from statistical mechanics, namely, weather changes due to a spatial movement of quantities over time. ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow, which also enables estimating the uncertainty in predictions. Our approach outperforms existing data-driven methods in global and regional forecasting with an order of magnitude smaller parameterization, establishing a new state of the art.
StreamVLN: Streaming Vision-and-Language Navigation via SlowFast Context Modeling
Vision-and-Language Navigation (VLN) in real-world settings requires agents to process continuous visual streams and generate actions with low latency grounded in language instructions. While Video-based Large Language Models (Video-LLMs) have driven recent progress, current VLN methods based on Video-LLM often face trade-offs among fine-grained visual understanding, long-term context modeling and computational efficiency. We introduce StreamVLN, a streaming VLN framework that employs a hybrid slow-fast context modeling strategy to support multi-modal reasoning over interleaved vision, language and action inputs. The fast-streaming dialogue context facilitates responsive action generation through a sliding-window of active dialogues, while the slow-updating memory context compresses historical visual states using a 3D-aware token pruning strategy. With this slow-fast design, StreamVLN achieves coherent multi-turn dialogue through efficient KV cache reuse, supporting long video streams with bounded context size and inference cost. Experiments on VLN-CE benchmarks demonstrate state-of-the-art performance with stable low latency, ensuring robustness and efficiency in real-world deployment. The project page is: https://streamvln.github.io/{https://streamvln.github.io/}.
Towards a Unified Language Model for Knowledge-Intensive Tasks Utilizing External Corpus
The advent of large language models (LLMs) has showcased their efficacy across various domains, yet they often hallucinate, especially in knowledge-intensive tasks that require external knowledge sources. To improve factual accuracy of language models, retrieval-augmented generation (RAG) has emerged as a popular solution. However, traditional retrieval modules often rely on large-scale document indexes, which can be disconnected from generative tasks. Through generative retrieval (GR) approach, language models can achieve superior retrieval performance by directly generating relevant document identifiers (DocIDs). However, the relationship between GR and downstream tasks, as well as the potential of LLMs in GR, remains unexplored. In this paper, we present a unified language model that utilizes external corpus to handle various knowledge-intensive tasks by seamlessly integrating generative retrieval, closed-book generation, and RAG. In order to achieve effective retrieval and generation through a unified continuous decoding process, we introduce the following mechanisms: (1) a ranking-oriented DocID decoding strategy, which improves ranking ability by directly learning from a DocID ranking list; (2) a continuous generation strategy to facilitate effective and efficient RAG; (3) well-designed auxiliary DocID understanding tasks to enhance the model's comprehension of DocIDs and their relevance to downstream tasks. Our approach is evaluated on the widely used KILT benchmark using two variants of backbone models: an encoder-decoder T5 model and a decoder-only LLM, Llama2. Experimental results showcase the superior performance of our models in both retrieval and downstream knowledge-intensive tasks.
Spanish and LLM Benchmarks: is MMLU Lost in Translation?
The evaluation of Large Language Models (LLMs) is a key element in their continuous improvement process and many benchmarks have been developed to assess the performance of LLMs in different tasks and topics. As LLMs become adopted worldwide, evaluating them in languages other than English is increasingly important. However, most LLM benchmarks are simply translated using an automated tool and then run in the target language. This means that the results depend not only on the LLM performance in that language but also on the quality of the translation. In this paper, we consider the case of the well-known Massive Multitask Language Understanding (MMLU) benchmark. Selected categories of the benchmark are translated into Spanish using Azure Translator and ChatGPT4 and run on ChatGPT4. Next, the results are processed to identify the test items that produce different answers in Spanish and English. Those are then analyzed manually to understand if the automatic translation caused the change. The results show that a significant fraction of the failing items can be attributed to mistakes in the translation of the benchmark. These results make a strong case for improving benchmarks in languages other than English by at least revising the translations of the items and preferably by adapting the tests to the target language by experts.
Video Annotator: A framework for efficiently building video classifiers using vision-language models and active learning
High-quality and consistent annotations are fundamental to the successful development of robust machine learning models. Traditional data annotation methods are resource-intensive and inefficient, often leading to a reliance on third-party annotators who are not the domain experts. Hard samples, which are usually the most informative for model training, tend to be difficult to label accurately and consistently without business context. These can arise unpredictably during the annotation process, requiring a variable number of iterations and rounds of feedback, leading to unforeseen expenses and time commitments to guarantee quality. We posit that more direct involvement of domain experts, using a human-in-the-loop system, can resolve many of these practical challenges. We propose a novel framework we call Video Annotator (VA) for annotating, managing, and iterating on video classification datasets. Our approach offers a new paradigm for an end-user-centered model development process, enhancing the efficiency, usability, and effectiveness of video classifiers. Uniquely, VA allows for a continuous annotation process, seamlessly integrating data collection and model training. We leverage the zero-shot capabilities of vision-language foundation models combined with active learning techniques, and demonstrate that VA enables the efficient creation of high-quality models. VA achieves a median 6.8 point improvement in Average Precision relative to the most competitive baseline across a wide-ranging assortment of tasks. We release a dataset with 153k labels across 56 video understanding tasks annotated by three professional video editors using VA, and also release code to replicate our experiments at: http://github.com/netflix/videoannotator.
CoDi: Co-evolving Contrastive Diffusion Models for Mixed-type Tabular Synthesis
With growing attention to tabular data these days, the attempt to apply a synthetic table to various tasks has been expanded toward various scenarios. Owing to the recent advances in generative modeling, fake data generated by tabular data synthesis models become sophisticated and realistic. However, there still exists a difficulty in modeling discrete variables (columns) of tabular data. In this work, we propose to process continuous and discrete variables separately (but being conditioned on each other) by two diffusion models. The two diffusion models are co-evolved during training by reading conditions from each other. In order to further bind the diffusion models, moreover, we introduce a contrastive learning method with a negative sampling method. In our experiments with 11 real-world tabular datasets and 8 baseline methods, we prove the efficacy of the proposed method, called CoDi.
UrbanVideo-Bench: Benchmarking Vision-Language Models on Embodied Intelligence with Video Data in Urban Spaces
Large multimodal models exhibit remarkable intelligence, yet their embodied cognitive abilities during motion in open-ended urban 3D space remain to be explored. We introduce a benchmark to evaluate whether video-large language models (Video-LLMs) can naturally process continuous first-person visual observations like humans, enabling recall, perception, reasoning, and navigation. We have manually control drones to collect 3D embodied motion video data from real-world cities and simulated environments, resulting in 1.5k video clips. Then we design a pipeline to generate 5.2k multiple-choice questions. Evaluations of 17 widely-used Video-LLMs reveal current limitations in urban embodied cognition. Correlation analysis provides insight into the relationships between different tasks, showing that causal reasoning has a strong correlation with recall, perception, and navigation, while the abilities for counterfactual and associative reasoning exhibit lower correlation with other tasks. We also validate the potential for Sim-to-Real transfer in urban embodiment through fine-tuning.
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model
The task of age transformation illustrates the change of an individual's appearance over time. Accurately modeling this complex transformation over an input facial image is extremely challenging as it requires making convincing, possibly large changes to facial features and head shape, while still preserving the input identity. In this work, we present an image-to-image translation method that learns to directly encode real facial images into the latent space of a pre-trained unconditional GAN (e.g., StyleGAN) subject to a given aging shift. We employ a pre-trained age regression network to explicitly guide the encoder in generating the latent codes corresponding to the desired age. In this formulation, our method approaches the continuous aging process as a regression task between the input age and desired target age, providing fine-grained control over the generated image. Moreover, unlike approaches that operate solely in the latent space using a prior on the path controlling age, our method learns a more disentangled, non-linear path. Finally, we demonstrate that the end-to-end nature of our approach, coupled with the rich semantic latent space of StyleGAN, allows for further editing of the generated images. Qualitative and quantitative evaluations show the advantages of our method compared to state-of-the-art approaches.
NarrLV: Towards a Comprehensive Narrative-Centric Evaluation for Long Video Generation Models
With the rapid development of foundation video generation technologies, long video generation models have exhibited promising research potential thanks to expanded content creation space. Recent studies reveal that the goal of long video generation tasks is not only to extend video duration but also to accurately express richer narrative content within longer videos. However, due to the lack of evaluation benchmarks specifically designed for long video generation models, the current assessment of these models primarily relies on benchmarks with simple narrative prompts (e.g., VBench). To the best of our knowledge, our proposed NarrLV is the first benchmark to comprehensively evaluate the Narrative expression capabilities of Long Video generation models. Inspired by film narrative theory, (i) we first introduce the basic narrative unit maintaining continuous visual presentation in videos as Temporal Narrative Atom (TNA), and use its count to quantitatively measure narrative richness. Guided by three key film narrative elements influencing TNA changes, we construct an automatic prompt generation pipeline capable of producing evaluation prompts with a flexibly expandable number of TNAs. (ii) Then, based on the three progressive levels of narrative content expression, we design an effective evaluation metric using the MLLM-based question generation and answering framework. (iii) Finally, we conduct extensive evaluations on existing long video generation models and the foundation generation models. Experimental results demonstrate that our metric aligns closely with human judgments. The derived evaluation outcomes reveal the detailed capability boundaries of current video generation models in narrative content expression.
FunkNN: Neural Interpolation for Functional Generation
Can we build continuous generative models which generalize across scales, can be evaluated at any coordinate, admit calculation of exact derivatives, and are conceptually simple? Existing MLP-based architectures generate worse samples than the grid-based generators with favorable convolutional inductive biases. Models that focus on generating images at different scales do better, but employ complex architectures not designed for continuous evaluation of images and derivatives. We take a signal-processing perspective and treat continuous image generation as interpolation from samples. Indeed, correctly sampled discrete images contain all information about the low spatial frequencies. The question is then how to extrapolate the spectrum in a data-driven way while meeting the above design criteria. Our answer is FunkNN -- a new convolutional network which learns how to reconstruct continuous images at arbitrary coordinates and can be applied to any image dataset. Combined with a discrete generative model it becomes a functional generator which can act as a prior in continuous ill-posed inverse problems. We show that FunkNN generates high-quality continuous images and exhibits strong out-of-distribution performance thanks to its patch-based design. We further showcase its performance in several stylized inverse problems with exact spatial derivatives.
PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters
Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.
Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence, paving the way for advanced intelligent agents capable of sophisticated reasoning, robust perception, and versatile action across diverse domains. As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges. This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture that integrates principles from cognitive science, neuroscience, and computational research. We structure our exploration into four interconnected parts. First, we delve into the modular foundation of intelligent agents, systematically mapping their cognitive, perceptual, and operational modules onto analogous human brain functionalities, and elucidating core components such as memory, world modeling, reward processing, and emotion-like systems. Second, we discuss self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities, adapt to dynamic environments, and achieve continual learning through automated optimization paradigms, including emerging AutoML and LLM-driven optimization strategies. Third, we examine collaborative and evolutionary multi-agent systems, investigating the collective intelligence emerging from agent interactions, cooperation, and societal structures, highlighting parallels to human social dynamics. Finally, we address the critical imperative of building safe, secure, and beneficial AI systems, emphasizing intrinsic and extrinsic security threats, ethical alignment, robustness, and practical mitigation strategies necessary for trustworthy real-world deployment.
LiveStar: Live Streaming Assistant for Real-World Online Video Understanding
Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.
FoPru: Focal Pruning for Efficient Large Vision-Language Models
Large Vision-Language Models (LVLMs) represent a significant advancement toward achieving superior multimodal capabilities by enabling powerful Large Language Models (LLMs) to understand visual input. Typically, LVLMs utilize visual encoders, such as CLIP, to transform images into visual tokens, which are then aligned with textual tokens through projection layers before being input into the LLM for inference. Although existing LVLMs have achieved significant success, their inference efficiency is still limited by the substantial number of visual tokens and the potential redundancy among them. To mitigate this issue, we propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder. Specifically, we introduce two alternative pruning strategies: 1) the rank strategy, which leverages all token significance scores to retain more critical tokens in a global view; 2) the row strategy, which focuses on preserving continuous key information in images from a local perspective. Finally, the selected tokens are reordered to maintain their original positional relationships. Extensive experiments across various LVLMs and multimodal datasets demonstrate that our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
Rethinking Search: Making Domain Experts out of Dilettantes
When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice.
ParaRev: Building a dataset for Scientific Paragraph Revision annotated with revision instruction
Revision is a crucial step in scientific writing, where authors refine their work to improve clarity, structure, and academic quality. Existing approaches to automated writing assistance often focus on sentence-level revisions, which fail to capture the broader context needed for effective modification. In this paper, we explore the impact of shifting from sentence-level to paragraph-level scope for the task of scientific text revision. The paragraph level definition of the task allows for more meaningful changes, and is guided by detailed revision instructions rather than general ones. To support this task, we introduce ParaRev, the first dataset of revised scientific paragraphs with an evaluation subset manually annotated with revision instructions. Our experiments demonstrate that using detailed instructions significantly improves the quality of automated revisions compared to general approaches, no matter the model or the metric considered.
SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications
We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities.
Natural Language Processing in the Legal Domain
In this paper, we summarize the current state of the field of NLP & Law with a specific focus on recent technical and substantive developments. To support our analysis, we construct and analyze a nearly complete corpus of more than six hundred NLP & Law related papers published over the past decade. Our analysis highlights several major trends. Namely, we document an increasing number of papers written, tasks undertaken, and languages covered over the course of the past decade. We observe an increase in the sophistication of the methods which researchers deployed in this applied context. Slowly but surely, Legal NLP is beginning to match not only the methodological sophistication of general NLP but also the professional standards of data availability and code reproducibility observed within the broader scientific community. We believe all of these trends bode well for the future of the field, but many questions in both the academic and commercial sphere still remain open.
Help me write a poem: Instruction Tuning as a Vehicle for Collaborative Poetry Writing
Recent work in training large language models (LLMs) to follow natural language instructions has opened up exciting opportunities for natural language interface design. Building on the prior success of LLMs in the realm of computer-assisted creativity, we aim to study if LLMs can improve the quality of user-generated content through collaboration. We present CoPoet, a collaborative poetry writing system. In contrast to auto-completing a user's text, CoPoet is controlled by user instructions that specify the attributes of the desired text, such as Write a sentence about `love' or Write a sentence ending in `fly'. The core component of our system is a language model fine-tuned on a diverse collection of instructions for poetry writing. Our model is not only competitive with publicly available LLMs trained on instructions (InstructGPT), but is also capable of satisfying unseen compositional instructions. A study with 15 qualified crowdworkers shows that users successfully write poems with CoPoet on diverse topics ranging from Monarchy to Climate change. Further, the collaboratively written poems are preferred by third-party evaluators over those written without the system.
Prompt Chaining or Stepwise Prompt? Refinement in Text Summarization
Large language models (LLMs) have demonstrated the capacity to improve summary quality by mirroring a human-like iterative process of critique and refinement starting from the initial draft. Two strategies are designed to perform this iterative process: Prompt Chaining and Stepwise Prompt. Prompt chaining orchestrates the drafting, critiquing, and refining phases through a series of three discrete prompts, while Stepwise prompt integrates these phases within a single prompt. However, the relative effectiveness of the two methods has not been extensively studied. This paper is dedicated to examining and comparing these two methods in the context of text summarization to ascertain which method stands out as the most effective. Experimental results show that the prompt chaining method can produce a more favorable outcome. This might be because stepwise prompt might produce a simulated refinement process according to our various experiments. Since refinement is adaptable to diverse tasks, our conclusions have the potential to be extrapolated to other applications, thereby offering insights that may contribute to the broader development of LLMs.
WikiHow: A Large Scale Text Summarization Dataset
Sequence-to-sequence models have recently gained the state of the art performance in summarization. However, not too many large-scale high-quality datasets are available and almost all the available ones are mainly news articles with specific writing style. Moreover, abstractive human-style systems involving description of the content at a deeper level require data with higher levels of abstraction. In this paper, we present WikiHow, a dataset of more than 230,000 article and summary pairs extracted and constructed from an online knowledge base written by different human authors. The articles span a wide range of topics and therefore represent high diversity styles. We evaluate the performance of the existing methods on WikiHow to present its challenges and set some baselines to further improve it.
FicSim: A Dataset for Multi-Faceted Semantic Similarity in Long-Form Fiction
As language models become capable of processing increasingly long and complex texts, there has been growing interest in their application within computational literary studies. However, evaluating the usefulness of these models for such tasks remains challenging due to the cost of fine-grained annotation for long-form texts and the data contamination concerns inherent in using public-domain literature. Current embedding similarity datasets are not suitable for evaluating literary-domain tasks because of a focus on coarse-grained similarity and primarily on very short text. We assemble and release FICSIM, a dataset of long-form, recently written fiction, including scores along 12 axes of similarity informed by author-produced metadata and validated by digital humanities scholars. We evaluate a suite of embedding models on this task, demonstrating a tendency across models to focus on surface-level features over semantic categories that would be useful for computational literary studies tasks. Throughout our data-collection process, we prioritize author agency and rely on continual, informed author consent.
EditEval: An Instruction-Based Benchmark for Text Improvements
Evaluation of text generation to date has primarily focused on content created sequentially, rather than improvements on a piece of text. Writing, however, is naturally an iterative and incremental process that requires expertise in different modular skills such as fixing outdated information or making the style more consistent. Even so, comprehensive evaluation of a model's capacity to perform these skills and the ability to edit remains sparse. This work presents EditEval: An instruction-based, benchmark and evaluation suite that leverages high-quality existing and new datasets for automatic evaluation of editing capabilities such as making text more cohesive and paraphrasing. We evaluate several pre-trained models, which shows that InstructGPT and PEER perform the best, but that most baselines fall below the supervised SOTA, particularly when neutralizing and updating information. Our analysis also shows that commonly used metrics for editing tasks do not always correlate well, and that optimization for prompts with the highest performance does not necessarily entail the strongest robustness to different models. Through the release of this benchmark and a publicly available leaderboard challenge, we hope to unlock future research in developing models capable of iterative and more controllable editing.
Re3: Generating Longer Stories With Recursive Reprompting and Revision
We consider the problem of automatically generating longer stories of over two thousand words. Compared to prior work on shorter stories, long-range plot coherence and relevance are more central challenges here. We propose the Recursive Reprompting and Revision framework (Re3) to address these challenges by (a) prompting a general-purpose language model to construct a structured overarching plan, and (b) generating story passages by repeatedly injecting contextual information from both the plan and current story state into a language model prompt. We then revise by (c) reranking different continuations for plot coherence and premise relevance, and finally (d) editing the best continuation for factual consistency. Compared to similar-length stories generated directly from the same base model, human evaluators judged substantially more of Re3's stories as having a coherent overarching plot (by 14% absolute increase), and relevant to the given initial premise (by 20%).
