Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEcomGPT-CT: Continual Pre-training of E-commerce Large Language Models with Semi-structured Data
Large Language Models (LLMs) pre-trained on massive corpora have exhibited remarkable performance on various NLP tasks. However, applying these models to specific domains still poses significant challenges, such as lack of domain knowledge, limited capacity to leverage domain knowledge and inadequate adaptation to domain-specific data formats. Considering the exorbitant cost of training LLMs from scratch and the scarcity of annotated data within particular domains, in this work, we focus on domain-specific continual pre-training of LLMs using E-commerce domain as an exemplar. Specifically, we explore the impact of continual pre-training on LLMs employing unlabeled general and E-commercial corpora. Furthermore, we design a mixing strategy among different data sources to better leverage E-commercial semi-structured data. We construct multiple tasks to assess LLMs' few-shot In-context Learning ability and their zero-shot performance after instruction tuning in E-commerce domain. Experimental results demonstrate the effectiveness of continual pre-training of E-commerce LLMs and the efficacy of our devised data mixing strategy.
FashionVQA: A Domain-Specific Visual Question Answering System
Humans apprehend the world through various sensory modalities, yet language is their predominant communication channel. Machine learning systems need to draw on the same multimodal richness to have informed discourses with humans in natural language; this is particularly true for systems specialized in visually-dense information, such as dialogue, recommendation, and search engines for clothing. To this end, we train a visual question answering (VQA) system to answer complex natural language questions about apparel in fashion photoshoot images. The key to the successful training of our VQA model is the automatic creation of a visual question-answering dataset with 168 million samples from item attributes of 207 thousand images using diverse templates. The sample generation employs a strategy that considers the difficulty of the question-answer pairs to emphasize challenging concepts. Contrary to the recent trends in using several datasets for pretraining the visual question answering models, we focused on keeping the dataset fixed while training various models from scratch to isolate the improvements from model architecture changes. We see that using the same transformer for encoding the question and decoding the answer, as in language models, achieves maximum accuracy, showing that visual language models (VLMs) make the best visual question answering systems for our dataset. The accuracy of the best model surpasses the human expert level, even when answering human-generated questions that are not confined to the template formats. Our approach for generating a large-scale multimodal domain-specific dataset provides a path for training specialized models capable of communicating in natural language. The training of such domain-expert models, e.g., our fashion VLM model, cannot rely solely on the large-scale general-purpose datasets collected from the web.
DAViD: Domain Adaptive Visually-Rich Document Understanding with Synthetic Insights
Visually-Rich Documents (VRDs), encompassing elements like charts, tables, and references, convey complex information across various fields. However, extracting information from these rich documents is labor-intensive, especially given their inconsistent formats and domain-specific requirements. While pretrained models for VRD Understanding have progressed, their reliance on large, annotated datasets limits scalability. This paper introduces the Domain Adaptive Visually-rich Document Understanding (DAViD) framework, which utilises machine-generated synthetic data for domain adaptation. DAViD integrates fine-grained and coarse-grained document representation learning and employs synthetic annotations to reduce the need for costly manual labelling. By leveraging pretrained models and synthetic data, DAViD achieves competitive performance with minimal annotated datasets. Extensive experiments validate DAViD's effectiveness, demonstrating its ability to efficiently adapt to domain-specific VRDU tasks.
PRvL: Quantifying the Capabilities and Risks of Large Language Models for PII Redaction
Redacting Personally Identifiable Information (PII) from unstructured text is critical for ensuring data privacy in regulated domains. While earlier approaches have relied on rule-based systems and domain-specific Named Entity Recognition (NER) models, these methods fail to generalize across formats and contexts. Recent advances in Large Language Models (LLMs) offer a promising alternative, yet the effect of architectural and training choices on redaction performance remains underexplored. LLMs have demonstrated strong performance in tasks that require contextual language understanding, including the redaction of PII in free-form text. Prior work suggests that with appropriate adaptation, LLMs can become effective contextual privacy learners. However, the consequences of architectural and training choices for PII Redaction remain underexplored. In this work, we present a comprehensive analysis of LLMs as privacy-preserving PII Redaction systems. We evaluate a range of LLM architectures and training strategies for their effectiveness in PII Redaction. Our analysis measures redaction performance, semantic preservation, and PII leakage, and compares these outcomes against latency and computational cost. The results provide practical guidance for configuring LLM-based redactors that are accurate, efficient, and privacy-aware. To support reproducibility and real-world deployment, we release PRvL, an open-source suite of fine-tuned models, and evaluation tools for general-purpose PII Redaction. PRvL is built entirely on open-source LLMs and supports multiple inference settings for flexibility and compliance. It is designed to be easily customized for different domains and fully operable within secure, self-managed environments. This enables data owners to perform redactions without relying on third-party services or exposing sensitive content beyond their own infrastructure.
KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models
Large language models (LLMs) demonstrate remarkable performance on knowledge-intensive tasks, suggesting that real-world knowledge is encoded in their model parameters. However, besides explorations on a few probing tasks in limited knowledge domains, it is not well understood how to evaluate LLMs' knowledge systematically and how well their knowledge abilities generalize, across a spectrum of knowledge domains and progressively complex task formats. To this end, we propose KGQuiz, a knowledge-intensive benchmark to comprehensively investigate the knowledge generalization abilities of LLMs. KGQuiz is a scalable framework constructed from triplet-based knowledge, which covers three knowledge domains and consists of five tasks with increasing complexity: true-or-false, multiple-choice QA, blank filling, factual editing, and open-ended knowledge generation. To gain a better understanding of LLMs' knowledge abilities and their generalization, we evaluate 10 open-source and black-box LLMs on the KGQuiz benchmark across the five knowledge-intensive tasks and knowledge domains. Extensive experiments demonstrate that LLMs achieve impressive performance in straightforward knowledge QA tasks, while settings and contexts requiring more complex reasoning or employing domain-specific facts still present significant challenges. We envision KGQuiz as a testbed to analyze such nuanced variations in performance across domains and task formats, and ultimately to understand, evaluate, and improve LLMs' knowledge abilities across a wide spectrum of knowledge domains and tasks.
MIRAI: Evaluating LLM Agents for Event Forecasting
Recent advancements in Large Language Models (LLMs) have empowered LLM agents to autonomously collect world information, over which to conduct reasoning to solve complex problems. Given this capability, increasing interests have been put into employing LLM agents for predicting international events, which can influence decision-making and shape policy development on an international scale. Despite such a growing interest, there is a lack of a rigorous benchmark of LLM agents' forecasting capability and reliability. To address this gap, we introduce MIRAI, a novel benchmark designed to systematically evaluate LLM agents as temporal forecasters in the context of international events. Our benchmark features an agentic environment with tools for accessing an extensive database of historical, structured events and textual news articles. We refine the GDELT event database with careful cleaning and parsing to curate a series of relational prediction tasks with varying forecasting horizons, assessing LLM agents' abilities from short-term to long-term forecasting. We further implement APIs to enable LLM agents to utilize different tools via a code-based interface. In summary, MIRAI comprehensively evaluates the agents' capabilities in three dimensions: 1) autonomously source and integrate critical information from large global databases; 2) write codes using domain-specific APIs and libraries for tool-use; and 3) jointly reason over historical knowledge from diverse formats and time to accurately predict future events. Through comprehensive benchmarking, we aim to establish a reliable framework for assessing the capabilities of LLM agents in forecasting international events, thereby contributing to the development of more accurate and trustworthy models for international relation analysis.
HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction
Extraction and interpretation of intricate information from unstructured text data arising in financial applications, such as earnings call transcripts, present substantial challenges to large language models (LLMs) even using the current best practices to use Retrieval Augmented Generation (RAG) (referred to as VectorRAG techniques which utilize vector databases for information retrieval) due to challenges such as domain specific terminology and complex formats of the documents. We introduce a novel approach based on a combination, called HybridRAG, of the Knowledge Graphs (KGs) based RAG techniques (called GraphRAG) and VectorRAG techniques to enhance question-answer (Q&A) systems for information extraction from financial documents that is shown to be capable of generating accurate and contextually relevant answers. Using experiments on a set of financial earning call transcripts documents which come in the form of Q&A format, and hence provide a natural set of pairs of ground-truth Q&As, we show that HybridRAG which retrieves context from both vector database and KG outperforms both traditional VectorRAG and GraphRAG individually when evaluated at both the retrieval and generation stages in terms of retrieval accuracy and answer generation. The proposed technique has applications beyond the financial domain
Bangla-Bayanno: A 52K-Pair Bengali Visual Question Answering Dataset with LLM-Assisted Translation Refinement
In this paper, we introduce Bangla-Bayanno, an open-ended Visual Question Answering (VQA) Dataset in Bangla, a widely used, low-resource language in multimodal AI research. The majority of existing datasets are either manually annotated with an emphasis on a specific domain, query type, or answer type or are constrained by niche answer formats. In order to mitigate human-induced errors and guarantee lucidity, we implemented a multilingual LLM-assisted translation refinement pipeline. This dataset overcomes the issues of low-quality translations from multilingual sources. The dataset comprises 52,650 question-answer pairs across 4750+ images. Questions are classified into three distinct answer types: nominal (short descriptive), quantitative (numeric), and polar (yes/no). Bangla-Bayanno provides the most comprehensive open-source, high-quality VQA benchmark in Bangla, aiming to advance research in low-resource multimodal learning and facilitate the development of more inclusive AI systems.
