new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 12

When do they StOP?: A First Step Towards Automatically Identifying Team Communication in the Operating Room

Purpose: Surgical performance depends not only on surgeons' technical skills but also on team communication within and across the different professional groups present during the operation. Therefore, automatically identifying team communication in the OR is crucial for patient safety and advances in the development of computer-assisted surgical workflow analysis and intra-operative support systems. To take the first step, we propose a new task of detecting communication briefings involving all OR team members, i.e. the team Time-out and the StOP?-protocol, by localizing their start and end times in video recordings of surgical operations. Methods: We generate an OR dataset of real surgeries, called Team-OR, with more than one hundred hours of surgical videos captured by the multi-view camera system in the OR. The dataset contains temporal annotations of 33 Time-out and 22 StOP?-protocol activities in total. We then propose a novel group activity detection approach, where we encode both scene context and action features, and use an efficient neural network model to output the results. Results: The experimental results on the Team-OR dataset show that our approach outperforms existing state-of-the-art temporal action detection approaches. It also demonstrates the lack of research on group activities in the OR, proving the significance of our dataset. Conclusion: We investigate the Team Time-Out and the StOP?-protocol in the OR, by presenting the first OR dataset with temporal annotations of group activities protocols, and introducing a novel group activity detection approach that outperforms existing approaches. Code is available at https://github.com/CAMMA-public/Team-OR.

  • 8 authors
·
Feb 12

Aircrew rostering workload patterns and associated fatigue and sleepiness scores in short/medium haul flights under RBAC 117 rules in Brazil

The relationships between workload and fatigue or sleepiness are investigated through the analysis of rosters and responses to questionnaires from Brazilian aircrews, taken from Fadig\^ometro database. The approach includes temporal markers - coinciding with Samn-Perelli (SP) and Karolinska Sleepiness Scale (KSS) responses - where SAFTE-FAST model outcomes are calculated. The model results follow the increase of fatigue and sleepiness perceptions during the dawn (0h00 to 05h59), but underestimate the self-rated scores during the evening (18h00 to 23h59). On the other hand, the KSS scores fit the relative risk of pilot errors, representing a reasonable proxy for risk assessment. Linear relationships obtained between workload metrics, computed within 168-hours prior to the responses, and self-rated SP and KSS scores provide a consistent method to estimate accumulated fatigue and sleepiness. Considering 7149 rosters of 2023, the duty time (DT), the number of flight sectors (N_{CREW}) and the sum of flight sectors with sit periods longer than one hour (N_{CREW}+N_{SIT}) are associated with 70.1%/60.6% of the highest predicted scores of SP/KSS. Applying the mitigations DTleq44h, N_{CREW}leq15 and N_{CREW}+N_{SIT}leq19 for every 168-hour interval yields a significant decrease in the higher values of SP/KSS with minimal impact on aircrew productivity.

  • 8 authors
·
Aug 5, 2024