Sāmayik: A Benchmark and Dataset for English-Sanskrit Translation
We release S\={a}mayik, a dataset of around 53,000 parallel English-Sanskrit sentences, written in contemporary prose. Sanskrit is a classical language still in sustenance and has a rich documented heritage. However, due to the limited availability of digitized content, it still remains a low-resource language. Existing Sanskrit corpora, whether monolingual or bilingual, have predominantly focused on poetry and offer limited coverage of contemporary written materials. S\={a}mayik is curated from a diverse range of domains, including language instruction material, textual teaching pedagogy, and online tutorials, among others. It stands out as a unique resource that specifically caters to the contemporary usage of Sanskrit, with a primary emphasis on prose writing. Translation models trained on our dataset demonstrate statistically significant improvements when translating out-of-domain contemporary corpora, outperforming models trained on older classical-era poetry datasets. Finally, we also release benchmark models by adapting four multilingual pre-trained models, three of them have not been previously exposed to Sanskrit for translating between English and Sanskrit while one of them is multi-lingual pre-trained translation model including English and Sanskrit. The dataset and source code is present at https://github.com/ayushbits/saamayik.
Frankentext: Stitching random text fragments into long-form narratives
We introduce Frankentexts, a new type of long-form narratives produced by LLMs under the extreme constraint that most tokens (e.g., 90%) must be copied verbatim from human writings. This task presents a challenging test of controllable generation, requiring models to satisfy a writing prompt, integrate disparate text fragments, and still produce a coherent narrative. To generate Frankentexts, we instruct the model to produce a draft by selecting and combining human-written passages, then iteratively revise the draft while maintaining a user-specified copy ratio. We evaluate the resulting Frankentexts along three axes: writing quality, instruction adherence, and detectability. Gemini-2.5-Pro performs surprisingly well on this task: 81% of its Frankentexts are coherent and 100% relevant to the prompt. Notably, up to 59% of these outputs are misclassified as human-written by detectors like Pangram, revealing limitations in AI text detectors. Human annotators can sometimes identify Frankentexts through their abrupt tone shifts and inconsistent grammar between segments, especially in longer generations. Beyond presenting a challenging generation task, Frankentexts invite discussion on building effective detectors for this new grey zone of authorship, provide training data for mixed authorship detection, and serve as a sandbox for studying human-AI co-writing processes.
RewriteLM: An Instruction-Tuned Large Language Model for Text Rewriting
Large Language Models (LLMs) have demonstrated impressive zero-shot capabilities in long-form text generation tasks expressed through natural language instructions. However, user expectations for long-form text rewriting is high, and unintended rewrites (''hallucinations'') produced by the model can negatively impact its overall performance. Existing evaluation benchmarks primarily focus on limited rewriting styles and sentence-level rewriting rather than long-form open-ended rewriting.We introduce OpenRewriteEval, a novel benchmark that covers a wide variety of rewriting types expressed through natural language instructions. It is specifically designed to facilitate the evaluation of open-ended rewriting of long-form texts. In addition, we propose a strong baseline model, RewriteLM, an instruction-tuned large language model for long-form text rewriting. We develop new strategies that facilitate the generation of diverse instructions and preference data with minimal human intervention. We conduct empirical experiments and demonstrate that our model outperforms the current state-of-the-art LLMs in text rewriting. Specifically, it excels in preserving the essential content and meaning of the source text, minimizing the generation of ''hallucinated'' content, while showcasing the ability to generate rewrites with diverse wording and structures.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
Room to Grow: Understanding Personal Characteristics Behind Self Improvement Using Social Media
Many people aim for change, but not everyone succeeds. While there are a number of social psychology theories that propose motivation-related characteristics of those who persist with change, few computational studies have explored the motivational stage of personal change. In this paper, we investigate a new dataset consisting of the writings of people who manifest intention to change, some of whom persist while others do not. Using a variety of linguistic analysis techniques, we first examine the writing patterns that distinguish the two groups of people. Persistent people tend to reference more topics related to long-term self-improvement and use a more complicated writing style. Drawing on these consistent differences, we build a classifier that can reliably identify the people more likely to persist, based on their language. Our experiments provide new insights into the motivation-related behavior of people who persist with their intention to change.
Album Storytelling with Iterative Story-aware Captioning and Large Language Models
This work studies how to transform an album to vivid and coherent stories, a task we refer to as "album storytelling". While this task can help preserve memories and facilitate experience sharing, it remains an underexplored area in current literature. With recent advances in Large Language Models (LLMs), it is now possible to generate lengthy, coherent text, opening up the opportunity to develop an AI assistant for album storytelling. One natural approach is to use caption models to describe each photo in the album, and then use LLMs to summarize and rewrite the generated captions into an engaging story. However, we find this often results in stories containing hallucinated information that contradicts the images, as each generated caption ("story-agnostic") is not always about the description related to the whole story or miss some necessary information. To address these limitations, we propose a new iterative album storytelling pipeline. Specifically, we start with an initial story and build a story-aware caption model to refine the captions using the whole story as guidance. The polished captions are then fed into the LLMs to generate a new refined story. This process is repeated iteratively until the story contains minimal factual errors while maintaining coherence. To evaluate our proposed pipeline, we introduce a new dataset of image collections from vlogs and a set of systematic evaluation metrics. Our results demonstrate that our method effectively generates more accurate and engaging stories for albums, with enhanced coherence and vividness.
Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
Detecting Mode Collapse in Language Models via Narration
No two authors write alike. Personal flourishes invoked in written narratives, from lexicon to rhetorical devices, imply a particular author--what literary theorists label the implied or virtual author; distinct from the real author or narrator of a text. Early large language models trained on unfiltered training sets drawn from a variety of discordant sources yielded incoherent personalities, problematic for conversational tasks but proving useful for sampling literature from multiple perspectives. Successes in alignment research in recent years have allowed researchers to impose subjectively consistent personae on language models via instruction tuning and reinforcement learning from human feedback (RLHF), but whether aligned models retain the ability to model an arbitrary virtual author has received little scrutiny. By studying 4,374 stories sampled from three OpenAI language models, we show successive versions of GPT-3 suffer from increasing degrees of "mode collapse" whereby overfitting the model during alignment constrains it from generalizing over authorship: models suffering from mode collapse become unable to assume a multiplicity of perspectives. Our method and results are significant for researchers seeking to employ language models in sociological simulations.
CLARA: Clinical Report Auto-completion
Generating clinical reports from raw recordings such as X-rays and electroencephalogram (EEG) is an essential and routine task for doctors. However, it is often time-consuming to write accurate and detailed reports. Most existing methods try to generate the whole reports from the raw input with limited success because 1) generated reports often contain errors that need manual review and correction, 2) it does not save time when doctors want to write additional information into the report, and 3) the generated reports are not customized based on individual doctors' preference. We propose {\it CL}inic{\it A}l {\it R}eport {\it A}uto-completion (CLARA), an interactive method that generates reports in a sentence by sentence fashion based on doctors' anchor words and partially completed sentences. CLARA searches for most relevant sentences from existing reports as the template for the current report. The retrieved sentences are sequentially modified by combining with the input feature representations to create the final report. In our experimental evaluation, CLARA achieved 0.393 CIDEr and 0.248 BLEU-4 on X-ray reports and 0.482 CIDEr and 0.491 BLEU-4 for EEG reports for sentence-level generation, which is up to 35% improvement over the best baseline. Also via our qualitative evaluation, CLARA is shown to produce reports which have a significantly higher level of approval by doctors in a user study (3.74 out of 5 for CLARA vs 2.52 out of 5 for the baseline).
Heaps' law and Heaps functions in tagged texts: Evidences of their linguistic relevance
We study the relationship between vocabulary size and text length in a corpus of 75 literary works in English, authored by six writers, distinguishing between the contributions of three grammatical classes (or ``tags,'' namely, {\it nouns}, {\it verbs}, and {\it others}), and analyze the progressive appearance of new words of each tag along each individual text. While the power-law relation prescribed by Heaps' law is satisfactorily fulfilled by total vocabulary sizes and text lengths, the appearance of new words in each text is on the whole well described by the average of random shufflings of the text, which does not obey a power law. Deviations from this average, however, are statistically significant and show a systematic trend across the corpus. Specifically, they reveal that the appearance of new words along each text is predominantly retarded with respect to the average of random shufflings. Moreover, different tags are shown to add systematically distinct contributions to this tendency, with {\it verbs} and {\it others} being respectively more and less retarded than the mean trend, and {\it nouns} following instead this overall mean. These statistical systematicities are likely to point to the existence of linguistically relevant information stored in the different variants of Heaps' law, a feature that is still in need of extensive assessment.
Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
How Far are We from Robust Long Abstractive Summarization?
Abstractive summarization has made tremendous progress in recent years. In this work, we perform fine-grained human annotations to evaluate long document abstractive summarization systems (i.e., models and metrics) with the aim of implementing them to generate reliable summaries. For long document abstractive models, we show that the constant strive for state-of-the-art ROUGE results can lead us to generate more relevant summaries but not factual ones. For long document evaluation metrics, human evaluation results show that ROUGE remains the best at evaluating the relevancy of a summary. It also reveals important limitations of factuality metrics in detecting different types of factual errors and the reasons behind the effectiveness of BARTScore. We then suggest promising directions in the endeavor of developing factual consistency metrics. Finally, we release our annotated long document dataset with the hope that it can contribute to the development of metrics across a broader range of summarization settings.
Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions
Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences.
The Spotify Podcast Dataset
Podcasts are a relatively new form of audio media. Episodes appear on a regular cadence, and come in many different formats and levels of formality. They can be formal news journalism or conversational chat; fiction or non-fiction. They are rapidly growing in popularity and yet have been relatively little studied. As an audio format, podcasts are more varied in style and production types than, say, broadcast news, and contain many more genres than typically studied in video research. The medium is therefore a rich domain with many research avenues for the IR and NLP communities. We present the Spotify Podcast Dataset, a set of approximately 100K podcast episodes comprised of raw audio files along with accompanying ASR transcripts. This represents over 47,000 hours of transcribed audio, and is an order of magnitude larger than previous speech-to-text corpora.
Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations
Prior work on pretrained sentence embeddings and benchmarks focus on the capabilities of stand-alone sentences. We propose DiscoEval, a test suite of tasks to evaluate whether sentence representations include broader context information. We also propose a variety of training objectives that makes use of natural annotations from Wikipedia to build sentence encoders capable of modeling discourse. We benchmark sentence encoders pretrained with our proposed training objectives, as well as other popular pretrained sentence encoders on DiscoEval and other sentence evaluation tasks. Empirically, we show that these training objectives help to encode different aspects of information in document structures. Moreover, BERT and ELMo demonstrate strong performances over DiscoEval with individual hidden layers showing different characteristics.
Data Engineering for Scaling Language Models to 128K Context
We study the continual pretraining recipe for scaling language models' context lengths to 128K, with a focus on data engineering. We hypothesize that long context modeling, in particular the ability to utilize information at arbitrary input locations, is a capability that is mostly already acquired through large-scale pretraining, and that this capability can be readily extended to contexts substantially longer than seen during training~(e.g., 4K to 128K) through lightweight continual pretraining on appropriate data mixture. We investigate the quantity and quality of the data for continual pretraining: (1) for quantity, we show that 500 million to 5 billion tokens are enough to enable the model to retrieve information anywhere within the 128K context; (2) for quality, our results equally emphasize domain balance and length upsampling. Concretely, we find that naively upsampling longer data on certain domains like books, a common practice of existing work, gives suboptimal performance, and that a balanced domain mixture is important. We demonstrate that continual pretraining of the full model on 1B-5B tokens of such data is an effective and affordable strategy for scaling the context length of language models to 128K. Our recipe outperforms strong open-source long-context models and closes the gap to frontier models like GPT-4 128K.
Training Large Language Models to Reason in a Continuous Latent Space
Large language models (LLMs) are restricted to reason in the "language space", where they typically express the reasoning process with a chain-of-thought (CoT) to solve a complex reasoning problem. However, we argue that language space may not always be optimal for reasoning. For example, most word tokens are primarily for textual coherence and not essential for reasoning, while some critical tokens require complex planning and pose huge challenges to LLMs. To explore the potential of LLM reasoning in an unrestricted latent space instead of using natural language, we introduce a new paradigm Coconut (Chain of Continuous Thought). We utilize the last hidden state of the LLM as a representation of the reasoning state (termed "continuous thought"). Rather than decoding this into a word token, we feed it back to the LLM as the subsequent input embedding directly in the continuous space. Experiments show that Coconut can effectively augment the LLM on several reasoning tasks. This novel latent reasoning paradigm leads to emergent advanced reasoning patterns: the continuous thought can encode multiple alternative next reasoning steps, allowing the model to perform a breadth-first search (BFS) to solve the problem, rather than prematurely committing to a single deterministic path like CoT. Coconut outperforms CoT in certain logical reasoning tasks that require substantial backtracking during planning, with fewer thinking tokens during inference. These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.
PRELUDE: A Benchmark Designed to Require Global Comprehension and Reasoning over Long Contexts
We introduce PRELUDE, a benchmark for evaluating long-context understanding through the task of determining whether a character's prequel story is consistent with the canonical narrative of the original book. Our task poses a stronger demand for global comprehension and deep reasoning than existing benchmarks -- as the prequels are not part of the original story, assessing their plausibility typically requires searching and integrating information that is only indirectly related. Empirically, 88% of instances require evidence from multiple parts of the narrative. Experimental results highlight the challenge of our task: in-context learning, RAG and in-domain training with state-of-the-art LLMs, and commercial DeepResearch services, lag behind humans by >15%. A further human study reveals that models often produce correct answers with flawed reasoning, leading to an over 30% gap in reasoning accuracy compared to humans. These findings underscore the substantial room for improvement in long-context understanding and reasoning.
Language Models Optimized to Fool Detectors Still Have a Distinct Style (And How to Change It)
Despite considerable progress in the development of machine-text detectors, it has been suggested that the problem is inherently hard, and therefore, that stakeholders should proceed under the assumption that machine-generated text cannot be reliably detected as such. We examine a recent such claim by Nicks et al. (2024) regarding the ease with which language models can be optimized to degrade the performance of machine-text detectors, including detectors not specifically optimized against. We identify a feature spacex2013the stylistic feature spacex2013that is robust to such optimization, and show that it may be used to reliably detect samples from language models optimized to prevent detection. Furthermore, we show that even when models are explicitly optimized against stylistic detectors, detection performance remains surprisingly unaffected. We then seek to understand if stylistic detectors are inherently more robust. To study this question, we explore a new paraphrasing approach that simultaneously aims to close the gap between human writing and machine writing in stylistic feature space while avoiding detection using traditional features. We show that when only a single sample is available for detection, this attack is universally effective across all detectors considered, including those that use writing style. However, as the number of samples available for detection grows, the human and machine distributions become distinguishable. This observation encourages us to introduce AURA, a metric that estimates the overlap between human and machine-generated distributions by analyzing how detector performance improves as more samples become available. Overall, our findings underscore previous recommendations to avoid reliance on machine-text detection.
DAPR: A Benchmark on Document-Aware Passage Retrieval
Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr
Spinning the Golden Thread: Benchmarking Long-Form Generation in Language Models
The abilities of long-context language models (LMs) are often evaluated using the "Needle-in-a-Haystack" (NIAH) test, which comprises tasks designed to assess a model's ability to identify specific information ("needle") within large text sequences ("haystack"). While these benchmarks measure how well models understand long-context input sequences, they do not effectively gauge the quality of long-form text generation--a critical aspect for applications such as design proposals and creative writing. To address this gap, we have introduced a new long-form text evaluation benchmark, Spinning the Golden Thread (SGT), which tests models' ability to identify specific events within generated long text sequences. In this benchmark, we prompt long-context LMs to create long-form text that must include particular events or constraints and evaluate their ability to incorporate these elements. We evaluated ten long-context LMs across four distinct scenarios, three types of prompt instructions, and two different generation-length settings (16K and 32K). Although these models perform well on NIAH benchmarks, none demonstrated satisfactory performance on the Spinning the Golden Thread, raising concerns about their ability to generate coherent long-form text that follows instructions. Additionally, as the length of the generated text increases, all models exhibit a significant drop in performance.
Continuous Chain of Thought Enables Parallel Exploration and Reasoning
Current language models generate chain-of-thought traces by autoregressively sampling tokens from a finite vocabulary. While this discrete sampling has achieved remarkable success, conducting chain-of-thought with continuously-valued tokens (CoT2) offers a richer and more expressive alternative. Our work examines the benefits of CoT2 through logical reasoning tasks that inherently require search capabilities and provide optimization and exploration methods for CoT2. Theoretically, we show that CoT2 allows the model to track multiple traces in parallel and quantify its benefits for inference efficiency. Notably, one layer transformer equipped with CoT2 can provably solve the combinatorial "subset sum problem" given sufficient embedding dimension. These insights lead to a novel and effective supervision strategy where we match the softmax outputs to the empirical token distributions of a set of target traces. Complementing this, we introduce sampling strategies that unlock policy optimization and self-improvement for CoT2. Our first strategy samples and composes K discrete tokens at each decoding step to control the level of parallelism, and reduces to standard CoT when K=1. Our second strategy relies on continuous exploration over the probability simplex. Experiments confirm that policy optimization with CoT2 indeed improves the performance of the model beyond its initial discrete or continuous supervision.
MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent
Despite improvements by length extrapolation, efficient attention and memory modules, handling infinitely long documents with linear complexity without performance degradation during extrapolation remains the ultimate challenge in long-text processing. We directly optimize for long-text tasks in an end-to-end fashion and introduce a novel agent workflow, MemAgent, which reads text in segments and updates the memory using an overwrite strategy. We extend the DAPO algorithm to facilitate training via independent-context multi-conversation generation. MemAgent has demonstrated superb long-context capabilities, being able to extrapolate from an 8K context trained on 32K text to a 3.5M QA task with performance loss < 5% and achieves 95%+ in 512K RULER test.
`Keep it Together': Enforcing Cohesion in Extractive Summaries by Simulating Human Memory
Extractive summaries are usually presented as lists of sentences with no expected cohesion between them. In this paper, we aim to enforce cohesion whilst controlling for informativeness and redundancy in summaries, in cases where the input exhibits high redundancy. The pipeline controls for redundancy in long inputs as it is consumed, and balances informativeness and cohesion during sentence selection. Our sentence selector simulates human memory to keep track of topics --modeled as lexical chains--, enforcing cohesive ties between noun phrases. Across a variety of domains, our experiments revealed that it is possible to extract highly cohesive summaries that nevertheless read as informative to humans as summaries extracted by only accounting for informativeness or redundancy. The extracted summaries exhibit smooth topic transitions between sentences as signaled by lexical chains, with chains spanning adjacent or near-adjacent sentences.
A Stylometric Application of Large Language Models
We show that large language models (LLMs) can be used to distinguish the writings of different authors. Specifically, an individual GPT-2 model, trained from scratch on the works of one author, will predict held-out text from that author more accurately than held-out text from other authors. We suggest that, in this way, a model trained on one author's works embodies the unique writing style of that author. We first demonstrate our approach on books written by eight different (known) authors. We also use this approach to confirm R. P. Thompson's authorship of the well-studied 15th book of the Oz series, originally attributed to F. L. Baum.