UniMed-CLIP: Towards a Unified Image-Text Pretraining Paradigm for Diverse Medical Imaging Modalities
Vision-Language Models (VLMs) trained via contrastive learning have achieved notable success in natural image tasks. However, their application in the medical domain remains limited due to the scarcity of openly accessible, large-scale medical image-text datasets. Existing medical VLMs either train on closed-source proprietary or relatively small open-source datasets that do not generalize well. Similarly, most models remain specific to a single or limited number of medical imaging domains, again restricting their applicability to other modalities. To address this gap, we introduce UniMed, a large-scale, open-source multi-modal medical dataset comprising over 5.3 million image-text pairs across six diverse imaging modalities: X-ray, CT, MRI, Ultrasound, Pathology, and Fundus. UniMed is developed using a data-collection framework that leverages Large Language Models (LLMs) to transform modality-specific classification datasets into image-text formats while incorporating existing image-text data from the medical domain, facilitating scalable VLM pretraining. Using UniMed, we trained UniMed-CLIP, a unified VLM for six modalities that significantly outperforms existing generalist VLMs and matches modality-specific medical VLMs, achieving notable gains in zero-shot evaluations. For instance, UniMed-CLIP improves over BiomedCLIP (trained on proprietary data) by an absolute gain of +12.61, averaged over 21 datasets, while using 3x less training data. To facilitate future research, we release UniMed dataset, training codes, and models at https://github.com/mbzuai-oryx/UniMed-CLIP.
VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering
Retrieval-Augmented Generation (RAG) is becoming increasingly essential for Question Answering (QA) in the financial sector, where accurate and contextually grounded insights from complex public disclosures are crucial. However, existing financial RAG systems face two significant challenges: (1) they struggle to process heterogeneous data formats, such as text, tables, and figures; and (2) they encounter difficulties in balancing general-domain applicability with company-specific adaptation. To overcome these challenges, we present VeritasFi, an innovative hybrid RAG framework that incorporates a multi-modal preprocessing pipeline alongside a cutting-edge two-stage training strategy for its re-ranking component. VeritasFi enhances financial QA through three key innovations: (1) A multi-modal preprocessing pipeline that seamlessly transforms heterogeneous data into a coherent, machine-readable format. (2) A tripartite hybrid retrieval engine that operates in parallel, combining deep multi-path retrieval over a semantically indexed document corpus, real-time data acquisition through tool utilization, and an expert-curated memory bank for high-frequency questions, ensuring comprehensive scope, accuracy, and efficiency. (3) A two-stage training strategy for the document re-ranker, which initially constructs a general, domain-specific model using anonymized data, followed by rapid fine-tuning on company-specific data for targeted applications. By integrating our proposed designs, VeritasFi presents a groundbreaking framework that greatly enhances the adaptability and robustness of financial RAG systems, providing a scalable solution for both general-domain and company-specific QA tasks. Code accompanying this work is available at https://github.com/simplew4y/VeritasFi.git.
Uncovering ChatGPT's Capabilities in Recommender Systems
The debut of ChatGPT has recently attracted the attention of the natural language processing (NLP) community and beyond. Existing studies have demonstrated that ChatGPT shows significant improvement in a range of downstream NLP tasks, but the capabilities and limitations of ChatGPT in terms of recommendations remain unclear. In this study, we aim to conduct an empirical analysis of ChatGPT's recommendation ability from an Information Retrieval (IR) perspective, including point-wise, pair-wise, and list-wise ranking. To achieve this goal, we re-formulate the above three recommendation policies into a domain-specific prompt format. Through extensive experiments on four datasets from different domains, we demonstrate that ChatGPT outperforms other large language models across all three ranking policies. Based on the analysis of unit cost improvements, we identify that ChatGPT with list-wise ranking achieves the best trade-off between cost and performance compared to point-wise and pair-wise ranking. Moreover, ChatGPT shows the potential for mitigating the cold start problem and explainable recommendation. To facilitate further explorations in this area, the full code and detailed original results are open-sourced at https://github.com/rainym00d/LLM4RS.
Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment
Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.
SecureBERT: A Domain-Specific Language Model for Cybersecurity
Natural Language Processing (NLP) has recently gained wide attention in cybersecurity, particularly in Cyber Threat Intelligence (CTI) and cyber automation. Increased connection and automation have revolutionized the world's economic and cultural infrastructures, while they have introduced risks in terms of cyber attacks. CTI is information that helps cybersecurity analysts make intelligent security decisions, that is often delivered in the form of natural language text, which must be transformed to machine readable format through an automated procedure before it can be used for automated security measures. This paper proposes SecureBERT, a cybersecurity language model capable of capturing text connotations in cybersecurity text (e.g., CTI) and therefore successful in automation for many critical cybersecurity tasks that would otherwise rely on human expertise and time-consuming manual efforts. SecureBERT has been trained using a large corpus of cybersecurity text.To make SecureBERT effective not just in retaining general English understanding, but also when applied to text with cybersecurity implications, we developed a customized tokenizer as well as a method to alter pre-trained weights. The SecureBERT is evaluated using the standard Masked Language Model (MLM) test as well as two additional standard NLP tasks. Our evaluation studies show that SecureBERT\url{https://github.com/ehsanaghaei/SecureBERT} outperforms existing similar models, confirming its capability for solving crucial NLP tasks in cybersecurity.
Multimodal Language Models for Domain-Specific Procedural Video Summarization
Videos serve as a powerful medium to convey ideas, tell stories, and provide detailed instructions, especially through long-format tutorials. Such tutorials are valuable for learning new skills at one's own pace, yet they can be overwhelming due to their length and dense content. Viewers often seek specific information, like precise measurements or step-by-step execution details, making it essential to extract and summarize key segments efficiently. An intelligent, time-sensitive video assistant capable of summarizing and detecting highlights in long videos is highly sought after. Recent advancements in Multimodal Large Language Models offer promising solutions to develop such an assistant. Our research explores the use of multimodal models to enhance video summarization and step-by-step instruction generation within specific domains. These models need to understand temporal events and relationships among actions across video frames. Our approach focuses on fine-tuning TimeChat to improve its performance in specific domains: cooking and medical procedures. By training the model on domain-specific datasets like Tasty for cooking and MedVidQA for medical procedures, we aim to enhance its ability to generate concise, accurate summaries of instructional videos. We curate and restructure these datasets to create high-quality video-centric instruction data. Our findings indicate that when finetuned on domain-specific procedural data, TimeChat can significantly improve the extraction and summarization of key instructional steps in long-format videos. This research demonstrates the potential of specialized multimodal models to assist with practical tasks by providing personalized, step-by-step guidance tailored to the unique aspects of each domain.
ConCodeEval: Evaluating Large Language Models for Code Constraints in Domain-Specific Languages
Recent work shows Large Language Models (LLMs) struggle to understand natural language constraints for various text generation tasks in zero- and few-shot settings. While, in the code domain, there is wide usage of constraints in code format to maintain the integrity of code written in Domain-Specific Languages (DSLs) like JSON and YAML which are widely used for system-level programming tasks in enterprises. Given that LLMs are increasingly used for system-level code tasks, evaluating if they can comprehend these code constraints is crucial. However, no work has been done to evaluate their controllability over code constraints. Hence, we introduce ConCodeEval, a first-of-its-kind benchmark having two novel tasks for code constraints across five representations. Our findings suggest that language models struggle with code constraints. Code languages that perform excellently for normal code tasks do not perform well when the same languages represent fine-grained constraints.
Multi-task retriever fine-tuning for domain-specific and efficient RAG
Retrieval-Augmented Generation (RAG) has become ubiquitous when deploying Large Language Models (LLMs), as it can address typical limitations such as generating hallucinated or outdated information. However, when building real-world RAG applications, practical issues arise. First, the retrieved information is generally domain-specific. Since it is computationally expensive to fine-tune LLMs, it is more feasible to fine-tune the retriever to improve the quality of the data included in the LLM input. Second, as more applications are deployed in the same real-world system, one cannot afford to deploy separate retrievers. Moreover, these RAG applications normally retrieve different kinds of data. Our solution is to instruction fine-tune a small retriever encoder on a variety of domain-specific tasks to allow us to deploy one encoder that can serve many use cases, thereby achieving low-cost, scalability, and speed. We show how this encoder generalizes to out-of-domain settings as well as to an unseen retrieval task on real-world enterprise use cases.
ActionBert: Leveraging User Actions for Semantic Understanding of User Interfaces
As mobile devices are becoming ubiquitous, regularly interacting with a variety of user interfaces (UIs) is a common aspect of daily life for many people. To improve the accessibility of these devices and to enable their usage in a variety of settings, building models that can assist users and accomplish tasks through the UI is vitally important. However, there are several challenges to achieve this. First, UI components of similar appearance can have different functionalities, making understanding their function more important than just analyzing their appearance. Second, domain-specific features like Document Object Model (DOM) in web pages and View Hierarchy (VH) in mobile applications provide important signals about the semantics of UI elements, but these features are not in a natural language format. Third, owing to a large diversity in UIs and absence of standard DOM or VH representations, building a UI understanding model with high coverage requires large amounts of training data. Inspired by the success of pre-training based approaches in NLP for tackling a variety of problems in a data-efficient way, we introduce a new pre-trained UI representation model called ActionBert. Our methodology is designed to leverage visual, linguistic and domain-specific features in user interaction traces to pre-train generic feature representations of UIs and their components. Our key intuition is that user actions, e.g., a sequence of clicks on different UI components, reveals important information about their functionality. We evaluate the proposed model on a wide variety of downstream tasks, ranging from icon classification to UI component retrieval based on its natural language description. Experiments show that the proposed ActionBert model outperforms multi-modal baselines across all downstream tasks by up to 15.5%.