Understanding Points of Correspondence between Sentences for Abstractive Summarization
Fusing sentences containing disparate content is a remarkable human ability that helps create informative and succinct summaries. Such a simple task for humans has remained challenging for modern abstractive summarizers, substantially restricting their applicability in real-world scenarios. In this paper, we present an investigation into fusing sentences drawn from a document by introducing the notion of points of correspondence, which are cohesive devices that tie any two sentences together into a coherent text. The types of points of correspondence are delineated by text cohesion theory, covering pronominal and nominal referencing, repetition and beyond. We create a dataset containing the documents, source and fusion sentences, and human annotations of points of correspondence between sentences. Our dataset bridges the gap between coreference resolution and summarization. It is publicly shared to serve as a basis for future work to measure the success of sentence fusion systems. (https://github.com/ucfnlp/points-of-correspondence)
Unified Multi-Modal Interleaved Document Representation for Information Retrieval
Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.
Uniform Complexity for Text Generation
Large language models (LLMs) have shown promising results in a wide array of generative NLP tasks, such as summarization and machine translation. In the context of narrative generation, however, existing models still do not capture factors that contribute to producing consistent text. For instance, it is logical that a piece of text or a story should be uniformly readable throughout and that this form of complexity should be controllable. As such, if the complexity of an input text prompt is rated first-grade reading level in the Flesch Reading Ease test, then the generated text continuing the plot should also be within this range of complexity. With this in mind, we introduce Uniform Complexity for Text Generation (UCTG), a new benchmark test which raises the challenge of making generative models observe uniform linguistic properties with respect to prompts. We experiment with over 150+ linguistically and cognitively motivated features for evaluating text complexity in humans and generative models. From our results, we find that models such as GPT-2 struggle to preserve the complexity of input prompts used in its generations, even if finetuned with professionally written texts.
Do Long-Range Language Models Actually Use Long-Range Context?
Language models are generally trained on short, truncated input sequences, which limits their ability to use discourse-level information present in long-range context to improve their predictions. Recent efforts to improve the efficiency of self-attention have led to a proliferation of long-range Transformer language models, which can process much longer sequences than models of the past. However, the ways in which such models take advantage of the long-range context remain unclear. In this paper, we perform a fine-grained analysis of two long-range Transformer language models (including the Routing Transformer, which achieves state-of-the-art perplexity on the PG-19 long-sequence LM benchmark dataset) that accept input sequences of up to 8K tokens. Our results reveal that providing long-range context (i.e., beyond the previous 2K tokens) to these models only improves their predictions on a small set of tokens (e.g., those that can be copied from the distant context) and does not help at all for sentence-level prediction tasks. Finally, we discover that PG-19 contains a variety of different document types and domains, and that long-range context helps most for literary novels (as opposed to textbooks or magazines).
Thus Spake Long-Context Large Language Model
Long context is an important topic in Natural Language Processing (NLP), running through the development of NLP architectures, and offers immense opportunities for Large Language Models (LLMs) giving LLMs the lifelong learning potential akin to humans. Unfortunately, the pursuit of a long context is accompanied by numerous obstacles. Nevertheless, long context remains a core competitive advantage for LLMs. In the past two years, the context length of LLMs has achieved a breakthrough extension to millions of tokens. Moreover, the research on long-context LLMs has expanded from length extrapolation to a comprehensive focus on architecture, infrastructure, training, and evaluation technologies. Inspired by the symphonic poem, Thus Spake Zarathustra, we draw an analogy between the journey of extending the context of LLM and the attempts of humans to transcend its mortality. In this survey, We will illustrate how LLM struggles between the tremendous need for a longer context and its equal need to accept the fact that it is ultimately finite. To achieve this, we give a global picture of the lifecycle of long-context LLMs from four perspectives: architecture, infrastructure, training, and evaluation, showcasing the full spectrum of long-context technologies. At the end of this survey, we will present 10 unanswered questions currently faced by long-context LLMs. We hope this survey can serve as a systematic introduction to the research on long-context LLMs.
AI vs. Human -- Differentiation Analysis of Scientific Content Generation
Recent neural language models have taken a significant step forward in producing remarkably controllable, fluent, and grammatical text. Although studies have found that AI-generated text is not distinguishable from human-written text for crowd-sourcing workers, there still exist errors in AI-generated text which are even subtler and harder to spot. We primarily focus on the scenario in which scientific AI writing assistant is deeply involved. First, we construct a feature description framework to distinguish between AI-generated text and human-written text from syntax, semantics, and pragmatics based on the human evaluation. Then we utilize the features, i.e., writing style, coherence, consistency, and argument logistics, from the proposed framework to analyze two types of content. Finally, we adopt several publicly available methods to investigate the gap of between AI-generated scientific text and human-written scientific text by AI-generated scientific text detection models. The results suggest that while AI has the potential to generate scientific content that is as accurate as human-written content, there is still a gap in terms of depth and overall quality. The AI-generated scientific content is more likely to contain errors in factual issues. We find that there exists a "writing style" gap between AI-generated scientific text and human-written scientific text. Based on the analysis result, we summarize a series of model-agnostic and distribution-agnostic features for detection tasks in other domains. Findings in this paper contribute to guiding the optimization of AI models to produce high-quality content and addressing related ethical and security concerns.
Hierarchical Neural Story Generation
We explore story generation: creative systems that can build coherent and fluent passages of text about a topic. We collect a large dataset of 300K human-written stories paired with writing prompts from an online forum. Our dataset enables hierarchical story generation, where the model first generates a premise, and then transforms it into a passage of text. We gain further improvements with a novel form of model fusion that improves the relevance of the story to the prompt, and adding a new gated multi-scale self-attention mechanism to model long-range context. Experiments show large improvements over strong baselines on both automated and human evaluations. Human judges prefer stories generated by our approach to those from a strong non-hierarchical model by a factor of two to one.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
Automatic Prediction of Discourse Connectives
Accurate prediction of suitable discourse connectives (however, furthermore, etc.) is a key component of any system aimed at building coherent and fluent discourses from shorter sentences and passages. As an example, a dialog system might assemble a long and informative answer by sampling passages extracted from different documents retrieved from the Web. We formulate the task of discourse connective prediction and release a dataset of 2.9M sentence pairs separated by discourse connectives for this task. Then, we evaluate the hardness of the task for human raters, apply a recently proposed decomposable attention (DA) model to this task and observe that the automatic predictor has a higher F1 than human raters (32 vs. 30). Nevertheless, under specific conditions the raters still outperform the DA model, suggesting that there is headroom for future improvements.
DiscoScore: Evaluating Text Generation with BERT and Discourse Coherence
Recently, there has been a growing interest in designing text generation systems from a discourse coherence perspective, e.g., modeling the interdependence between sentences. Still, recent BERT-based evaluation metrics are weak in recognizing coherence, and thus are not reliable in a way to spot the discourse-level improvements of those text generation systems. In this work, we introduce DiscoScore, a parametrized discourse metric, which uses BERT to model discourse coherence from different perspectives, driven by Centering theory. Our experiments encompass 16 non-discourse and discourse metrics, including DiscoScore and popular coherence models, evaluated on summarization and document-level machine translation (MT). We find that (i) the majority of BERT-based metrics correlate much worse with human rated coherence than early discourse metrics, invented a decade ago; (ii) the recent state-of-the-art BARTScore is weak when operated at system level -- which is particularly problematic as systems are typically compared in this manner. DiscoScore, in contrast, achieves strong system-level correlation with human ratings, not only in coherence but also in factual consistency and other aspects, and surpasses BARTScore by over 10 correlation points on average. Further, aiming to understand DiscoScore, we provide justifications to the importance of discourse coherence for evaluation metrics, and explain the superiority of one variant over another. Our code is available at https://github.com/AIPHES/DiscoScore.
Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes
Diffusion models have emerged as a promising approach for text generation, with recent works falling into two main categories: discrete and continuous diffusion models. Discrete diffusion models apply token corruption independently using categorical distributions, allowing for different diffusion progress across tokens but lacking fine-grained control. Continuous diffusion models map tokens to continuous spaces and apply fine-grained noise, but the diffusion progress is uniform across tokens, limiting their ability to capture semantic nuances. To address these limitations, we propose \underline{N}on-simultan\underline{e}ous C\underline{o}ntinuous \underline{Diff}usion Models (NeoDiff), a novel diffusion model that integrates the strengths of both discrete and continuous approaches. NeoDiff introduces a Poisson diffusion process for the forward process, enabling a flexible and fine-grained noising paradigm, and employs a time predictor for the reverse process to adaptively modulate the denoising progress based on token semantics. Furthermore, NeoDiff utilizes an optimized schedule for inference to ensure more precise noise control and improved performance. Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation. Experimental results on several text generation tasks demonstrate NeoDiff's superior performance compared to baselines of non-autoregressive continuous and discrete diffusion models, iterative-based methods and autoregressive diffusion-based methods. These results highlight NeoDiff's potential as a powerful tool for generating high-quality text and advancing the field of diffusion-based text generation.
Towards Full Authorship with AI: Supporting Revision with AI-Generated Views
Large language models (LLMs) are shaping a new user interface (UI) paradigm in writing tools by enabling users to generate text through prompts. This paradigm shifts some creative control from the user to the system, thereby diminishing the user's authorship and autonomy in the writing process. To restore autonomy, we introduce Textfocals, a UI prototype designed to investigate a human-centered approach that emphasizes the user's role in writing. Textfocals supports the writing process by providing LLM-generated summaries, questions, and advice (i.e., LLM views) in a sidebar of a text editor, encouraging reflection and self-driven revision in writing without direct text generation. Textfocals' UI affordances, including contextually adaptive views and scaffolding for prompt selection and customization, offer a novel way to interact with LLMs where users maintain full authorship of their writing. A formative user study with Textfocals showed promising evidence that this approach might help users develop underdeveloped ideas, cater to the rhetorical audience, and clarify their writing. However, the study also showed interaction design challenges related to document navigation and scoping, prompt engineering, and context management. Our work highlights the breadth of the design space of writing support interfaces powered by generative AI that maintain authorship integrity.
LongWriter-Zero: Mastering Ultra-Long Text Generation via Reinforcement Learning
Ultra-long generation by large language models (LLMs) is a widely demanded scenario, yet it remains a significant challenge due to their maximum generation length limit and overall quality degradation as sequence length increases. Previous approaches, exemplified by LongWriter, typically rely on ''teaching'', which involves supervised fine-tuning (SFT) on synthetic long-form outputs. However, this strategy heavily depends on synthetic SFT data, which is difficult and costly to construct, often lacks coherence and consistency, and tends to be overly artificial and structurally monotonous. In this work, we propose an incentivization-based approach that, starting entirely from scratch and without relying on any annotated or synthetic data, leverages reinforcement learning (RL) to foster the emergence of ultra-long, high-quality text generation capabilities in LLMs. We perform RL training starting from a base model, similar to R1-Zero, guiding it to engage in reasoning that facilitates planning and refinement during the writing process. To support this, we employ specialized reward models that steer the LLM towards improved length control, writing quality, and structural formatting. Experimental evaluations show that our LongWriter-Zero model, trained from Qwen2.5-32B, consistently outperforms traditional SFT methods on long-form writing tasks, achieving state-of-the-art results across all metrics on WritingBench and Arena-Write, and even surpassing 100B+ models such as DeepSeek R1 and Qwen3-235B. We open-source our data and model checkpoints under https://huggingface.co/THU-KEG/LongWriter-Zero-32B
A Comparative Study of Sentence Embedding Models for Assessing Semantic Variation
Analyzing the pattern of semantic variation in long real-world texts such as books or transcripts is interesting from the stylistic, cognitive, and linguistic perspectives. It is also useful for applications such as text segmentation, document summarization, and detection of semantic novelty. The recent emergence of several vector-space methods for sentence embedding has made such analysis feasible. However, this raises the issue of how consistent and meaningful the semantic representations produced by various methods are in themselves. In this paper, we compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature. In contrast to previous work using target tasks and curated datasets to compare sentence embedding methods, our approach provides an evaluation of the methods 'in the wild'. We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences.
Multimodal Chain of Continuous Thought for Latent-Space Reasoning in Vision-Language Models
Many reasoning techniques for large multimodal models adapt language model approaches, such as Chain-of-Thought (CoT) prompting, which express reasoning as word sequences. While effective for text, these methods are suboptimal for multimodal contexts, struggling to align audio, visual, and textual information dynamically. To explore an alternative paradigm, we propose the Multimodal Chain of Continuous Thought (MCOUT), which enables reasoning directly in a joint latent space rather than in natural language. In MCOUT, the reasoning state is represented as a continuous hidden vector, iteratively refined and aligned with visual and textual embeddings, inspired by human reflective cognition. We develop two variants: MCOUT-Base, which reuses the language model`s last hidden state as the continuous thought for iterative reasoning, and MCOUT-Multi, which integrates multimodal latent attention to strengthen cross-modal alignment between visual and textual features. Experiments on benchmarks including MMMU, ScienceQA, and MMStar show that MCOUT consistently improves multimodal reasoning, yielding up to 8.23% accuracy gains over strong baselines and improving BLEU scores up to 8.27% across multiple-choice and open-ended tasks. These findings highlight latent continuous reasoning as a promising direction for advancing LMMs beyond language-bound CoT, offering a scalable framework for human-like reflective multimodal inference. Code is available at https://github.com/Hanhpt23/OmniMod.
EIPE-text: Evaluation-Guided Iterative Plan Extraction for Long-Form Narrative Text Generation
Plan-and-Write is a common hierarchical approach in long-form narrative text generation, which first creates a plan to guide the narrative writing. Following this approach, several studies rely on simply prompting large language models for planning, which often yields suboptimal results. In this paper, we propose a new framework called Evaluation-guided Iterative Plan Extraction for long-form narrative text generation (EIPE-text), which extracts plans from the corpus of narratives and utilizes the extracted plans to construct a better planner. EIPE-text has three stages: plan extraction, learning, and inference. In the plan extraction stage, it iteratively extracts and improves plans from the narrative corpus and constructs a plan corpus. We propose a question answer (QA) based evaluation mechanism to automatically evaluate the plans and generate detailed plan refinement instructions to guide the iterative improvement. In the learning stage, we build a better planner by fine-tuning with the plan corpus or in-context learning with examples in the plan corpus. Finally, we leverage a hierarchical approach to generate long-form narratives. We evaluate the effectiveness of EIPE-text in the domains of novels and storytelling. Both GPT-4-based evaluations and human evaluations demonstrate that our method can generate more coherent and relevant long-form narratives. Our code will be released in the future.
AWESOME: GPU Memory-constrained Long Document Summarization using Memory Mechanism and Global Salient Content
Long document summarization systems are critical for domains with lengthy and jargonladen text, yet they present significant challenges to researchers and developers with limited computing resources. Existing solutions mainly focus on efficient attentions or divide-and-conquer strategies. The former reduces theoretical time complexity, but is still memory-heavy. The latter methods sacrifice global context, leading to uninformative and incoherent summaries. This work aims to leverage the memory-efficient nature of divide-and-conquer methods while preserving global context. Concretely, our framework AWESOME uses two novel mechanisms: (1) External memory mechanisms track previously encoded document segments and their corresponding summaries, to enhance global document understanding and summary coherence. (2) Global salient content is further identified beforehand to augment each document segment to support its summarization. Extensive experiments on diverse genres of text, including government reports, transcripts, scientific papers, and novels, show that AWESOME produces summaries with improved informativeness, faithfulness, and coherence than competitive baselines on longer documents, while having a similar or smaller GPU memory footprint.
Decoding the End-to-end Writing Trajectory in Scholarly Manuscripts
Scholarly writing presents a complex space that generally follows a methodical procedure to plan and produce both rationally sound and creative compositions. Recent works involving large language models (LLM) demonstrate considerable success in text generation and revision tasks; however, LLMs still struggle to provide structural and creative feedback on the document level that is crucial to academic writing. In this paper, we introduce a novel taxonomy that categorizes scholarly writing behaviors according to intention, writer actions, and the information types of the written data. We also provide ManuScript, an original dataset annotated with a simplified version of our taxonomy to show writer actions and the intentions behind them. Motivated by cognitive writing theory, our taxonomy for scientific papers includes three levels of categorization in order to trace the general writing flow and identify the distinct writer activities embedded within each higher-level process. ManuScript intends to provide a complete picture of the scholarly writing process by capturing the linearity and non-linearity of writing trajectory, such that writing assistants can provide stronger feedback and suggestions on an end-to-end level. The collected writing trajectories are viewed at https://minnesotanlp.github.io/REWARD_demo/
AbLit: A Resource for Analyzing and Generating Abridged Versions of English Literature
Creating an abridged version of a text involves shortening it while maintaining its linguistic qualities. In this paper, we examine this task from an NLP perspective for the first time. We present a new resource, AbLit, which is derived from abridged versions of English literature books. The dataset captures passage-level alignments between the original and abridged texts. We characterize the linguistic relations of these alignments, and create automated models to predict these relations as well as to generate abridgements for new texts. Our findings establish abridgement as a challenging task, motivating future resources and research. The dataset is available at github.com/roemmele/AbLit.
ScholaWrite: A Dataset of End-to-End Scholarly Writing Process
Writing is a cognitively demanding task involving continuous decision-making, heavy use of working memory, and frequent switching between multiple activities. Scholarly writing is particularly complex as it requires authors to coordinate many pieces of multiform knowledge. To fully understand writers' cognitive thought process, one should fully decode the end-to-end writing data (from individual ideas to final manuscript) and understand their complex cognitive mechanisms in scholarly writing. We introduce ScholaWrite dataset, the first-of-its-kind keystroke logs of an end-to-end scholarly writing process for complete manuscripts, with thorough annotations of cognitive writing intentions behind each keystroke. Our dataset includes LaTeX-based keystroke data from five preprints with nearly 62K total text changes and annotations across 4 months of paper writing. ScholaWrite shows promising usability and applications (e.g., iterative self-writing) for the future development of AI writing assistants for academic research, which necessitate complex methods beyond LLM prompting. Our experiments clearly demonstrated the importance of collection of end-to-end writing data, rather than the final manuscript, for the development of future writing assistants to support the cognitive thinking process of scientists. Our de-identified dataset, demo, and code repository are available on our project page.
The Claire French Dialogue Dataset
We present the Claire French Dialogue Dataset (CFDD), a resource created by members of LINAGORA Labs in the context of the OpenLLM France initiative. CFDD is a corpus containing roughly 160 million words from transcripts and stage plays in French that we have assembled and publicly released in an effort to further the development of multilingual, open source language models. This paper describes the 24 individual corpora of which CFDD is composed and provides links and citations to their original sources. It also provides our proposed breakdown of the full CFDD dataset into eight categories of subcorpora and describes the process we followed to standardize the format of the final dataset. We conclude with a discussion of similar work and future directions.
Analyzing Sentence Fusion in Abstractive Summarization
While recent work in abstractive summarization has resulted in higher scores in automatic metrics, there is little understanding on how these systems combine information taken from multiple document sentences. In this paper, we analyze the outputs of five state-of-the-art abstractive summarizers, focusing on summary sentences that are formed by sentence fusion. We ask assessors to judge the grammaticality, faithfulness, and method of fusion for summary sentences. Our analysis reveals that system sentences are mostly grammatical, but often fail to remain faithful to the original article.
NovelQA: A Benchmark for Long-Range Novel Question Answering
The rapid advancement of Large Language Models (LLMs) has introduced a new frontier in natural language processing, particularly in understanding and processing long-context information. However, the evaluation of these models' long-context abilities remains a challenge due to the limitations of current benchmarks. To address this gap, we introduce NovelQA, a benchmark specifically designed to test the capabilities of LLMs with extended texts. Constructed from English novels, NovelQA offers a unique blend of complexity, length, and narrative coherence, making it an ideal tool for assessing deep textual understanding in LLMs. This paper presents the design and construction of NovelQA, highlighting its manual annotation, and diverse question types. Our evaluation of Long-context LLMs on NovelQA reveals significant insights into the models' performance, particularly emphasizing the challenges they face with multi-hop reasoning, detail-oriented questions, and extremely long input with more than 100,000 tokens. The results underscore the necessity for further advancements in LLMs to improve their long-context comprehension and computational literary studies.
RELIC: Retrieving Evidence for Literary Claims
Humanities scholars commonly provide evidence for claims that they make about a work of literature (e.g., a novel) in the form of quotations from the work. We collect a large-scale dataset (RELiC) of 78K literary quotations and surrounding critical analysis and use it to formulate the novel task of literary evidence retrieval, in which models are given an excerpt of literary analysis surrounding a masked quotation and asked to retrieve the quoted passage from the set of all passages in the work. Solving this retrieval task requires a deep understanding of complex literary and linguistic phenomena, which proves challenging to methods that overwhelmingly rely on lexical and semantic similarity matching. We implement a RoBERTa-based dense passage retriever for this task that outperforms existing pretrained information retrieval baselines; however, experiments and analysis by human domain experts indicate that there is substantial room for improvement over our dense retriever.
Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities
With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io.
Making the Most Out of the Limited Context Length: Predictive Power Varies with Clinical Note Type and Note Section
Recent advances in large language models have led to renewed interest in natural language processing in healthcare using the free text of clinical notes. One distinguishing characteristic of clinical notes is their long time span over multiple long documents. The unique structure of clinical notes creates a new design choice: when the context length for a language model predictor is limited, which part of clinical notes should we choose as the input? Existing studies either choose the inputs with domain knowledge or simply truncate them. We propose a framework to analyze the sections with high predictive power. Using MIMIC-III, we show that: 1) predictive power distribution is different between nursing notes and discharge notes and 2) combining different types of notes could improve performance when the context length is large. Our findings suggest that a carefully selected sampling function could enable more efficient information extraction from clinical notes.
PELMS: Pre-training for Effective Low-Shot Multi-Document Summarization
We investigate pre-training techniques for abstractive multi-document summarization (MDS), which is much less studied than summarizing single documents. Though recent work has demonstrated the effectiveness of highlighting information salience for pre-training strategy design, it struggles to generate abstractive and reflective summaries, which are critical properties for MDS. To this end, we present PELMS, a pre-trained model that uses objectives based on semantic coherence heuristics and faithfulness constraints with un-labeled multi-document inputs, to promote the generation of concise, fluent, and faithful summaries. To support the training of PELMS, we compile MultiPT, a multi-document pre-training corpus containing over 93 million documents to form more than 3 million unlabeled topic-centric document clusters, covering diverse genres such as product reviews, news, and general knowledge. We perform extensive evaluation of PELMS in low-shot settings on a wide range of MDS datasets. Our approach consistently outperforms competitive comparisons with respect to overall informativeness, abstractiveness, coherence, and faithfulness.
Fine-grained Intent Classification in the Legal Domain
A law practitioner has to go through a lot of long legal case proceedings. To understand the motivation behind the actions of different parties/individuals in a legal case, it is essential that the parts of the document that express an intent corresponding to the case be clearly understood. In this paper, we introduce a dataset of 93 legal documents, belonging to the case categories of either Murder, Land Dispute, Robbery, or Corruption, where phrases expressing intent same as the category of the document are annotated. Also, we annotate fine-grained intents for each such phrase to enable a deeper understanding of the case for a reader. Finally, we analyze the performance of several transformer-based models in automating the process of extracting intent phrases (both at a coarse and a fine-grained level), and classifying a document into one of the possible 4 categories, and observe that, our dataset is challenging, especially in the case of fine-grained intent classification.
Model Tells Itself Where to Attend: Faithfulness Meets Automatic Attention Steering
Large language models (LLMs) have demonstrated remarkable performance across various real-world tasks. However, they often struggle to fully comprehend and effectively utilize their input contexts, resulting in responses that are unfaithful or hallucinated. This difficulty increases for contexts that are long or contain distracting information, which can divert LLMs from fully capturing essential evidence. To address this issue, many works use prompting to help LLMs utilize contextual information more faithfully. For instance, iterative prompting highlights key information in two steps that first ask the LLM to identify important pieces of context and then derive answers accordingly. However, prompting methods are constrained to highlighting key information implicitly in token space, which is often insufficient to fully steer the model's attention. To improve model faithfulness more reliably, we propose AutoPASTA, a method that automatically identifies key contextual information and explicitly highlights it by steering an LLM's attention scores. Like prompting, AutoPASTA is applied at inference time and does not require changing any model parameters. Our experiments on open-book QA demonstrate that AutoPASTA effectively enables models to grasp essential contextual information, leading to substantially improved model faithfulness and performance, e.g., an average improvement of 7.95% for LLAMA3-70B-Instruct. Code will be publicly available at https://github.com/QingruZhang/AutoPASTA .
Can Unconditional Language Models Recover Arbitrary Sentences?
Neural network-based generative language models like ELMo and BERT can work effectively as general purpose sentence encoders in text classification without further fine-tuning. Is it possible to adapt them in a similar way for use as general-purpose decoders? For this to be possible, it would need to be the case that for any target sentence of interest, there is some continuous representation that can be passed to the language model to cause it to reproduce that sentence. We set aside the difficult problem of designing an encoder that can produce such representations and, instead, ask directly whether such representations exist at all. To do this, we introduce a pair of effective, complementary methods for feeding representations into pretrained unconditional language models and a corresponding set of methods to map sentences into and out of this representation space, the reparametrized sentence space. We then investigate the conditions under which a language model can be made to generate a sentence through the identification of a point in such a space and find that it is possible to recover arbitrary sentences nearly perfectly with language models and representations of moderate size without modifying any model parameters.
Extending Automatic Machine Translation Evaluation to Book-Length Documents
Despite Large Language Models (LLMs) demonstrating superior translation performance and long-context capabilities, evaluation methodologies remain constrained to sentence-level assessment due to dataset limitations, token number restrictions in metrics, and rigid sentence boundary requirements. We introduce SEGALE, an evaluation scheme that extends existing automatic metrics to long-document translation by treating documents as continuous text and applying sentence segmentation and alignment methods. Our approach enables previously unattainable document-level evaluation, handling translations of arbitrary length generated with document-level prompts while accounting for under-/over-translations and varied sentence boundaries. Experiments show our scheme significantly outperforms existing long-form document evaluation schemes, while being comparable to evaluations performed with groundtruth sentence alignments. Additionally, we apply our scheme to book-length texts and newly demonstrate that many open-weight LLMs fail to effectively translate documents at their reported maximum context lengths.
Some Like It Small: Czech Semantic Embedding Models for Industry Applications
This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.
Distributed Representations of Words and Phrases and their Compositionality
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.
Identifying Informational Sources in News Articles
News articles are driven by the informational sources journalists use in reporting. Modeling when, how and why sources get used together in stories can help us better understand the information we consume and even help journalists with the task of producing it. In this work, we take steps toward this goal by constructing the largest and widest-ranging annotated dataset, to date, of informational sources used in news writing. We show that our dataset can be used to train high-performing models for information detection and source attribution. We further introduce a novel task, source prediction, to study the compositionality of sources in news articles. We show good performance on this task, which we argue is an important proof for narrative science exploring the internal structure of news articles and aiding in planning-based language generation, and an important step towards a source-recommendation system to aid journalists.
Don't Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner
Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with the PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.
Parallel Continuous Chain-of-Thought with Jacobi Iteration
Continuous chain-of-thought has been shown to be effective in saving reasoning tokens for large language models. By reasoning with continuous latent thought tokens, continuous CoT is able to perform implicit reasoning in a compact manner. However, the sequential dependencies between latent thought tokens spoil parallel training, leading to long training time. In this paper, we propose Parallel Continuous Chain-of-Thought (PCCoT), which performs Jacobi iteration on the latent thought tokens, updating them iteratively in parallel instead of sequentially and thus improving both training and inference efficiency of continuous CoT. Experiments demonstrate that by choosing the proper number of iterations, we are able to achieve comparable or even better performance while saving nearly 50% of the training and inference time. Moreover, PCCoT shows better stability and robustness in the training process. Our code is available at https://github.com/whyNLP/PCCoT.
Training Models to Extract Treatment Plans from Clinical Notes Using Contents of Sections with Headings
Objective: Using natural language processing (NLP) to find sentences that state treatment plans in a clinical note, would automate plan extraction and would further enable their use in tools that help providers and care managers. However, as in the most NLP tasks on clinical text, creating gold standard to train and test NLP models is tedious and expensive. Fortuitously, sometimes but not always clinical notes contain sections with a heading that identifies the section as a plan. Leveraging contents of such labeled sections as a noisy training data, we assessed accuracy of NLP models trained with the data. Methods: We used common variations of plan headings and rule-based heuristics to find plan sections with headings in clinical notes, and we extracted sentences from them and formed a noisy training data of plan sentences. We trained Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models with the data. We measured accuracy of the trained models on the noisy dataset using ten-fold cross validation and separately on a set-aside manually annotated dataset. Results: About 13% of 117,730 clinical notes contained treatment plans sections with recognizable headings in the 1001 longitudinal patient records that were obtained from Cleveland Clinic under an IRB approval. We were able to extract and create a noisy training data of 13,492 plan sentences from the clinical notes. CNN achieved best F measures, 0.91 and 0.97 in the cross-validation and set-aside evaluation experiments respectively. SVM slightly underperformed with F measures of 0.89 and 0.96 in the same experiments. Conclusion: Our study showed that the training supervised learning models using noisy plan sentences was effective in identifying them in all clinical notes. More broadly, sections with informal headings in clinical notes can be a good source for generating effective training data.
Event Transition Planning for Open-ended Text Generation
Open-ended text generation tasks, such as dialogue generation and story completion, require models to generate a coherent continuation given limited preceding context. The open-ended nature of these tasks brings new challenges to the neural auto-regressive text generators nowadays. Despite these neural models are good at producing human-like text, it is difficult for them to arrange causalities and relations between given facts and possible ensuing events. To bridge this gap, we propose a novel two-stage method which explicitly arranges the ensuing events in open-ended text generation. Our approach can be understood as a specially-trained coarse-to-fine algorithm, where an event transition planner provides a "coarse" plot skeleton and a text generator in the second stage refines the skeleton. Experiments on two open-ended text generation tasks demonstrate that our proposed method effectively improves the quality of the generated text, especially in coherence and diversity. The code is available at: https://github.com/qtli/EventPlanforTextGen.
Two Case Studies of Experience Prototyping Machine Learning Systems in the Wild
Throughout the course of my Ph.D., I have been designing the user experience (UX) of various machine learning (ML) systems. In this workshop, I share two projects as case studies in which people engage with ML in much more complicated and nuanced ways than the technical HCML work might assume. The first case study describes how cardiology teams in three hospitals used a clinical decision-support system that helps them decide whether and when to implant an artificial heart to a heart failure patient. I demonstrate that physicians cannot draw on their decision-making experience by seeing only patient data on paper. They are also confused by some fundamental premises upon which ML operates. For example, physicians asked: Are ML predictions made based on clinicians' best efforts? Is it ethical to make decisions based on previous patients' collective outcomes? In the second case study, my collaborators and I designed an intelligent text editor, with the goal of improving authors' writing experience with NLP (Natural Language Processing) technologies. We prototyped a number of generative functionalities where the system provides phrase-or-sentence-level writing suggestions upon user request. When writing with the prototype, however, authors shared that they need to "see where the sentence is going two paragraphs later" in order to decide whether the suggestion aligns with their writing; Some even considered adopting machine suggestions as plagiarism, therefore "is simply wrong". By sharing these unexpected and intriguing responses from these real-world ML users, I hope to start a discussion about such previously-unknown complexities and nuances of -- as the workshop proposal states -- "putting ML at the service of people in a way that is accessible, useful, and trustworthy to all".
Augmenting LLM Reasoning with Dynamic Notes Writing for Complex QA
Iterative RAG for multi-hop question answering faces challenges with lengthy contexts and the buildup of irrelevant information. This hinders a model's capacity to process and reason over retrieved content and limits performance. While recent methods focus on compressing retrieved information, they are either restricted to single-round RAG, require finetuning or lack scalability in iterative RAG. To address these challenges, we propose Notes Writing, a method that generates concise and relevant notes from retrieved documents at each step, thereby reducing noise and retaining only essential information. This indirectly increases the effective context length of Large Language Models (LLMs), enabling them to reason and plan more effectively while processing larger volumes of input text. Notes Writing is framework agnostic and can be integrated with different iterative RAG methods. We demonstrate its effectiveness with three iterative RAG methods, across two models and four evaluation datasets. Notes writing yields an average improvement of 15.6 percentage points overall, with minimal increase in output tokens.
Detecting AI-Generated Sentences in Human-AI Collaborative Hybrid Texts: Challenges, Strategies, and Insights
This study explores the challenge of sentence-level AI-generated text detection within human-AI collaborative hybrid texts. Existing studies of AI-generated text detection for hybrid texts often rely on synthetic datasets. These typically involve hybrid texts with a limited number of boundaries. We contend that studies of detecting AI-generated content within hybrid texts should cover different types of hybrid texts generated in realistic settings to better inform real-world applications. Therefore, our study utilizes the CoAuthor dataset, which includes diverse, realistic hybrid texts generated through the collaboration between human writers and an intelligent writing system in multi-turn interactions. We adopt a two-step, segmentation-based pipeline: (i) detect segments within a given hybrid text where each segment contains sentences of consistent authorship, and (ii) classify the authorship of each identified segment. Our empirical findings highlight (1) detecting AI-generated sentences in hybrid texts is overall a challenging task because (1.1) human writers' selecting and even editing AI-generated sentences based on personal preferences adds difficulty in identifying the authorship of segments; (1.2) the frequent change of authorship between neighboring sentences within the hybrid text creates difficulties for segment detectors in identifying authorship-consistent segments; (1.3) the short length of text segments within hybrid texts provides limited stylistic cues for reliable authorship determination; (2) before embarking on the detection process, it is beneficial to assess the average length of segments within the hybrid text. This assessment aids in deciding whether (2.1) to employ a text segmentation-based strategy for hybrid texts with longer segments, or (2.2) to adopt a direct sentence-by-sentence classification strategy for those with shorter segments.
Evaluating Large Language Model Creativity from a Literary Perspective
This paper assesses the potential for large language models (LLMs) to serve as assistive tools in the creative writing process, by means of a single, in-depth case study. In the course of the study, we develop interactive and multi-voice prompting strategies that interleave background descriptions (scene setting, plot elements), instructions that guide composition, samples of text in the target style, and critical discussion of the given samples. We qualitatively evaluate the results from a literary critical perspective, as well as from the standpoint of computational creativity (a sub-field of artificial intelligence). Our findings lend support to the view that the sophistication of the results that can be achieved with an LLM mirrors the sophistication of the prompting.
Towards Continual Knowledge Learning of Language Models
Large Language Models (LMs) are known to encode world knowledge in their parameters as they pretrain on a vast amount of web corpus, which is often utilized for performing knowledge-dependent downstream tasks such as question answering, fact-checking, and open dialogue. In real-world scenarios, the world knowledge stored in the LMs can quickly become outdated as the world changes, but it is non-trivial to avoid catastrophic forgetting and reliably acquire new knowledge while preserving invariant knowledge. To push the community towards better maintenance of ever-changing LMs, we formulate a new continual learning (CL) problem called Continual Knowledge Learning (CKL). We construct a new benchmark and metric to quantify the retention of time-invariant world knowledge, the update of outdated knowledge, and the acquisition of new knowledge. We adopt applicable recent methods from literature to create several strong baselines. Through extensive experiments, we find that CKL exhibits unique challenges that are not addressed in previous CL setups, where parameter expansion is necessary to reliably retain and learn knowledge simultaneously. By highlighting the critical causes of knowledge forgetting, we show that CKL is a challenging and important problem that helps us better understand and train ever-changing LMs. The benchmark datasets, evaluation script, and baseline code to reproduce our results are available at https://github.com/joeljang/continual-knowledge-learning.
Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies
We present NEWSROOM, a summarization dataset of 1.3 million articles and summaries written by authors and editors in newsrooms of 38 major news publications. Extracted from search and social media metadata between 1998 and 2017, these high-quality summaries demonstrate high diversity of summarization styles. In particular, the summaries combine abstractive and extractive strategies, borrowing words and phrases from articles at varying rates. We analyze the extraction strategies used in NEWSROOM summaries against other datasets to quantify the diversity and difficulty of our new data, and train existing methods on the data to evaluate its utility and challenges.
Dense X Retrieval: What Retrieval Granularity Should We Use?
Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information.
Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of LLMs with Self-Information-Based Content Filtering
Large language models (LLMs) have received significant attention by achieving remarkable performance across various tasks. However, their fixed context length poses challenges when processing long documents or maintaining extended conversations. This paper proposes a method called Selective Context that employs self-information to filter out less informative content, thereby enhancing the efficiency of the fixed context length. We demonstrate the effectiveness of our approach on tasks of summarisation and question answering across different data sources, including academic papers, news articles, and conversation transcripts.