TimeMaster: Training Time-Series Multimodal LLMs to Reason via Reinforcement Learning
Time-series reasoning remains a significant challenge in multimodal large language models (MLLMs) due to the dynamic temporal patterns, ambiguous semantics, and lack of temporal priors. In this work, we introduce TimeMaster, a reinforcement learning (RL)-based method that enables time-series MLLMs to perform structured, interpretable reasoning directly over visualized time-series inputs and task prompts. TimeMaster adopts a three-part structured output format, reasoning, classification, and domain-specific extension, and is optimized via a composite reward function that aligns format adherence, prediction accuracy, and open-ended insight quality. The model is trained using a two-stage pipeline: we first apply supervised fine-tuning (SFT) to establish a good initialization, followed by Group Relative Policy Optimization (GRPO) at the token level to enable stable and targeted reward-driven improvement in time-series reasoning. We evaluate TimeMaster on the TimerBed benchmark across six real-world classification tasks based on Qwen2.5-VL-3B-Instruct. TimeMaster achieves state-of-the-art performance, outperforming both classical time-series models and few-shot GPT-4o by over 14.6% and 7.3% performance gain, respectively. Notably, TimeMaster goes beyond time-series classification: it also exhibits expert-like reasoning behavior, generates context-aware explanations, and delivers domain-aligned insights. Our results highlight that reward-driven RL can be a scalable and promising path toward integrating temporal understanding into time-series MLLMs.
Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique
Since radiology reports needed for clinical practice and research are written and stored in free-text narrations, extraction of relative information for further analysis is difficult. In these circumstances, natural language processing (NLP) techniques can facilitate automatic information extraction and transformation of free-text formats to structured data. In recent years, deep learning (DL)-based models have been adapted for NLP experiments with promising results. Despite the significant potential of DL models based on artificial neural networks (ANN) and convolutional neural networks (CNN), the models face some limitations to implement in clinical practice. Transformers, another new DL architecture, have been increasingly applied to improve the process. Therefore, in this study, we propose a transformer-based fine-grained named entity recognition (NER) architecture for clinical information extraction. We collected 88 abdominopelvic sonography reports in free-text formats and annotated them based on our developed information schema. The text-to-text transfer transformer model (T5) and Scifive, a pre-trained domain-specific adaptation of the T5 model, were applied for fine-tuning to extract entities and relations and transform the input into a structured format. Our transformer-based model in this study outperformed previously applied approaches such as ANN and CNN models based on ROUGE-1, ROUGE-2, ROUGE-L, and BLEU scores of 0.816, 0.668, 0.528, and 0.743, respectively, while providing an interpretable structured report.
KaggleDBQA: Realistic Evaluation of Text-to-SQL Parsers
The goal of database question answering is to enable natural language querying of real-life relational databases in diverse application domains. Recently, large-scale datasets such as Spider and WikiSQL facilitated novel modeling techniques for text-to-SQL parsing, improving zero-shot generalization to unseen databases. In this work, we examine the challenges that still prevent these techniques from practical deployment. First, we present KaggleDBQA, a new cross-domain evaluation dataset of real Web databases, with domain-specific data types, original formatting, and unrestricted questions. Second, we re-examine the choice of evaluation tasks for text-to-SQL parsers as applied in real-life settings. Finally, we augment our in-domain evaluation task with database documentation, a naturally occurring source of implicit domain knowledge. We show that KaggleDBQA presents a challenge to state-of-the-art zero-shot parsers but a more realistic evaluation setting and creative use of associated database documentation boosts their accuracy by over 13.2%, doubling their performance.
A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
An overview of domain-specific foundation model: key technologies, applications and challenges
The impressive performance of ChatGPT and other foundation-model-based products in human language understanding has prompted both academia and industry to explore how these models can be tailored for specific industries and application scenarios. This process, known as the customization of domain-specific foundation models (FMs), addresses the limitations of general-purpose models, which may not fully capture the unique patterns and requirements of domain-specific data. Despite its importance, there is a notable lack of comprehensive overview papers on building domain-specific FMs, while numerous resources exist for general-purpose models. To bridge this gap, this article provides a timely and thorough overview of the methodology for customizing domain-specific FMs. It introduces basic concepts, outlines the general architecture, and surveys key methods for constructing domain-specific models. Furthermore, the article discusses various domains that can benefit from these specialized models and highlights the challenges ahead. Through this overview, we aim to offer valuable guidance and reference for researchers and practitioners from diverse fields to develop their own customized FMs.
Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations
There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs.
Domain-specific Question Answering with Hybrid Search
Domain specific question answering is an evolving field that requires specialized solutions to address unique challenges. In this paper, we show that a hybrid approach combining a fine-tuned dense retriever with keyword based sparse search methods significantly enhances performance. Our system leverages a linear combination of relevance signals, including cosine similarity from dense retrieval, BM25 scores, and URL host matching, each with tunable boost parameters. Experimental results indicate that this hybrid method outperforms our single-retriever system, achieving improved accuracy while maintaining robust contextual grounding. These findings suggest that integrating multiple retrieval methodologies with weighted scoring effectively addresses the complexities of domain specific question answering in enterprise settings.
Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.