Structural Text Segmentation of Legal Documents
The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange
SirLLM: Streaming Infinite Retentive LLM
As Large Language Models (LLMs) become increasingly prevalent in various domains, their ability to process inputs of any length and maintain a degree of memory becomes essential. However, the one-off input of overly long texts is limited, as studies have shown that when input lengths exceed the LLMs' pre-trained text length, there is a dramatic decline in text generation capabilities. Moreover, simply extending the length of pre-training texts is impractical due to the difficulty in obtaining long text data and the substantial memory consumption costs this would entail for LLMs. Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs, but this approach can significantly impair the model's long-term memory capabilities. Motivated by this challenge, we introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues without the need for fine-tuning. SirLLM utilizes the Token Entropy metric and a memory decay mechanism to filter key phrases, endowing LLMs with both long-lasting and flexible memory. We designed three distinct tasks and constructed three datasets to measure the effectiveness of SirLLM from various angles: (1) DailyDialog; (2) Grocery Shopping; (3) Rock-Paper-Scissors. Our experimental results robustly demonstrate that SirLLM can achieve stable and significant improvements across different LLMs and tasks, compellingly proving its effectiveness. When having a coversation, "A sir could forget himself," but SirLLM never does! Our code is publicly available at https://github.com/Zoeyyao27/SirLLM
Ex3: Automatic Novel Writing by Extracting, Excelsior and Expanding
Generating long-term texts such as novels using artificial intelligence has always been a challenge. A common approach is to use large language models (LLMs) to construct a hierarchical framework that first plans and then writes. Despite the fact that the generated novels reach a sufficient length, they exhibit poor logical coherence and appeal in their plots and deficiencies in character and event depiction, ultimately compromising the overall narrative quality. In this paper, we propose a method named Extracting Excelsior and Expanding. Ex3 initially extracts structure information from raw novel data. By combining this structure information with the novel data, an instruction-following dataset is meticulously crafted. This dataset is then utilized to fine-tune the LLM, aiming for excelsior generation performance. In the final stage, a tree-like expansion method is deployed to facilitate the generation of arbitrarily long novels. Evaluation against previous methods showcases Ex3's ability to produce higher-quality long-form novels.
TinyStories: How Small Can Language Models Be and Still Speak Coherent English?
Language models (LMs) are powerful tools for natural language processing, but they often struggle to produce coherent and fluent text when they are small. Models with around 125M parameters such as GPT-Neo (small) or GPT-2 (small) can rarely generate coherent and consistent English text beyond a few words even after extensive training. This raises the question of whether the emergence of the ability to produce coherent English text only occurs at larger scales (with hundreds of millions of parameters or more) and complex architectures (with many layers of global attention). In this work, we introduce TinyStories, a synthetic dataset of short stories that only contain words that a typical 3 to 4-year-olds usually understand, generated by GPT-3.5 and GPT-4. We show that TinyStories can be used to train and evaluate LMs that are much smaller than the state-of-the-art models (below 10 million total parameters), or have much simpler architectures (with only one transformer block), yet still produce fluent and consistent stories with several paragraphs that are diverse and have almost perfect grammar, and demonstrate reasoning capabilities. We also introduce a new paradigm for the evaluation of language models: We suggest a framework which uses GPT-4 to grade the content generated by these models as if those were stories written by students and graded by a (human) teacher. This new paradigm overcomes the flaws of standard benchmarks which often requires the model's output to be very structures, and moreover provides a multidimensional score for the model, providing scores for different capabilities such as grammar, creativity and consistency. We hope that TinyStories can facilitate the development, analysis and research of LMs, especially for low-resource or specialized domains, and shed light on the emergence of language capabilities in LMs.
Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues
Maintaining engagement and consistency is particularly important in dialogue systems. Existing works have improved the performance of dialogue systems by intentionally learning interlocutor personas with sophisticated network structures. One issue with this approach is that it requires more personal corpora with annotations. Additionally, these models typically perform the next utterance prediction to generate a response but neglect the discourse coherence in the entire conversation. To address these issues, this study proposes a method of learning to memorize entailment and discourse relations for persona-consistent dialogue tasks. Entailment text pairs in natural language inference dataset were applied to learn latent entailment relations as external memories by premise-to-hypothesis generation task. Furthermore, an internal memory with a similar architecture was applied to the discourse information in the dialogue. Placing orthogonality restrictions on these two memory spaces ensures that the latent entailment relations remain dialogue-independent. Both memories collaborate to obtain entailment and discourse representation for the generation, allowing a deeper understanding of both consistency and coherence. Experiments on two large public datasets, PersonaChat and DSTC7-AVSD, demonstrated the effectiveness of the proposed method. Both automatic and human evaluations indicate that the proposed model outperforms several strong baselines in terms of both persona consistency and response coherence. Our source code is available at https://github.com/Chenrj233/LMEDR.
CO2Sum:Contrastive Learning for Factual-Consistent Abstractive Summarization
Generating factual-consistent summaries is a challenging task for abstractive summarization. Previous works mainly encode factual information or perform post-correct/rank after decoding. In this paper, we provide a factual-consistent solution from the perspective of contrastive learning, which is a natural extension of previous works. We propose CO2Sum (Contrastive for Consistency), a contrastive learning scheme that can be easily applied on sequence-to-sequence models for factual-consistent abstractive summarization, proving that the model can be fact-aware without modifying the architecture. CO2Sum applies contrastive learning on the encoder, which can help the model be aware of the factual information contained in the input article, or performs contrastive learning on the decoder, which makes the model to generate factual-correct output summary. What's more, these two schemes are orthogonal and can be combined to further improve faithfulness. Comprehensive experiments on public benchmarks demonstrate that CO2Sum improves the faithfulness on large pre-trained language models and reaches competitive results compared to other strong factual-consistent summarization baselines.
Defending Against Authorship Identification Attacks
Authorship identification has proven unsettlingly effective in inferring the identity of the author of an unsigned document, even when sensitive personal information has been carefully omitted. In the digital era, individuals leave a lasting digital footprint through their written content, whether it is posted on social media, stored on their employer's computers, or located elsewhere. When individuals need to communicate publicly yet wish to remain anonymous, there is little available to protect them from unwanted authorship identification. This unprecedented threat to privacy is evident in scenarios such as whistle-blowing. Proposed defenses against authorship identification attacks primarily aim to obfuscate one's writing style, thereby making it unlinkable to their pre-existing writing, while concurrently preserving the original meaning and grammatical integrity. The presented work offers a comprehensive review of the advancements in this research area spanning over the past two decades and beyond. It emphasizes the methodological frameworks of modification and generation-based strategies devised to evade authorship identification attacks, highlighting joint efforts from the differential privacy community. Limitations of current research are discussed, with a spotlight on open challenges and potential research avenues.
A Controllable Examination for Long-Context Language Models
Existing frameworks for evaluating long-context language models (LCLM) can be broadly categorized into real-world and synthetic tasks. Despite their utility, both approaches are accompanied by certain intrinsic limitations. Real-world tasks are too complex to interpret or characterize and are susceptible to data contamination. In contrast, synthetic tasks often adopt the needle-in-the-haystack (NIAH) format, wherein a lack of coherence between the "needle" and the "haystack" compromises their validity as proxies for realistic applications. In response to these challenges, we posit that an ideal long-context evaluation framework should be characterized by three essential features: seamless context, controllable setting, and sound evaluation. This study introduces LongBioBench, a novel benchmark that utilizes artificially generated biographies as a controlled environment for assessing LCLMs across dimensions of understanding, reasoning, and trustworthiness. Our experimental evaluation, which includes 18 LCLMs in total, demonstrates that most models still exhibit deficiencies in semantic understanding and elementary reasoning over retrieved results and are less trustworthy as context length increases. Our further analysis indicates some design choices employed by existing synthetic benchmarks, such as contextual non-coherence, numerical needles, and the absence of distractors, rendering them vulnerable to test the model long-context capabilities. Moreover, we also reveal that long-context continual pretraining primarily adjusts RoPE embedding to accommodate extended context lengths. To sum up, compared to previous synthetic benchmarks, LongBioBench achieves a better trade-off between mirroring authentic language tasks and maintaining controllability, and is highly interpretable and configurable.
DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset
We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems.
Unstructured Evidence Attribution for Long Context Query Focused Summarization
Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query. Extracting and properly citing evidence spans could help improve the transparency and reliability of these summaries. At the same time, LLMs suffer from positional biases in terms of which information they understand and attend to, which could affect evidence citation. Whereas previous work has focused on evidence citation with predefined levels of granularity (e.g. sentence, paragraph, document, etc.), we propose the task of long-context query focused summarization with unstructured evidence citation. We show how existing systems struggle to generate and properly cite unstructured evidence from their context, and that evidence tends to be "lost-in-the-middle". To help mitigate this, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel domain-agnostic pipeline which can be used as supervision to adapt LLMs to this task. We demonstrate across 5 LLMs of different sizes and 4 datasets with varying document types and lengths that LLMs adapted with SUnsET data generate more relevant and factually consistent evidence than their base models, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries.
DOLOMITES: Domain-Specific Long-Form Methodical Tasks
Experts in various fields routinely perform methodical writing tasks to plan, organize, and report their work. From a clinician writing a differential diagnosis for a patient, to a teacher writing a lesson plan for students, these tasks are pervasive, requiring to methodically generate structured long-form output for a given input. We develop a typology of methodical tasks structured in the form of a task objective, procedure, input, and output, and introduce DoLoMiTes, a novel benchmark with specifications for 519 such tasks elicited from hundreds of experts from across 25 fields. Our benchmark further contains specific instantiations of methodical tasks with concrete input and output examples (1,857 in total) which we obtain by collecting expert revisions of up to 10 model-generated examples of each task. We use these examples to evaluate contemporary language models highlighting that automating methodical tasks is a challenging long-form generation problem, as it requires performing complex inferences, while drawing upon the given context as well as domain knowledge.
Visual Writing Prompts: Character-Grounded Story Generation with Curated Image Sequences
Current work on image-based story generation suffers from the fact that the existing image sequence collections do not have coherent plots behind them. We improve visual story generation by producing a new image-grounded dataset, Visual Writing Prompts (VWP). VWP contains almost 2K selected sequences of movie shots, each including 5-10 images. The image sequences are aligned with a total of 12K stories which were collected via crowdsourcing given the image sequences and a set of grounded characters from the corresponding image sequence. Our new image sequence collection and filtering process has allowed us to obtain stories that are more coherent and have more narrativity compared to previous work. We also propose a character-based story generation model driven by coherence as a strong baseline. Evaluations show that our generated stories are more coherent, visually grounded, and have more narrativity than stories generated with the current state-of-the-art model.
An Evaluation Framework for Legal Document Summarization
A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github.
Clinical XLNet: Modeling Sequential Clinical Notes and Predicting Prolonged Mechanical Ventilation
Clinical notes contain rich data, which is unexploited in predictive modeling compared to structured data. In this work, we developed a new text representation Clinical XLNet for clinical notes which also leverages the temporal information of the sequence of the notes. We evaluated our models on prolonged mechanical ventilation prediction problem and our experiments demonstrated that Clinical XLNet outperforms the best baselines consistently.
WonderJourney: Going from Anywhere to Everywhere
We introduce WonderJourney, a modularized framework for perpetual 3D scene generation. Unlike prior work on view generation that focuses on a single type of scenes, we start at any user-provided location (by a text description or an image) and generate a journey through a long sequence of diverse yet coherently connected 3D scenes. We leverage an LLM to generate textual descriptions of the scenes in this journey, a text-driven point cloud generation pipeline to make a compelling and coherent sequence of 3D scenes, and a large VLM to verify the generated scenes. We show compelling, diverse visual results across various scene types and styles, forming imaginary "wonderjourneys". Project website: https://kovenyu.com/WonderJourney/
GROVE: A Retrieval-augmented Complex Story Generation Framework with A Forest of Evidence
Conditional story generation is significant in human-machine interaction, particularly in producing stories with complex plots. While Large language models (LLMs) perform well on multiple NLP tasks, including story generation, it is challenging to generate stories with both complex and creative plots. Existing methods often rely on detailed prompts to guide LLMs to meet target conditions, which inadvertently restrict the creative potential of the generated stories. We argue that leveraging information from exemplary human-written stories facilitates generating more diverse plotlines. Delving deeper into story details helps build complex and credible plots. In this paper, we propose a retrieval-auGmented stoRy generation framework with a fOrest of eVidEnce (GROVE) to enhance stories' complexity. We build a retrieval repository for target conditions to produce few-shot examples to prompt LLMs. Additionally, we design an ``asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story. This iterative process uncovers underlying story backgrounds. Finally, we select the most fitting chains of evidence from the evidence forest and integrate them into the generated story, thereby enhancing the narrative's complexity and credibility. Experimental results and numerous examples verify the effectiveness of our method.
SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media
In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task's website.
Small Language Models can Outperform Humans in Short Creative Writing: A Study Comparing SLMs with Humans and LLMs
In this paper, we evaluate the creative fiction writing abilities of a fine-tuned small language model (SLM), BART Large, and compare its performance to humans and two large language models (LLMs): GPT-3.5 and GPT-4o. Our evaluation consists of two experiments: (i) a human evaluation where readers assess the stories generated by the SLM compared to human-written stories, and (ii) a qualitative linguistic analysis comparing the textual characteristics of the stories generated by the different models. In the first experiment, we asked 68 participants to rate short stories generated by the models and humans along dimensions such as grammaticality, relevance, creativity, and attractiveness. BART Large outperformed human writers in most aspects, except creativity, with an overall score of 2.11 compared to 1.85 for human-written texts -- a 14% improvement. In the second experiment, the qualitative analysis revealed that, while GPT-4o exhibited near-perfect internal and external coherence, it tended to produce more predictable narratives, with only 3% of its stories seen as novel. In contrast, 15% of BART's stories were considered novel, indicating a higher degree of creativity despite its smaller model size. This study provides both quantitative and qualitative insights into how model size and fine-tuning influence the balance between creativity, fluency, and coherence in creative writing tasks.
Quality-Diversity through AI Feedback
In many text-generation problems, users may prefer not only a single response, but a diverse range of high-quality outputs from which to choose. Quality-diversity (QD) search algorithms aim at such outcomes, by continually improving and diversifying a population of candidates. However, the applicability of QD to qualitative domains, like creative writing, has been limited by the difficulty of algorithmically specifying measures of quality and diversity. Interestingly, recent developments in language models (LMs) have enabled guiding search through AI feedback, wherein LMs are prompted in natural language to evaluate qualitative aspects of text. Leveraging this development, we introduce Quality-Diversity through AI Feedback (QDAIF), wherein an evolutionary algorithm applies LMs to both generate variation and evaluate the quality and diversity of candidate text. When assessed on creative writing domains, QDAIF covers more of a specified search space with high-quality samples than do non-QD controls. Further, human evaluation of QDAIF-generated creative texts validates reasonable agreement between AI and human evaluation. Our results thus highlight the potential of AI feedback to guide open-ended search for creative and original solutions, providing a recipe that seemingly generalizes to many domains and modalities. In this way, QDAIF is a step towards AI systems that can independently search, diversify, evaluate, and improve, which are among the core skills underlying human society's capacity for innovation.
Narrative Incoherence Detection
We propose the task of narrative incoherence detection as a new arena for inter-sentential semantic understanding: Given a multi-sentence narrative, decide whether there exist any semantic discrepancies in the narrative flow. Specifically, we focus on the missing sentence and discordant sentence detection. Despite its simple setup, this task is challenging as the model needs to understand and analyze a multi-sentence narrative, and predict incoherence at the sentence level. As an initial step towards this task, we implement several baselines either directly analyzing the raw text (token-level) or analyzing learned sentence representations (sentence-level). We observe that while token-level modeling has better performance when the input contains fewer sentences, sentence-level modeling performs better on longer narratives and possesses an advantage in efficiency and flexibility. Pre-training on large-scale data and auxiliary sentence prediction training objective further boost the detection performance of the sentence-level model.
Fine-tuned Language Models are Continual Learners
Recent work on large language models relies on the intuition that most natural language processing tasks can be described via natural language instructions. Language models trained on these instructions show strong zero-shot performance on several standard datasets. However, these models even though impressive still perform poorly on a wide range of tasks outside of their respective training and evaluation sets. To address this limitation, we argue that a model should be able to keep extending its knowledge and abilities, without forgetting previous skills. In spite of the limited success of Continual Learning we show that Language Models can be continual learners. We empirically investigate the reason for this success and conclude that Continual Learning emerges from self-supervision pre-training. Our resulting model Continual-T0 (CT0) is able to learn diverse new tasks, while still maintaining good performance on previous tasks, spanning remarkably through 70 datasets in total. Finally, we show that CT0 is able to combine instructions in ways it was never trained for, demonstrating some compositionality.
Prototypical Human-AI Collaboration Behaviors from LLM-Assisted Writing in the Wild
As large language models (LLMs) are used in complex writing workflows, users engage in multi-turn interactions to steer generations to better fit their needs. Rather than passively accepting output, users actively refine, explore, and co-construct text. We conduct a large-scale analysis of this collaborative behavior for users engaged in writing tasks in the wild with two popular AI assistants, Bing Copilot and WildChat. Our analysis goes beyond simple task classification or satisfaction estimation common in prior work and instead characterizes how users interact with LLMs through the course of a session. We identify prototypical behaviors in how users interact with LLMs in prompts following their original request. We refer to these as Prototypical Human-AI Collaboration Behaviors (PATHs) and find that a small group of PATHs explain a majority of the variation seen in user-LLM interaction. These PATHs span users revising intents, exploring texts, posing questions, adjusting style or injecting new content. Next, we find statistically significant correlations between specific writing intents and PATHs, revealing how users' intents shape their collaboration behaviors. We conclude by discussing the implications of our findings on LLM alignment.
A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature
We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
Penalty Decoding: Well Suppress the Self-Reinforcement Effect in Open-Ended Text Generation
The decoding algorithm is critical for open-ended text generation, transforming latent representations into coherent and meaningful outputs. This paper investigates the self-reinforcement effect in text generation and the effectiveness of a repetition penalty to mitigate it. However, determining the optimal repetition penalty value is challenging. To tackle this, we propose a forgetting mechanism that disregards distant tokens, reducing the burden of penalty selection. In addition, we introduce a length penalty to address overly short sentences caused by excessive penalties. Our penalty decoding approach incorporating three strategies helps resolve issues with sampling methods deviating from factual information. Experimental results demonstrate the efficacy of our approach in generating high-quality sentences resembling human output.
ChapterBreak: A Challenge Dataset for Long-Range Language Models
While numerous architectures for long-range language models (LRLMs) have recently been proposed, a meaningful evaluation of their discourse-level language understanding capabilities has not yet followed. To this end, we introduce ChapterBreak, a challenge dataset that provides an LRLM with a long segment from a narrative that ends at a chapter boundary and asks it to distinguish the beginning of the ground-truth next chapter from a set of negative segments sampled from the same narrative. A fine-grained human annotation reveals that our dataset contains many complex types of chapter transitions (e.g., parallel narratives, cliffhanger endings) that require processing global context to comprehend. Experiments on ChapterBreak show that existing LRLMs fail to effectively leverage long-range context, substantially underperforming a segment-level model trained directly for this task. We publicly release our ChapterBreak dataset to spur more principled future research into LRLMs.