MetaGen Blended RAG: Higher Accuracy for Domain-Specific Q&A Without Fine-Tuning
Despite the widespread exploration of Retrieval-Augmented Generation (RAG), its deployment in enterprises for domain-specific datasets remains limited due to poor answer accuracy. These corpora, often shielded behind firewalls in private enterprise knowledge bases, having complex, domain-specific terminology, rarely seen by LLMs during pre-training; exhibit significant semantic variability across domains (like networking, military, or legal, etc.), or even within a single domain like medicine, and thus result in poor context precision for RAG systems. Currently, in such situations, fine-tuning or RAG with fine-tuning is attempted, but these approaches are slow, expensive, and lack generalization for accuracy as the new domain-specific data emerges. We propose an approach for Enterprise Search that focuses on enhancing the retriever for a domain-specific corpus through hybrid query indexes and metadata enrichment. This 'MetaGen Blended RAG' method constructs a metadata generation pipeline using key concepts, topics, and acronyms, and then creates a metadata-enriched hybrid index with boosted search queries. This approach avoids overfitting and generalizes effectively across domains. On the PubMedQA benchmark for the biomedical domain, the proposed method achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all previous RAG accuracy results without fine-tuning and sets a new benchmark for zero-shot results while outperforming much larger models like GPT3.5. The results are even comparable to the best fine-tuned models on this dataset, and we further demonstrate the robustness and scalability of the approach by evaluating it on other Q&A datasets like SQuAD, NQ etc.
Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
HAIBU-ReMUD: Reasoning Multimodal Ultrasound Dataset and Model Bridging to General Specific Domains
Multimodal large language models (MLLMs) have shown great potential in general domains but perform poorly in some specific domains due to a lack of domain-specific data, such as image-text data or vedio-text data. In some specific domains, there is abundant graphic and textual data scattered around, but lacks standardized arrangement. In the field of medical ultrasound, there are ultrasonic diagnostic books, ultrasonic clinical guidelines, ultrasonic diagnostic reports, and so on. However, these ultrasonic materials are often saved in the forms of PDF, images, etc., and cannot be directly used for the training of MLLMs. This paper proposes a novel image-text reasoning supervised fine-tuning data generation pipeline to create specific domain quadruplets (image, question, thinking trace, and answer) from domain-specific materials. A medical ultrasound domain dataset ReMUD is established, containing over 45,000 reasoning and non-reasoning supervised fine-tuning Question Answering (QA) and Visual Question Answering (VQA) data. The ReMUD-7B model, fine-tuned on Qwen2.5-VL-7B-Instruct, outperforms general-domain MLLMs in medical ultrasound field. To facilitate research, the ReMUD dataset, data generation codebase, and ReMUD-7B parameters will be released at https://github.com/ShiDaizi/ReMUD, addressing the data shortage issue in specific domain MLLMs.
TelcoLM: collecting data, adapting, and benchmarking language models for the telecommunication domain
Despite outstanding processes in many tasks, Large Language Models (LLMs) still lack accuracy when dealing with highly technical domains. Especially, telecommunications (telco) is a particularly challenging domain due the large amount of lexical, semantic and conceptual peculiarities. Yet, this domain holds many valuable use cases, directly linked to industrial needs. Hence, this paper studies how LLMs can be adapted to the telco domain. It reports our effort to (i) collect a massive corpus of domain-specific data (800M tokens, 80K instructions), (ii) perform adaptation using various methodologies, and (iii) benchmark them against larger generalist models in downstream tasks that require extensive knowledge of telecommunications. Our experiments on Llama-2-7b show that domain-adapted models can challenge the large generalist models. They also suggest that adaptation can be restricted to a unique instruction-tuning step, dicarding the need for any fine-tuning on raw texts beforehand.
Can Humans Identify Domains?
Textual domain is a crucial property within the Natural Language Processing (NLP) community due to its effects on downstream model performance. The concept itself is, however, loosely defined and, in practice, refers to any non-typological property, such as genre, topic, medium or style of a document. We investigate the core notion of domains via human proficiency in identifying related intrinsic textual properties, specifically the concepts of genre (communicative purpose) and topic (subject matter). We publish our annotations in *TGeGUM*: A collection of 9.1k sentences from the GUM dataset (Zeldes, 2017) with single sentence and larger context (i.e., prose) annotations for one of 11 genres (source type), and its topic/subtopic as per the Dewey Decimal library classification system (Dewey, 1979), consisting of 10/100 hierarchical topics of increased granularity. Each instance is annotated by three annotators, for a total of 32.7k annotations, allowing us to examine the level of human disagreement and the relative difficulty of each annotation task. With a Fleiss' kappa of at most 0.53 on the sentence level and 0.66 at the prose level, it is evident that despite the ubiquity of domains in NLP, there is little human consensus on how to define them. By training classifiers to perform the same task, we find that this uncertainty also extends to NLP models.
JuriBERT: A Masked-Language Model Adaptation for French Legal Text
Language models have proven to be very useful when adapted to specific domains. Nonetheless, little research has been done on the adaptation of domain-specific BERT models in the French language. In this paper, we focus on creating a language model adapted to French legal text with the goal of helping law professionals. We conclude that some specific tasks do not benefit from generic language models pre-trained on large amounts of data. We explore the use of smaller architectures in domain-specific sub-languages and their benefits for French legal text. We prove that domain-specific pre-trained models can perform better than their equivalent generalised ones in the legal domain. Finally, we release JuriBERT, a new set of BERT models adapted to the French legal domain.