Musical Form Generation
While recent generative models can produce engaging music, their utility is limited. The variation in the music is often left to chance, resulting in compositions that lack structure. Pieces extending beyond a minute can become incoherent or repetitive. This paper introduces an approach for generating structured, arbitrarily long musical pieces. Central to this approach is the creation of musical segments using a conditional generative model, with transitions between these segments. The generation of prompts that determine the high-level composition is distinct from the creation of finer, lower-level details. A large language model is then used to suggest the musical form.
AI-Driven Scholarly Peer Review via Persistent Workflow Prompting, Meta-Prompting, and Meta-Reasoning
Critical peer review of scientific manuscripts presents a significant challenge for Large Language Models (LLMs), partly due to data limitations and the complexity of expert reasoning. This report introduces Persistent Workflow Prompting (PWP), a potentially broadly applicable prompt engineering methodology designed to bridge this gap using standard LLM chat interfaces (zero-code, no APIs). We present a proof-of-concept PWP prompt for the critical analysis of experimental chemistry manuscripts, featuring a hierarchical, modular architecture (structured via Markdown) that defines detailed analysis workflows. We develop this PWP prompt through iterative application of meta-prompting techniques and meta-reasoning aimed at systematically codifying expert review workflows, including tacit knowledge. Submitted once at the start of a session, this PWP prompt equips the LLM with persistent workflows triggered by subsequent queries, guiding modern reasoning LLMs through systematic, multimodal evaluations. Demonstrations show the PWP-guided LLM identifying major methodological flaws in a test case while mitigating LLM input bias and performing complex tasks, including distinguishing claims from evidence, integrating text/photo/figure analysis to infer parameters, executing quantitative feasibility checks, comparing estimates against claims, and assessing a priori plausibility. To ensure transparency and facilitate replication, we provide full prompts, detailed demonstration analyses, and logs of interactive chats as supplementary resources. Beyond the specific application, this work offers insights into the meta-development process itself, highlighting the potential of PWP, informed by detailed workflow formalization, to enable sophisticated analysis using readily available LLMs for complex scientific tasks.
Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
FABLES: Evaluating faithfulness and content selection in book-length summarization
While long-context large language models (LLMs) can technically summarize book-length documents (>100K tokens), the length and complexity of the documents have so far prohibited evaluations of input-dependent aspects like faithfulness. In this paper, we conduct the first large-scale human evaluation of faithfulness and content selection on LLM-generated summaries of fictional books. Our study mitigates the issue of data contamination by focusing on summaries of books published in 2023 or 2024, and we hire annotators who have fully read each book prior to the annotation task to minimize cost and cognitive burden. We collect FABLES, a dataset of annotations on 3,158 claims made in LLM-generated summaries of 26 books, at a cost of $5.2K USD, which allows us to rank LLM summarizers based on faithfulness: Claude-3-Opus significantly outperforms all closed-source LLMs, while the open-source Mixtral is on par with GPT-3.5-Turbo. An analysis of the annotations reveals that most unfaithful claims relate to events and character states, and they generally require indirect reasoning over the narrative to invalidate. While LLM-based auto-raters have proven reliable for factuality and coherence in other settings, we implement several LLM raters of faithfulness and find that none correlates strongly with human annotations, especially with regard to detecting unfaithful claims. Our experiments suggest that detecting unfaithful claims is an important future direction not only for summarization evaluation but also as a testbed for long-context understanding. Finally, we move beyond faithfulness by exploring content selection errors in book-length summarization: we develop a typology of omission errors related to crucial narrative elements and also identify a systematic over-emphasis on events occurring towards the end of the book.
CoEdIT: Text Editing by Task-Specific Instruction Tuning
Text editing or revision is an essential function of the human writing process. Understanding the capabilities of LLMs for making high-quality revisions and collaborating with human writers is a critical step toward building effective writing assistants. With the prior success of LLMs and instruction tuning, we leverage instruction-tuned LLMs for text revision to improve the quality of user-generated text and improve the efficiency of the process. We introduce CoEdIT, a state-of-the-art text editing model for writing assistance. CoEdIT takes instructions from the user specifying the attributes of the desired text, such as "Make the sentence simpler" or "Write it in a more neutral style," and outputs the edited text. We present a large language model fine-tuned on a diverse collection of task-specific instructions for text editing (a total of 82K instructions). Our model (1) achieves state-of-the-art performance on various text editing benchmarks, (2) is competitive with publicly available largest-sized LLMs trained on instructions while being sim60x smaller, (3) is capable of generalizing to unseen edit instructions, and (4) exhibits compositional comprehension abilities to generalize to instructions containing different combinations of edit actions. Through extensive qualitative and quantitative analysis, we show that writers prefer the edits suggested by CoEdIT, relative to other state-of-the-art text editing models. Our code and dataset are publicly available.
DiscoDVT: Generating Long Text with Discourse-Aware Discrete Variational Transformer
Despite the recent advances in applying pre-trained language models to generate high-quality texts, generating long passages that maintain long-range coherence is yet challenging for these models. In this paper, we propose DiscoDVT, a discourse-aware discrete variational Transformer to tackle the incoherence issue. DiscoDVT learns a discrete variable sequence that summarizes the global structure of the text and then applies it to guide the generation process at each decoding step. To further embed discourse-aware information into the discrete latent representations, we introduce an auxiliary objective to model the discourse relations within the text. We conduct extensive experiments on two open story generation datasets and demonstrate that the latent codes learn meaningful correspondence to the discourse structures that guide the model to generate long texts with better long-range coherence.
Chain of Agents: Large Language Models Collaborating on Long-Context Tasks
Addressing the challenge of effectively processing long contexts has become a critical issue for Large Language Models (LLMs). Two common strategies have emerged: 1) reducing the input length, such as retrieving relevant chunks by Retrieval-Augmented Generation (RAG), and 2) expanding the context window limit of LLMs. However, both strategies have drawbacks: input reduction has no guarantee of covering the part with needed information, while window extension struggles with focusing on the pertinent information for solving the task. To mitigate these limitations, we propose Chain-of-Agents (CoA), a novel framework that harnesses multi-agent collaboration through natural language to enable information aggregation and context reasoning across various LLMs over long-context tasks. CoA consists of multiple worker agents who sequentially communicate to handle different segmented portions of the text, followed by a manager agent who synthesizes these contributions into a coherent final output. CoA processes the entire input by interleaving reading and reasoning, and it mitigates long context focus issues by assigning each agent a short context. We perform comprehensive evaluation of CoA on a wide range of long-context tasks in question answering, summarization, and code completion, demonstrating significant improvements by up to 10% over strong baselines of RAG, Full-Context, and multi-agent LLMs.
AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
Background Summarization of Event Timelines
Generating concise summaries of news events is a challenging natural language processing task. While journalists often curate timelines to highlight key sub-events, newcomers to a news event face challenges in catching up on its historical context. In this paper, we address this need by introducing the task of background news summarization, which complements each timeline update with a background summary of relevant preceding events. We construct a dataset by merging existing timeline datasets and asking human annotators to write a background summary for each timestep of each news event. We establish strong baseline performance using state-of-the-art summarization systems and propose a query-focused variant to generate background summaries. To evaluate background summary quality, we present a question-answering-based evaluation metric, Background Utility Score (BUS), which measures the percentage of questions about a current event timestep that a background summary answers. Our experiments show the effectiveness of instruction fine-tuned systems such as Flan-T5, in addition to strong zero-shot performance using GPT-3.5.
Embracing data abundance: BookTest Dataset for Reading Comprehension
There is a practically unlimited amount of natural language data available. Still, recent work in text comprehension has focused on datasets which are small relative to current computing possibilities. This article is making a case for the community to move to larger data and as a step in that direction it is proposing the BookTest, a new dataset similar to the popular Children's Book Test (CBT), however more than 60 times larger. We show that training on the new data improves the accuracy of our Attention-Sum Reader model on the original CBT test data by a much larger margin than many recent attempts to improve the model architecture. On one version of the dataset our ensemble even exceeds the human baseline provided by Facebook. We then show in our own human study that there is still space for further improvement.
Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP
Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.
PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition
The widely studied task of Natural Language Inference (NLI) requires a system to recognize whether one piece of text is textually entailed by another, i.e. whether the entirety of its meaning can be inferred from the other. In current NLI datasets and models, textual entailment relations are typically defined on the sentence- or paragraph-level. However, even a simple sentence often contains multiple propositions, i.e. distinct units of meaning conveyed by the sentence. As these propositions can carry different truth values in the context of a given premise, we argue for the need to recognize the textual entailment relation of each proposition in a sentence individually. We propose PropSegmEnt, a corpus of over 35K propositions annotated by expert human raters. Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document, i.e. documents describing the same event or entity. We establish strong baselines for the segmentation and entailment tasks. Through case studies on summary hallucination detection and document-level NLI, we demonstrate that our conceptual framework is potentially useful for understanding and explaining the compositionality of NLI labels.
Human-Agent Collaborative Paper-to-Page Crafting for Under $0.1
In the quest for scientific progress, communicating research is as vital as the discovery itself. Yet, researchers are often sidetracked by the manual, repetitive chore of building project webpages to make their dense papers accessible. While automation has tackled static slides and posters, the dynamic, interactive nature of webpages has remained an unaddressed challenge. To bridge this gap, we reframe the problem, arguing that the solution lies not in a single command, but in a collaborative, hierarchical process. We introduce AutoPage, a novel multi-agent system that embodies this philosophy. AutoPage deconstructs paper-to-page creation into a coarse-to-fine pipeline from narrative planning to multimodal content generation and interactive rendering. To combat AI hallucination, dedicated "Checker" agents verify each step against the source paper, while optional human checkpoints ensure the final product aligns perfectly with the author's vision, transforming the system from a mere tool into a powerful collaborative assistant. To rigorously validate our approach, we also construct PageBench, the first benchmark for this new task. Experiments show AutoPage not only generates high-quality, visually appealing pages but does so with remarkable efficiency in under 15 minutes for less than \0.1. Code and dataset will be released at https://mqleet.github.io/AutoPage_ProjectPage/{Webpage}$.
Enhancing LLM's Cognition via Structurization
When reading long-form text, human cognition is complex and structurized. While large language models (LLMs) process input contexts through a causal and sequential perspective, this approach can potentially limit their ability to handle intricate and complex inputs effectively. To enhance LLM's cognition capability, this paper presents a novel concept of context structurization. Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements. By doing so, LLMs can better grasp intricate and extended contexts through precise attention and information-seeking along the organized structures. Extensive evaluations are conducted across various model architectures and sizes (including a series of auto-regressive LLMs as well as BERT-like masking models) on a diverse set of NLP tasks (e.g., context-based question-answering, exhaustive hallucination evaluation, and passage-level dense retrieval). Empirical results show consistent and significant performance gains afforded by a single-round structurization. In particular, we boost the open-sourced LLaMA2-70B model to achieve comparable performance against GPT-3.5-Turbo as the hallucination evaluator. Besides, we show the feasibility of distilling advanced LLMs' language processing abilities to a smaller yet effective StruXGPT-7B to execute structurization, addressing the practicality of our approach. Code is available at https://github.com/alibaba/struxgpt.
Protecting Copyrighted Material with Unique Identifiers in Large Language Model Training
A primary concern regarding training large language models (LLMs) is whether they abuse copyrighted online text. With the increasing training data scale and the prevalence of LLMs in daily lives, two problems arise: 1) false positive membership inference results misled by similar examples; 2) membership inference methods are usually too complex for end users to understand and use. To address these issues, we propose an alternative insert-and-detect methodology, advocating that web users and content platforms employ \textit{unique identifiers} for reliable and independent membership inference. Users and platforms can create their identifiers, embed them in copyrighted text, and independently detect them in future LLMs. As an initial demonstration, we introduce \textbf{ghost sentences} and a user-friendly last-k words test, allowing end users to chat with LLMs for membership inference. Ghost sentences consist primarily of unique passphrases of random natural words, which can come with customized elements to bypass possible filter rules. The last-k words test requires a significant repetition time of ghost sentences~(ge10). For cases with fewer repetitions, we designed an extra perplexity test, as LLMs exhibit high perplexity when encountering unnatural passphrases. We also conduct a comprehensive study on the memorization and membership inference of ghost sentences, examining factors such as training data scales, model sizes, repetition times, insertion positions, wordlist of passphrases, alignment, etc. Our study shows the possibility of applying ghost sentences in real scenarios and provides instructions for the potential application.
CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis
The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author (N=1) to multi-author (up to N=5) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at \url{https://github.com/saranya-venkatraman/multi_llm_story_writing}.
Paraphrasing with Large Language Models
Recently, large language models such as GPT-2 have shown themselves to be extremely adept at text generation and have also been able to achieve high-quality results in many downstream NLP tasks such as text classification, sentiment analysis and question answering with the aid of fine-tuning. We present a useful technique for using a large language model to perform the task of paraphrasing on a variety of texts and subjects. Our approach is demonstrated to be capable of generating paraphrases not only at a sentence level but also for longer spans of text such as paragraphs without needing to break the text into smaller chunks.
Controlled Text Reduction
Producing a reduced version of a source text, as in generic or focused summarization, inherently involves two distinct subtasks: deciding on targeted content and generating a coherent text conveying it. While some popular approaches address summarization as a single end-to-end task, prominent works support decomposed modeling for individual subtasks. Further, semi-automated text reduction is also very appealing, where users may identify targeted content while models would generate a corresponding coherent summary. In this paper, we focus on the second subtask, of generating coherent text given pre-selected content. Concretely, we formalize Controlled Text Reduction as a standalone task, whose input is a source text with marked spans of targeted content ("highlighting"). A model then needs to generate a coherent text that includes all and only the target information. We advocate the potential of such models, both for modular fully-automatic summarization, as well as for semi-automated human-in-the-loop use cases. Facilitating proper research, we crowdsource high-quality dev and test datasets for the task. Further, we automatically generate a larger "silver" training dataset from available summarization benchmarks, leveraging a pretrained summary-source alignment model. Finally, employing these datasets, we present a supervised baseline model, showing promising results and insightful analyses.
Talking About Large Language Models
Thanks to rapid progress in artificial intelligence, we have entered an era when technology and philosophy intersect in interesting ways. Sitting squarely at the centre of this intersection are large language models (LLMs). The more adept LLMs become at mimicking human language, the more vulnerable we become to anthropomorphism, to seeing the systems in which they are embedded as more human-like than they really are. This trend is amplified by the natural tendency to use philosophically loaded terms, such as "knows", "believes", and "thinks", when describing these systems. To mitigate this trend, this paper advocates the practice of repeatedly stepping back to remind ourselves of how LLMs, and the systems of which they form a part, actually work. The hope is that increased scientific precision will encourage more philosophical nuance in the discourse around artificial intelligence, both within the field and in the public sphere.
What's the Meaning of Superhuman Performance in Today's NLU?
In the last five years, there has been a significant focus in Natural Language Processing (NLP) on developing larger Pretrained Language Models (PLMs) and introducing benchmarks such as SuperGLUE and SQuAD to measure their abilities in language understanding, reasoning, and reading comprehension. These PLMs have achieved impressive results on these benchmarks, even surpassing human performance in some cases. This has led to claims of superhuman capabilities and the provocative idea that certain tasks have been solved. In this position paper, we take a critical look at these claims and ask whether PLMs truly have superhuman abilities and what the current benchmarks are really evaluating. We show that these benchmarks have serious limitations affecting the comparison between humans and PLMs and provide recommendations for fairer and more transparent benchmarks.
Thread of Thought Unraveling Chaotic Contexts
Large Language Models (LLMs) have ushered in a transformative era in the field of natural language processing, excelling in tasks related to text comprehension and generation. Nevertheless, they encounter difficulties when confronted with chaotic contexts (e.g., distractors rather than long irrelevant context), leading to the inadvertent omission of certain details within the chaotic context. In response to these challenges, we introduce the "Thread of Thought" (ThoT) strategy, which draws inspiration from human cognitive processes. ThoT systematically segments and analyzes extended contexts while adeptly selecting pertinent information. This strategy serves as a versatile "plug-and-play" module, seamlessly integrating with various LLMs and prompting techniques. In the experiments, we utilize the PopQA and EntityQ datasets, as well as a Multi-Turn Conversation Response dataset (MTCR) we collected, to illustrate that ThoT significantly improves reasoning performance compared to other prompting techniques.
Towards Lifelong Learning of Large Language Models: A Survey
As the applications of large language models (LLMs) expand across diverse fields, the ability of these models to adapt to ongoing changes in data, tasks, and user preferences becomes crucial. Traditional training methods, relying on static datasets, are increasingly inadequate for coping with the dynamic nature of real-world information. Lifelong learning, also known as continual or incremental learning, addresses this challenge by enabling LLMs to learn continuously and adaptively over their operational lifetime, integrating new knowledge while retaining previously learned information and preventing catastrophic forgetting. This survey delves into the sophisticated landscape of lifelong learning, categorizing strategies into two primary groups: Internal Knowledge and External Knowledge. Internal Knowledge includes continual pretraining and continual finetuning, each enhancing the adaptability of LLMs in various scenarios. External Knowledge encompasses retrieval-based and tool-based lifelong learning, leveraging external data sources and computational tools to extend the model's capabilities without modifying core parameters. The key contributions of our survey are: (1) Introducing a novel taxonomy categorizing the extensive literature of lifelong learning into 12 scenarios; (2) Identifying common techniques across all lifelong learning scenarios and classifying existing literature into various technique groups within each scenario; (3) Highlighting emerging techniques such as model expansion and data selection, which were less explored in the pre-LLM era. Through a detailed examination of these groups and their respective categories, this survey aims to enhance the adaptability, reliability, and overall performance of LLMs in real-world applications.
Walking Down the Memory Maze: Beyond Context Limit through Interactive Reading
Large language models (LLMs) have advanced in large strides due to the effectiveness of the self-attention mechanism that processes and compares all tokens at once. However, this mechanism comes with a fundamental issue -- the predetermined context window is bound to be limited. Despite attempts to extend the context window through methods like extrapolating the positional embedding, using recurrence, or selectively retrieving essential parts of the long sequence, long-text understanding continues to be a challenge. We propose an alternative approach which instead treats the LLM as an interactive agent, allowing it to decide how to read the text via iterative prompting. We introduce MemWalker, a method that first processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information. On long-text question answering tasks our method outperforms baseline approaches that use long context windows, recurrence, and retrieval. We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query.
SCROLLS: Standardized CompaRison Over Long Language Sequences
NLP benchmarks have largely focused on short texts, such as sentences and paragraphs, even though long texts comprise a considerable amount of natural language in the wild. We introduce SCROLLS, a suite of tasks that require reasoning over long texts. We examine existing long-text datasets, and handpick ones where the text is naturally long, while prioritizing tasks that involve synthesizing information across the input. SCROLLS contains summarization, question answering, and natural language inference tasks, covering multiple domains, including literature, science, business, and entertainment. Initial baselines, including Longformer Encoder-Decoder, indicate that there is ample room for improvement on SCROLLS. We make all datasets available in a unified text-to-text format and host a live leaderboard to facilitate research on model architecture and pretraining methods.
A Massive Scale Semantic Similarity Dataset of Historical English
A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.
Generating SOAP Notes from Doctor-Patient Conversations Using Modular Summarization Techniques
Following each patient visit, physicians draft long semi-structured clinical summaries called SOAP notes. While invaluable to clinicians and researchers, creating digital SOAP notes is burdensome, contributing to physician burnout. In this paper, we introduce the first complete pipelines to leverage deep summarization models to generate these notes based on transcripts of conversations between physicians and patients. After exploring a spectrum of methods across the extractive-abstractive spectrum, we propose Cluster2Sent, an algorithm that (i) extracts important utterances relevant to each summary section; (ii) clusters together related utterances; and then (iii) generates one summary sentence per cluster. Cluster2Sent outperforms its purely abstractive counterpart by 8 ROUGE-1 points, and produces significantly more factual and coherent sentences as assessed by expert human evaluators. For reproducibility, we demonstrate similar benefits on the publicly available AMI dataset. Our results speak to the benefits of structuring summaries into sections and annotating supporting evidence when constructing summarization corpora.
Memory in Large Language Models: Mechanisms, Evaluation and Evolution
Under a unified operational definition, we define LLM memory as a persistent state written during pretraining, finetuning, or inference that can later be addressed and that stably influences outputs. We propose a four-part taxonomy (parametric, contextual, external, procedural/episodic) and a memory quadruple (location, persistence, write/access path, controllability). We link mechanism, evaluation, and governance via the chain write -> read -> inhibit/update. To avoid distorted comparisons across heterogeneous setups, we adopt a three-setting protocol (parametric only, offline retrieval, online retrieval) that decouples capability from information availability on the same data and timeline. On this basis we build a layered evaluation: parametric (closed-book recall, edit differential, memorization/privacy), contextual (position curves and the mid-sequence drop), external (answer correctness vs snippet attribution/faithfulness), and procedural/episodic (cross-session consistency and timeline replay, E MARS+). The framework integrates temporal governance and leakage auditing (freshness hits, outdated answers, refusal slices) and uncertainty reporting via inter-rater agreement plus paired tests with multiple-comparison correction. For updating and forgetting, we present DMM Gov: coordinating DAPT/TAPT, PEFT, model editing (ROME, MEND, MEMIT, SERAC), and RAG to form an auditable loop covering admission thresholds, rollout, monitoring, rollback, and change audits, with specs for timeliness, conflict handling, and long-horizon consistency. Finally, we give four testable propositions: minimum identifiability; a minimal evaluation card; causally constrained editing with verifiable forgetting; and when retrieval with small-window replay outperforms ultra-long-context reading. This yields a reproducible, comparable, and governable coordinate system for research and deployment.
PEER: A Collaborative Language Model
Textual content is often the output of a collaborative writing process: We start with an initial draft, ask for suggestions, and repeatedly make changes. Agnostic of this process, today's language models are trained to generate only the final result. As a consequence, they lack several abilities crucial for collaborative writing: They are unable to update existing texts, difficult to control and incapable of verbally planning or explaining their actions. To address these shortcomings, we introduce PEER, a collaborative language model that is trained to imitate the entire writing process itself: PEER can write drafts, add suggestions, propose edits and provide explanations for its actions. Crucially, we train multiple instances of PEER able to infill various parts of the writing process, enabling the use of self-training techniques for increasing the quality, amount and diversity of training data. This unlocks PEER's full potential by making it applicable in domains for which no edit histories are available and improving its ability to follow instructions, to write useful comments, and to explain its actions. We show that PEER achieves strong performance across various domains and editing tasks.
Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges
Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies.
Reading Subtext: Evaluating Large Language Models on Short Story Summarization with Writers
We evaluate recent Large language Models (LLMs) on the challenging task of summarizing short stories, which can be lengthy, and include nuanced subtext or scrambled timelines. Importantly, we work directly with authors to ensure that the stories have not been shared online (and therefore are unseen by the models), and to obtain informed evaluations of summary quality using judgments from the authors themselves. Through quantitative and qualitative analysis grounded in narrative theory, we compare GPT-4, Claude-2.1, and LLama-2-70B. We find that all three models make faithfulness mistakes in over 50% of summaries and struggle to interpret difficult subtext. However, at their best, the models can provide thoughtful thematic analysis of stories. We additionally demonstrate that LLM judgments of summary quality do not match the feedback from the writers.
Soft Tokens, Hard Truths
The use of continuous instead of discrete tokens during the Chain-of-Thought (CoT) phase of reasoning LLMs has garnered attention recently, based on the intuition that a continuous mixture of discrete tokens could simulate a superposition of several reasoning paths simultaneously. Theoretical results have formally proven that continuous tokens have much greater expressivity and can solve specific problems more efficiently. However, practical use of continuous tokens has been limited by strong training difficulties: previous works either just use continuous tokens at inference time on a pre-trained discrete-token model, or must distill the continuous CoT from ground-truth discrete CoTs and face computational costs that limit the CoT to very few tokens. This is the first work introducing a scalable method to learn continuous CoTs via reinforcement learning (RL), without distilling from reference discrete CoTs. We use "soft" tokens: mixtures of tokens together with noise on the input embedding to provide RL exploration. Computational overhead is minimal, enabling us to learn continuous CoTs with hundreds of tokens. On math reasoning benchmarks with Llama and Qwen models up to 8B, training with continuous CoTs match discrete-token CoTs for pass@1 and surpass them for pass@32, showing greater CoT diversity. In systematic comparisons, the best-performing scenario is to train with continuous CoT tokens then use discrete tokens for inference, meaning the "soft" models can be deployed in a standard way. Finally, we show continuous CoT RL training better preserves the predictions of the base model on out-of-domain tasks, thus providing a softer touch to the base model.
Beyond Prompt Content: Enhancing LLM Performance via Content-Format Integrated Prompt Optimization
Large Language Models (LLMs) have shown significant capability across various tasks, with their real-world effectiveness often driven by prompt design. While recent research has focused on optimizing prompt content, the role of prompt formatting, a critical but often overlooked dimension, has received limited systematic investigation. In this paper, we introduce Content-Format Integrated Prompt Optimization (CFPO), an innovative methodology that jointly optimizes both prompt content and formatting through an iterative refinement process. CFPO leverages natural language mutations to explore content variations and employs a dynamic format exploration strategy that systematically evaluates diverse format options. Our extensive evaluations across multiple tasks and open-source LLMs demonstrate that CFPO demonstrates measurable performance improvements compared to content-only optimization methods. This highlights the importance of integrated content-format optimization and offers a practical, model-agnostic approach to enhancing LLM performance. Code will be available at https://github.com/HenryLau7/CFPO.
Context-Aware Document Simplification
To date, most work on text simplification has focused on sentence-level inputs. Early attempts at document simplification merely applied these approaches iteratively over the sentences of a document. However, this fails to coherently preserve the discourse structure, leading to suboptimal output quality. Recently, strategies from controllable simplification have been leveraged to achieve state-of-the-art results on document simplification by first generating a document-level plan (a sequence of sentence-level simplification operations) and using this plan to guide sentence-level simplification downstream. However, this is still limited in that the simplification model has no direct access to the local inter-sentence document context, likely having a negative impact on surface realisation. We explore various systems that use document context within the simplification process itself, either by iterating over larger text units or by extending the system architecture to attend over a high-level representation of document context. In doing so, we achieve state-of-the-art performance on the document simplification task, even when not relying on plan-guidance. Further, we investigate the performance and efficiency tradeoffs of system variants and make suggestions of when each should be preferred.
Benchmarking Clinical Decision Support Search
Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research.
LLM-Collaboration on Automatic Science Journalism for the General Audience
Science journalism reports current scientific discoveries to non-specialists, aiming to enable public comprehension of the state of the art. However, this task can be challenging as the audience often lacks specific knowledge about the presented research. To address this challenge, we propose a framework that integrates three LLMs mimicking the real-world writing-reading-feedback-revision workflow, with one LLM acting as the journalist, a smaller LLM as the general public reader, and the third LLM as an editor. The journalist's writing is iteratively refined by feedback from the reader and suggestions from the editor. Our experiments demonstrate that by leveraging the collaboration of two 7B and one 1.8B open-source LLMs, we can generate articles that are more accessible than those generated by existing methods, including advanced models such as GPT-4.
Visual Story-Writing: Writing by Manipulating Visual Representations of Stories
We define "visual story-writing" as using visual representations of story elements to support writing and revising narrative texts. To demonstrate this approach, we developed a text editor that automatically visualizes a graph of entity interactions, movement between locations, and a timeline of story events. Interacting with these visualizations results in suggested text edits: for example, connecting two characters in the graph creates an interaction between them, moving an entity updates their described location, and rearranging events on the timeline reorganizes the narrative sequence. Through two user studies on narrative text editing and writing, we found that visuals supported participants in planning high-level revisions, tracking story elements, and exploring story variations in ways that encourage creativity. Broadly, our work lays the foundation for writing support, not just through words, but also visuals.
Reading the unreadable: Creating a dataset of 19th century English newspapers using image-to-text language models
Oscar Wilde said, "The difference between literature and journalism is that journalism is unreadable, and literature is not read." Unfortunately, The digitally archived journalism of Oscar Wilde's 19th century often has no or poor quality Optical Character Recognition (OCR), reducing the accessibility of these archives and making them unreadable both figuratively and literally. This paper helps address the issue by performing OCR on "The Nineteenth Century Serials Edition" (NCSE), an 84k-page collection of 19th-century English newspapers and periodicals, using Pixtral 12B, a pre-trained image-to-text language model. The OCR capability of Pixtral was compared to 4 other OCR approaches, achieving a median character error rate of 1%, 5x lower than the next best model. The resulting NCSE v2.0 dataset features improved article identification, high-quality OCR, and text classified into four types and seventeen topics. The dataset contains 1.4 million entries, and 321 million words. Example use cases demonstrate analysis of topic similarity, readability, and event tracking. NCSE v2.0 is freely available to encourage historical and sociological research. As a result, 21st-century readers can now share Oscar Wilde's disappointment with 19th-century journalistic standards, reading the unreadable from the comfort of their own computers.
PEARL: Prompting Large Language Models to Plan and Execute Actions Over Long Documents
Strategies such as chain-of-thought prompting improve the performance of large language models (LLMs) on complex reasoning tasks by decomposing input examples into intermediate steps. However, it remains unclear how to apply such methods to reason over long input documents, in which both the decomposition and the output of each intermediate step are non-trivial to obtain. In this work, we propose PEARL, a prompting framework to improve reasoning over long documents, which consists of three stages: action mining, plan formulation, and plan execution. More specifically, given a question about a long document, PEARL decomposes the question into a sequence of actions (e.g., SUMMARIZE, FIND_EVENT, FIND_RELATION) and then executes them over the document to obtain the answer. Each stage of PEARL is implemented via zero-shot or few-shot prompting of LLMs (in our work, GPT-4) with minimal human input. We evaluate PEARL on a challenging subset of the QuALITY dataset, which contains questions that require complex reasoning over long narrative texts. PEARL outperforms zero-shot and chain-of-thought prompting on this dataset, and ablation experiments show that each stage of PEARL is critical to its performance. Overall, PEARL is a first step towards leveraging LLMs to reason over long documents.
Coarse-to-Fine Knowledge Selection for Document Grounded Dialogs
Multi-document grounded dialogue systems (DGDS) belong to a class of conversational agents that answer users' requests by finding supporting knowledge from a collection of documents. Most previous studies aim to improve the knowledge retrieval model or propose more effective ways to incorporate external knowledge into a parametric generation model. These methods, however, focus on retrieving knowledge from mono-granularity language units (e.g. passages, sentences, or spans in documents), which is not enough to effectively and efficiently capture precise knowledge in long documents. This paper proposes Re3G, which aims to optimize both coarse-grained knowledge retrieval and fine-grained knowledge extraction in a unified framework. Specifically, the former efficiently finds relevant passages in a retrieval-and-reranking process, whereas the latter effectively extracts finer-grain spans within those passages to incorporate into a parametric answer generation model (BART, T5). Experiments on DialDoc Shared Task demonstrate the effectiveness of our method.
Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals
Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature.
Meow: End-to-End Outline Writing for Automatic Academic Survey
As academic paper publication numbers grow exponentially, conducting in-depth surveys with LLMs automatically has become an inevitable trend. Outline writing, which aims to systematically organize related works, is critical for automated survey generation. Yet existing automatic survey methods treat outline writing as mere workflow steps in the overall pipeline. Such template-based workflows produce outlines that lack in-depth understanding of the survey topic and fine-grained styles. To address these limitations, we propose Meow, the first metadata-driven outline writing framework that produces organized and faithful outlines efficiently. Specifically, we first formulate outline writing as an end-to-end task that generates hierarchical structured outlines from paper metadata. We then curate a high-quality dataset of surveys from arXiv, bioRxiv, and medRxiv, and establish systematic evaluation metrics for outline quality assessment. Finally, we employ a two-stage training approach combining supervised fine-tuning and reinforcement learning. Our 8B reasoning model demonstrates strong performance with high structural fidelity and stylistic coherence.
DetectiveQA: Evaluating Long-Context Reasoning on Detective Novels
With the rapid advancement of Large Language Models (LLMs), long-context information understanding and processing have become a hot topic in academia and industry. However, benchmarks for evaluating the ability of LLMs to handle long-context information do not seem to have kept pace with the development of LLMs. Despite the emergence of various long-context evaluation benchmarks, the types of capability assessed are still limited, without new capability dimensions. In this paper, we introduce DetectiveQA, a narrative reasoning benchmark featured with an average context length of over 100K tokens. DetectiveQA focuses on evaluating the long-context reasoning ability of LLMs, which not only requires a full understanding of context but also requires extracting important evidences from the context and reasoning according to extracted evidences to answer the given questions. This is a new dimension of capability evaluation, which is more in line with the current intelligence level of LLMs. We use detective novels as data sources, which naturally have various reasoning elements. Finally, we manually annotated 600 questions in Chinese and then also provided an English edition of the context information and questions. We evaluate many long-context LLMs on DetectiveQA, including commercial and open-sourced models, and the results indicate that existing long-context LLMs still require significant advancements to effectively process true long-context dependency questions.
RONA: Pragmatically Diverse Image Captioning with Coherence Relations
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance pragmatic diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. To address this challenge, we propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as an axis for variation. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA
CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization
Language agents have shown some ability to interact with an external environment, e.g., a virtual world such as ScienceWorld, to perform complex tasks, e.g., growing a plant, without the startup costs of reinforcement learning. However, despite their zero-shot capabilities, these agents to date do not continually improve over time beyond performance refinement on a specific task. Here we present CLIN, the first language-based agent to achieve this, so that it continually improves over multiple trials, including when both the environment and task are varied, and without requiring parameter updates. Our approach is to use a persistent, dynamic, textual memory centered on causal abstractions (rather than general "helpful hints") that is regularly updated after each trial so that the agent gradually learns useful knowledge for new trials. In the ScienceWorld benchmark, CLIN is able to continually improve on repeated trials on the same task and environment, outperforming state-of-the-art reflective language agents like Reflexion by 23 absolute points. CLIN can also transfer its learning to new environments (or new tasks), improving its zero-shot performance by 4 points (13 for new tasks) and can further improve performance there through continual memory updates, enhancing performance by an additional 17 points (7 for new tasks). This suggests a new architecture for agents built on frozen models that can still continually and rapidly improve over time.
PLANET: Dynamic Content Planning in Autoregressive Transformers for Long-form Text Generation
Despite recent progress of pre-trained language models on generating fluent text, existing methods still suffer from incoherence problems in long-form text generation tasks that require proper content control and planning to form a coherent high-level logical flow. In this work, we propose PLANET, a novel generation framework leveraging autoregressive self-attention mechanism to conduct content planning and surface realization dynamically. To guide the generation of output sentences, our framework enriches the Transformer decoder with latent representations to maintain sentence-level semantic plans grounded by bag-of-words. Moreover, we introduce a new coherence-based contrastive learning objective to further improve the coherence of output. Extensive experiments are conducted on two challenging long-form text generation tasks including counterargument generation and opinion article generation. Both automatic and human evaluations show that our method significantly outperforms strong baselines and generates more coherent texts with richer contents.
BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization
Most existing text summarization datasets are compiled from the news domain, where summaries have a flattened discourse structure. In such datasets, summary-worthy content often appears in the beginning of input articles. Moreover, large segments from input articles are present verbatim in their respective summaries. These issues impede the learning and evaluation of systems that can understand an article's global content structure as well as produce abstractive summaries with high compression ratio. In this work, we present a novel dataset, BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Compared to existing summarization datasets, BIGPATENT has the following properties: i) summaries contain a richer discourse structure with more recurring entities, ii) salient content is evenly distributed in the input, and iii) lesser and shorter extractive fragments are present in the summaries. Finally, we train and evaluate baselines and popular learning models on BIGPATENT to shed light on new challenges and motivate future directions for summarization research.
A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding
We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods.
A Dataset for Metaphor Detection in Early Medieval Hebrew Poetry
There is a large volume of late antique and medieval Hebrew texts. They represent a crucial linguistic and cultural bridge between Biblical and modern Hebrew. Poetry is prominent in these texts and one of its main haracteristics is the frequent use of metaphor. Distinguishing figurative and literal language use is a major task for scholars of the Humanities, especially in the fields of literature, linguistics, and hermeneutics. This paper presents a new, challenging dataset of late antique and medieval Hebrew poetry with expert annotations of metaphor, as well as some baseline results, which we hope will facilitate further research in this area.
One-Prompt-One-Story: Free-Lunch Consistent Text-to-Image Generation Using a Single Prompt
Text-to-image generation models can create high-quality images from input prompts. However, they struggle to support the consistent generation of identity-preserving requirements for storytelling. Existing approaches to this problem typically require extensive training in large datasets or additional modifications to the original model architectures. This limits their applicability across different domains and diverse diffusion model configurations. In this paper, we first observe the inherent capability of language models, coined context consistency, to comprehend identity through context with a single prompt. Drawing inspiration from the inherent context consistency, we propose a novel training-free method for consistent text-to-image (T2I) generation, termed "One-Prompt-One-Story" (1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a single input for T2I diffusion models, initially preserving character identities. We then refine the generation process using two novel techniques: Singular-Value Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment with the input description for each frame. In our experiments, we compare our method against various existing consistent T2I generation approaches to demonstrate its effectiveness through quantitative metrics and qualitative assessments. Code is available at https://github.com/byliutao/1Prompt1Story.