Organize the Web: Constructing Domains Enhances Pre-Training Data Curation
Modern language models are trained on large, unstructured datasets consisting of trillions of tokens and obtained by crawling the web. The unstructured nature makes it difficult to reason about their contents and develop systematic approaches to data curation. In this paper, we unpack monolithic web corpora by developing taxonomies of their contents and organizing them into domains. We introduce WebOrganizer, a framework for organizing web pages in terms of both their topic and format. Using these two complementary notions of domains, we automatically annotate pre-training data by distilling annotations from a large language model into efficient classifiers. This allows us to study how data from different domains should be mixed to improve models on downstream tasks, and we show that we can combine insights about effective topics and formats to further boost performance. We demonstrate that our domain mixing also improves existing methods that select data based on quality. Furthermore, we study and compare how quality-based methods will implicitly change the domain mixture. Overall, our work demonstrates that constructing and mixing domains provides a valuable complement to quality-based data curation methods, opening new avenues for effective and insightful pre-training data curation.
Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
Recent proprietary large language models (LLMs), such as GPT-4, have achieved a milestone in tackling diverse challenges in the biomedical domain, ranging from multiple-choice questions to long-form generations. To address challenges that still cannot be handled with the encoded knowledge of LLMs, various retrieval-augmented generation (RAG) methods have been developed by searching documents from the knowledge corpus and appending them unconditionally or selectively to the input of LLMs for generation. However, when applying existing methods to different domain-specific problems, poor generalization becomes apparent, leading to fetching incorrect documents or making inaccurate judgments. In this paper, we introduce Self-BioRAG, a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses. We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens. Our work proves that domain-specific components, such as a retriever, domain-related document corpus, and instruction sets are necessary for adhering to domain-related instructions. Using three major medical question-answering benchmark datasets, experimental results of Self-BioRAG demonstrate significant performance gains by achieving a 7.2% absolute improvement on average over the state-of-the-art open-foundation model with a parameter size of 7B or less. Overall, we analyze that Self-BioRAG finds the clues in the question, retrieves relevant documents if needed, and understands how to answer with information from retrieved documents and encoded knowledge as a medical expert does. We release our data and code for training our framework components and model weights (7B and 13B) to enhance capabilities in biomedical and clinical domains.
Hard Negative Mining for Domain-Specific Retrieval in Enterprise Systems
Enterprise search systems often struggle to retrieve accurate, domain-specific information due to semantic mismatches and overlapping terminologies. These issues can degrade the performance of downstream applications such as knowledge management, customer support, and retrieval-augmented generation agents. To address this challenge, we propose a scalable hard-negative mining framework tailored specifically for domain-specific enterprise data. Our approach dynamically selects semantically challenging but contextually irrelevant documents to enhance deployed re-ranking models. Our method integrates diverse embedding models, performs dimensionality reduction, and uniquely selects hard negatives, ensuring computational efficiency and semantic precision. Evaluation on our proprietary enterprise corpus (cloud services domain) demonstrates substantial improvements of 15\% in MRR@3 and 19\% in MRR@10 compared to state-of-the-art baselines and other negative sampling techniques. Further validation on public domain-specific datasets (FiQA, Climate Fever, TechQA) confirms our method's generalizability and readiness for real-world applications.
SaulLM-54B & SaulLM-141B: Scaling Up Domain Adaptation for the Legal Domain
In this paper, we introduce SaulLM-54B and SaulLM-141B, two large language models (LLMs) tailored for the legal sector. These models, which feature architectures of 54 billion and 141 billion parameters, respectively, are based on the Mixtral architecture. The development of SaulLM-54B and SaulLM-141B is guided by large-scale domain adaptation, divided into three strategies: (1) the exploitation of continued pretraining involving a base corpus that includes over 540 billion of legal tokens, (2) the implementation of a specialized legal instruction-following protocol, and (3) the alignment of model outputs with human preferences in legal interpretations. The integration of synthetically generated data in the second and third steps enhances the models' capabilities in interpreting and processing legal texts, effectively reaching state-of-the-art performance and outperforming previous open-source models on LegalBench-Instruct. This work explores the trade-offs involved in domain-specific adaptation at this scale, offering insights that may inform future studies on domain adaptation using strong decoder models. Building upon SaulLM-7B, this study refines the approach to produce an LLM better equipped for legal tasks. We are releasing base, instruct, and aligned versions on top of SaulLM-54B and SaulLM-141B under the MIT License to facilitate reuse and collaborative research.
KaPQA: Knowledge-Augmented Product Question-Answering
Question-answering for domain-specific applications has recently attracted much interest due to the latest advancements in large language models (LLMs). However, accurately assessing the performance of these applications remains a challenge, mainly due to the lack of suitable benchmarks that effectively simulate real-world scenarios. To address this challenge, we introduce two product question-answering (QA) datasets focused on Adobe Acrobat and Photoshop products to help evaluate the performance of existing models on domain-specific product QA tasks. Additionally, we propose a novel knowledge-driven RAG-QA framework to enhance the performance of the models in the product QA task. Our experiments demonstrated that inducing domain knowledge through query reformulation allowed for increased retrieval and generative performance when compared to standard RAG-QA methods. This improvement, however, is slight, and thus illustrates the challenge posed by the datasets introduced.