Lightweight Transformers for Clinical Natural Language Processing
Specialised pre-trained language models are becoming more frequent in NLP since they can potentially outperform models trained on generic texts. BioBERT and BioClinicalBERT are two examples of such models that have shown promise in medical NLP tasks. Many of these models are overparametrised and resource-intensive, but thanks to techniques like Knowledge Distillation (KD), it is possible to create smaller versions that perform almost as well as their larger counterparts. In this work, we specifically focus on development of compact language models for processing clinical texts (i.e. progress notes, discharge summaries etc). We developed a number of efficient lightweight clinical transformers using knowledge distillation and continual learning, with the number of parameters ranging from 15 million to 65 million. These models performed comparably to larger models such as BioBERT and ClinicalBioBERT and significantly outperformed other compact models trained on general or biomedical data. Our extensive evaluation was done across several standard datasets and covered a wide range of clinical text-mining tasks, including Natural Language Inference, Relation Extraction, Named Entity Recognition, and Sequence Classification. To our knowledge, this is the first comprehensive study specifically focused on creating efficient and compact transformers for clinical NLP tasks. The models and code used in this study can be found on our Huggingface profile at https://huggingface.co/nlpie and Github page at https://github.com/nlpie-research/Lightweight-Clinical-Transformers, respectively, promoting reproducibility of our results.
Emotion Identification for French in Written Texts: Considering their Modes of Expression as a Step Towards Text Complexity Analysis
The objective of this paper is to predict (A) whether a sentence in a written text expresses an emotion, (B) the mode(s) in which it is expressed, (C) whether it is basic or complex, and (D) its emotional category. One of our major contributions, through a dataset and a model, is to integrate the fact that an emotion can be expressed in different modes: from a direct mode, essentially lexicalized, to a more indirect mode, where emotions will only be suggested, a mode that NLP approaches generally don't take into account. Another originality is that the scope is on written texts, as opposed usual work focusing on conversational (often multi-modal) data. In this context, modes of expression are seen as a factor towards the automatic analysis of complexity in texts. Experiments on French texts show acceptable results compared to the human annotators' agreement, and outperforming results compared to using a large language model with in-context learning (i.e. no fine-tuning).
Automated Conversion of Music Videos into Lyric Videos
Musicians and fans often produce lyric videos, a form of music videos that showcase the song's lyrics, for their favorite songs. However, making such videos can be challenging and time-consuming as the lyrics need to be added in synchrony and visual harmony with the video. Informed by prior work and close examination of existing lyric videos, we propose a set of design guidelines to help creators make such videos. Our guidelines ensure the readability of the lyric text while maintaining a unified focus of attention. We instantiate these guidelines in a fully automated pipeline that converts an input music video into a lyric video. We demonstrate the robustness of our pipeline by generating lyric videos from a diverse range of input sources. A user study shows that lyric videos generated by our pipeline are effective in maintaining text readability and unifying the focus of attention.
Language modeling via stochastic processes
Modern language models can generate high-quality short texts. However, they often meander or are incoherent when generating longer texts. These issues arise from the next-token-only language modeling objective. Recent work in self-supervised learning suggests that models can learn good latent representations via contrastive learning, which can be effective for discriminative tasks. Our work analyzes the application of contrastive representations for generative tasks, like long text generation. We propose one approach for leveraging constrastive representations, which we call Time Control (TC). TC first learns a contrastive representation of the target text domain, then generates text by decoding from these representations. Compared to domain-specific methods and fine-tuning GPT2 across a variety of text domains, TC performs competitively to methods specific for learning sentence representations on discourse coherence. On long text generation settings, TC preserves the text structure both in terms of ordering (up to +15% better) and text length consistency (up to +90% better).
GhostWriter: Augmenting Collaborative Human-AI Writing Experiences Through Personalization and Agency
Large language models (LLMs) are becoming more prevalent and have found a ubiquitous use in providing different forms of writing assistance. However, LLM-powered writing systems can frustrate users due to their limited personalization and control, which can be exacerbated when users lack experience with prompt engineering. We see design as one way to address these challenges and introduce GhostWriter, an AI-enhanced writing design probe where users can exercise enhanced agency and personalization. GhostWriter leverages LLMs to learn the user's intended writing style implicitly as they write, while allowing explicit teaching moments through manual style edits and annotations. We study 18 participants who use GhostWriter on two different writing tasks, observing that it helps users craft personalized text generations and empowers them by providing multiple ways to control the system's writing style. From this study, we present insights regarding people's relationship with AI-assisted writing and offer design recommendations for future work.
A Deep Reinforced Model for Abstractive Summarization
Attentional, RNN-based encoder-decoder models for abstractive summarization have achieved good performance on short input and output sequences. For longer documents and summaries however these models often include repetitive and incoherent phrases. We introduce a neural network model with a novel intra-attention that attends over the input and continuously generated output separately, and a new training method that combines standard supervised word prediction and reinforcement learning (RL). Models trained only with supervised learning often exhibit "exposure bias" - they assume ground truth is provided at each step during training. However, when standard word prediction is combined with the global sequence prediction training of RL the resulting summaries become more readable. We evaluate this model on the CNN/Daily Mail and New York Times datasets. Our model obtains a 41.16 ROUGE-1 score on the CNN/Daily Mail dataset, an improvement over previous state-of-the-art models. Human evaluation also shows that our model produces higher quality summaries.
Southern Newswire Corpus: A Large-Scale Dataset of Mid-Century Wire Articles Beyond the Front Page
I introduce a new large-scale dataset of historical wire articles from U.S. Southern newspapers, spanning 1960-1975 and covering multiple wire services: The Associated Press, United Press International, Newspaper Enterprise Association. Unlike prior work focusing on front-page content, this dataset captures articles across the entire newspaper, offering broader insight into mid-century Southern coverage. The dataset includes a version that has undergone an LLM-based text cleanup pipeline to reduce OCR noise, enhancing its suitability for quantitative text analysis. Additionally, duplicate versions of articles are retained to enable analysis of editorial differences in language and framing across newspapers. Each article is tagged by wire service, facilitating comparative studies of editorial patterns across agencies. This resource opens new avenues for research in computational social science, digital humanities, and historical linguistics, providing a detailed perspective on how Southern newspapers relayed national and international news during a transformative period in American history. The dataset will be made available upon publication or request for research purposes.
Data-to-text Generation with Variational Sequential Planning
We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input. We focus on generating long-form text, i.e., documents with multiple paragraphs, and propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way. We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Experiments on two data-to-text benchmarks (RotoWire and MLB) show that our model outperforms strong baselines and is sample efficient in the face of limited training data (e.g., a few hundred instances).
SEGMENT+: Long Text Processing with Short-Context Language Models
There is a growing interest in expanding the input capacity of language models (LMs) across various domains. However, simply increasing the context window does not guarantee robust performance across diverse long-input processing tasks, such as understanding extensive documents and extracting detailed information from lengthy and noisy data. In response, we introduce SEGMENT+, a general framework that enables LMs to handle extended inputs within limited context windows efficiently. SEGMENT+ utilizes structured notes and a filtering module to manage information flow, resulting in a system that is both controllable and interpretable. Our extensive experiments across various model sizes, focusing on long-document question-answering and Needle-in-a-Haystack tasks, demonstrate the effectiveness of SEGMENT+ in improving performance.
SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks by generating intermediate reasoning steps. However, most existing approaches focus on hard token decoding, which constrains reasoning within the discrete vocabulary space and may not always be optimal. While recent efforts explore continuous-space reasoning, they often suffer from catastrophic forgetting, limiting their applicability to state-of-the-art LLMs that already perform well in zero-shot settings with a proper instruction. To address this challenge, we propose a novel approach for continuous-space reasoning that does not require modifying the underlying LLM. Specifically, we employ a lightweight assistant model to generate instance-specific soft thought tokens speculatively as the initial chain of thoughts, which are then mapped into the LLM's representation space via a projection module. Experimental results on five reasoning benchmarks demonstrate that our method enhances LLM reasoning performance through supervised, parameter-efficient fine-tuning.
StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples
Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance .
Read, Revise, Repeat: A System Demonstration for Human-in-the-loop Iterative Text Revision
Revision is an essential part of the human writing process. It tends to be strategic, adaptive, and, more importantly, iterative in nature. Despite the success of large language models on text revision tasks, they are limited to non-iterative, one-shot revisions. Examining and evaluating the capability of large language models for making continuous revisions and collaborating with human writers is a critical step towards building effective writing assistants. In this work, we present a human-in-the-loop iterative text revision system, Read, Revise, Repeat (R3), which aims at achieving high quality text revisions with minimal human efforts by reading model-generated revisions and user feedbacks, revising documents, and repeating human-machine interactions. In R3, a text revision model provides text editing suggestions for human writers, who can accept or reject the suggested edits. The accepted edits are then incorporated into the model for the next iteration of document revision. Writers can therefore revise documents iteratively by interacting with the system and simply accepting/rejecting its suggested edits until the text revision model stops making further revisions or reaches a predefined maximum number of revisions. Empirical experiments show that R3 can generate revisions with comparable acceptance rate to human writers at early revision depths, and the human-machine interaction can get higher quality revisions with fewer iterations and edits. The collected human-model interaction dataset and system code are available at https://github.com/vipulraheja/IteraTeR. Our system demonstration is available at https://youtu.be/lK08tIpEoaE.
Attention Sorting Combats Recency Bias In Long Context Language Models
Current language models often fail to incorporate long contexts efficiently during generation. We show that a major contributor to this issue are attention priors that are likely learned during pre-training: relevant information located earlier in context is attended to less on average. Yet even when models fail to use the information from a relevant document in their response, they still pay preferential attention to that document compared to an irrelevant document at the same position. We leverage this fact to introduce ``attention sorting'': perform one step of decoding, sort documents by the attention they receive (highest attention going last), repeat the process, generate the answer with the newly sorted context. We find that attention sorting improves performance of long context models. Our findings highlight some challenges in using off-the-shelf language models for retrieval augmented generation.
Fractal Patterns May Unravel the Intelligence in Next-Token Prediction
We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately H=0.70. Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can lead to a comprehension of the structure of text at multiple levels of granularity, from words and clauses to broader contexts and intents. We also demonstrate that fractal parameters improve upon perplexity-based bits-per-byte (BPB) in predicting downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs.
On the Robustness of Text Vectorizers
A fundamental issue in machine learning is the robustness of the model with respect to changes in the input. In natural language processing, models typically contain a first embedding layer, transforming a sequence of tokens into vector representations. While the robustness with respect to changes of continuous inputs is well-understood, the situation is less clear when considering discrete changes, for instance replacing a word by another in an input sentence. Our work formally proves that popular embedding schemes, such as concatenation, TF-IDF, and Paragraph Vector (a.k.a. doc2vec), exhibit robustness in the H\"older or Lipschitz sense with respect to the Hamming distance. We provide quantitative bounds for these schemes and demonstrate how the constants involved are affected by the length of the document. These findings are exemplified through a series of numerical examples.
Formalizing Style in Personal Narratives
Personal narratives are stories authors construct to make meaning of their experiences. Style, the distinctive way authors use language to express themselves, is fundamental to how these narratives convey subjective experiences. Yet there is a lack of a formal framework for systematically analyzing these stylistic choices. We present a novel approach that formalizes style in personal narratives as patterns in the linguistic choices authors make when communicating subjective experiences. Our framework integrates three domains: functional linguistics establishes language as a system of meaningful choices, computer science provides methods for automatically extracting and analyzing sequential patterns, and these patterns are linked to psychological observations. Using language models, we automatically extract linguistic features such as processes, participants, and circumstances. We apply our framework to hundreds of dream narratives, including a case study on a war veteran with post-traumatic stress disorder. Analysis of his narratives uncovers distinctive patterns, particularly how verbal processes dominate over mental ones, illustrating the relationship between linguistic choices and psychological states.
What time is it? Temporal Analysis of Novels
Recognizing the flow of time in a story is a crucial aspect of understanding it. Prior work related to time has primarily focused on identifying temporal expressions or relative sequencing of events, but here we propose computationally annotating each line of a book with wall clock times, even in the absence of explicit time-descriptive phrases. To do so, we construct a data set of hourly time phrases from 52,183 fictional books. We then construct a time-of-day classification model that achieves an average error of 2.27 hours. Furthermore, we show that by analyzing a book in whole using dynamic programming of breakpoints, we can roughly partition a book into segments that each correspond to a particular time-of-day. This approach improves upon baselines by over two hours. Finally, we apply our model to a corpus of literature categorized by different periods in history, to show interesting trends of hourly activity throughout the past. Among several observations we find that the fraction of events taking place past 10 P.M jumps past 1880 - coincident with the advent of the electric light bulb and city lights.
When Punctuation Matters: A Large-Scale Comparison of Prompt Robustness Methods for LLMs
Large Language Models (LLMs) are highly sensitive to subtle, non-semantic variations in prompt phrasing and formatting. In this work, we present the first systematic evaluation of 5 methods for improving prompt robustness within a unified experimental framework. We benchmark these techniques on 8 models from Llama, Qwen and Gemma families across 52 tasks from Natural Instructions dataset. Our evaluation covers robustness methods from both fine-tuned and in-context learning paradigms, and tests their generalization against multiple types of distribution shifts. Finally, we extend our analysis to GPT-4.1 and DeepSeek V3 to assess frontier models' current robustness to format perturbations. Our findings offer actionable insights into the relative effectiveness of these robustness methods, enabling practitioners to make informed decisions when aiming for stable and reliable LLM performance in real-world applications. Code: https://github.com/AIRI-Institute/when-punctuation-matters.
Language Models as Semiotic Machines: Reconceptualizing AI Language Systems through Structuralist and Post-Structuralist Theories of Language
This paper proposes a novel framework for understanding large language models (LLMs) by reconceptualizing them as semiotic machines rather than as imitations of human cognition. Drawing from structuralist and post-structuralist theories of language-specifically the works of Ferdinand de Saussure and Jacques Derrida-I argue that LLMs should be understood as models of language itself, aligning with Derrida's concept of 'writing' (l'ecriture). The paper is structured into three parts. First, I lay the theoretical groundwork by explaining how the word2vec embedding algorithm operates within Saussure's framework of language as a relational system of signs. Second, I apply Derrida's critique of Saussure to position 'writing' as the object modeled by LLMs, offering a view of the machine's 'mind' as a statistical approximation of sign behavior. Finally, the third section addresses how modern LLMs reflect post-structuralist notions of unfixed meaning, arguing that the "next token generation" mechanism effectively captures the dynamic nature of meaning. By reconceptualizing LLMs as semiotic machines rather than cognitive models, this framework provides an alternative lens through which to assess the strengths and limitations of LLMs, offering new avenues for future research.
QuestEval: Summarization Asks for Fact-based Evaluation
Summarization evaluation remains an open research problem: current metrics such as ROUGE are known to be limited and to correlate poorly with human judgments. To alleviate this issue, recent work has proposed evaluation metrics which rely on question answering models to assess whether a summary contains all the relevant information in its source document. Though promising, the proposed approaches have so far failed to correlate better than ROUGE with human judgments. In this paper, we extend previous approaches and propose a unified framework, named QuestEval. In contrast to established metrics such as ROUGE or BERTScore, QuestEval does not require any ground-truth reference. Nonetheless, QuestEval substantially improves the correlation with human judgments over four evaluation dimensions (consistency, coherence, fluency, and relevance), as shown in the extensive experiments we report.
Language Models: A Guide for the Perplexed
Given the growing importance of AI literacy, we decided to write this tutorial to help narrow the gap between the discourse among those who study language models -- the core technology underlying ChatGPT and similar products -- and those who are intrigued and want to learn more about them. In short, we believe the perspective of researchers and educators can add some clarity to the public's understanding of the technologies beyond what's currently available, which tends to be either extremely technical or promotional material generated about products by their purveyors. Our approach teases apart the concept of a language model from products built on them, from the behaviors attributed to or desired from those products, and from claims about similarity to human cognition. As a starting point, we (1) offer a scientific viewpoint that focuses on questions amenable to study through experimentation; (2) situate language models as they are today in the context of the research that led to their development; and (3) describe the boundaries of what is known about the models at this writing.
RAPID: Efficient Retrieval-Augmented Long Text Generation with Writing Planning and Information Discovery
Generating knowledge-intensive and comprehensive long texts, such as encyclopedia articles, remains significant challenges for Large Language Models. It requires not only the precise integration of facts but also the maintenance of thematic coherence throughout the article. Existing methods, such as direct generation and multi-agent discussion, often struggle with issues like hallucinations, topic incoherence, and significant latency. To address these challenges, we propose RAPID, an efficient retrieval-augmented long text generation framework. RAPID consists of three main modules: (1) Retrieval-augmented preliminary outline generation to reduce hallucinations, (2) Attribute-constrained search for efficient information discovery, (3) Plan-guided article generation for enhanced coherence. Extensive experiments on our newly compiled benchmark dataset, FreshWiki-2024, demonstrate that RAPID significantly outperforms state-of-the-art methods across a wide range of evaluation metrics (e.g. long-text generation, outline quality, latency, etc). Our work provides a robust and efficient solution to the challenges of automated long-text generation.
BookSum: A Collection of Datasets for Long-form Narrative Summarization
The majority of available text summarization datasets include short-form source documents that lack long-range causal and temporal dependencies, and often contain strong layout and stylistic biases. While relevant, such datasets will offer limited challenges for future generations of text summarization systems. We address these issues by introducing BookSum, a collection of datasets for long-form narrative summarization. Our dataset covers source documents from the literature domain, such as novels, plays and stories, and includes highly abstractive, human written summaries on three levels of granularity of increasing difficulty: paragraph-, chapter-, and book-level. The domain and structure of our dataset poses a unique set of challenges for summarization systems, which include: processing very long documents, non-trivial causal and temporal dependencies, and rich discourse structures. To facilitate future work, we trained and evaluated multiple extractive and abstractive summarization models as baselines for our dataset.
AdapterSwap: Continuous Training of LLMs with Data Removal and Access-Control Guarantees
Large language models (LLMs) are increasingly capable of completing knowledge intensive tasks by recalling information from a static pretraining corpus. Here we are concerned with LLMs in the context of evolving data requirements. For instance: batches of new data that are introduced periodically; subsets of data with user-based access controls; or requirements on dynamic removal of documents with guarantees that associated knowledge cannot be recalled. We wish to satisfy these requirements while at the same time ensuring a model does not forget old information when new data becomes available. To address these issues, we introduce AdapterSwap, a training and inference scheme that organizes knowledge from a data collection into a set of low-rank adapters, which are dynamically composed during inference. Our experiments demonstrate AdapterSwap's ability to support efficient continual learning, while also enabling organizations to have fine-grained control over data access and deletion.
Fill in the BLANC: Human-free quality estimation of document summaries
We present BLANC, a new approach to the automatic estimation of document summary quality. Our goal is to measure the functional performance of a summary with an objective, reproducible, and fully automated method. Our approach achieves this by measuring the performance boost gained by a pre-trained language model with access to a document summary while carrying out its language understanding task on the document's text. We present evidence that BLANC scores have as good correlation with human evaluations as do the ROUGE family of summary quality measurements. And unlike ROUGE, the BLANC method does not require human-written reference summaries, allowing for fully human-free summary quality estimation.