Pruning as a Domain-specific LLM Extractor
Large Language Models (LLMs) have exhibited remarkable proficiency across a wide array of NLP tasks. However, the escalation in model size also engenders substantial deployment costs. While few efforts have explored model pruning techniques to reduce the size of LLMs, they mainly center on general or task-specific weights. This leads to suboptimal performance due to lacking specificity on the target domain or generality on different tasks when applied to domain-specific challenges. This work introduces an innovative unstructured dual-pruning methodology, D-Pruner, for domain-specific compression on LLM. It extracts a compressed, domain-specific, and task-agnostic LLM by identifying LLM weights that are pivotal for general capabilities, like linguistic capability and multi-task solving, and domain-specific knowledge. More specifically, we first assess general weight importance by quantifying the error incurred upon their removal with the help of an open-domain calibration dataset. Then, we utilize this general weight importance to refine the training loss, so that it preserves generality when fitting into a specific domain. Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity. Our comprehensive experiments across various tasks in healthcare and legal domains show the effectiveness of D-Pruner in domain-specific compression. Our code is available at https://github.com/psunlpgroup/D-Pruner.
General-to-Specific Transfer Labeling for Domain Adaptable Keyphrase Generation
Training keyphrase generation (KPG) models require a large amount of annotated data, which can be prohibitively expensive and often limited to specific domains. In this study, we first demonstrate that large distribution shifts among different domains severely hinder the transferability of KPG models. We then propose a three-stage pipeline, which gradually guides KPG models' learning focus from general syntactical features to domain-related semantics, in a data-efficient manner. With Domain-general Phrase pre-training, we pre-train Sequence-to-Sequence models with generic phrase annotations that are widely available on the web, which enables the models to generate phrases in a wide range of domains. The resulting model is then applied in the Transfer Labeling stage to produce domain-specific pseudo keyphrases, which help adapt models to a new domain. Finally, we fine-tune the model with limited data with true labels to fully adapt it to the target domain. Our experiment results show that the proposed process can produce good-quality keyphrases in new domains and achieve consistent improvements after adaptation with limited in-domain annotated data. All code and datasets are available at https://github.com/memray/OpenNMT-kpg-release.
Simple Domain Adaptation for Sparse Retrievers
In Information Retrieval, and more generally in Natural Language Processing, adapting models to specific domains is conducted through fine-tuning. Despite the successes achieved by this method and its versatility, the need for human-curated and labeled data makes it impractical to transfer to new tasks, domains, and/or languages when training data doesn't exist. Using the model without training (zero-shot) is another option that however suffers an effectiveness cost, especially in the case of first-stage retrievers. Numerous research directions have emerged to tackle these issues, most of them in the context of adapting to a task or a language. However, the literature is scarcer for domain (or topic) adaptation. In this paper, we address this issue of cross-topic discrepancy for a sparse first-stage retriever by transposing a method initially designed for language adaptation. By leveraging pre-training on the target data to learn domain-specific knowledge, this technique alleviates the need for annotated data and expands the scope of domain adaptation. Despite their relatively good generalization ability, we show that even sparse retrievers can benefit from our simple domain adaptation method.
GPL: Generative Pseudo Labeling for Unsupervised Domain Adaptation of Dense Retrieval
Dense retrieval approaches can overcome the lexical gap and lead to significantly improved search results. However, they require large amounts of training data which is not available for most domains. As shown in previous work (Thakur et al., 2021b), the performance of dense retrievers severely degrades under a domain shift. This limits the usage of dense retrieval approaches to only a few domains with large training datasets. In this paper, we propose the novel unsupervised domain adaptation method Generative Pseudo Labeling (GPL), which combines a query generator with pseudo labeling from a cross-encoder. On six representative domain-specialized datasets, we find the proposed GPL can outperform an out-of-the-box state-of-the-art dense retrieval approach by up to 9.3 points nDCG@10. GPL requires less (unlabeled) data from the target domain and is more robust in its training than previous methods. We further investigate the role of six recent pre-training methods in the scenario of domain adaptation for retrieval tasks, where only three could yield improved results. The best approach, TSDAE (Wang et al., 2021) can be combined with GPL, yielding another average improvement of 1.4 points nDCG@10 across the six tasks. The code and the models are available at https://github.com/UKPLab/gpl.
RouterRetriever: Exploring the Benefits of Routing over Multiple Expert Embedding Models
Information retrieval methods often rely on a single embedding model trained on large, general-domain datasets like MSMARCO. While this approach can produce a retriever with reasonable overall performance, models trained on domain-specific data often yield better results within their respective domains. While prior work in information retrieval has tackled this through multi-task training, the topic of combining multiple domain-specific expert retrievers remains unexplored, despite its popularity in language model generation. In this work, we introduce RouterRetriever, a retrieval model that leverages multiple domain-specific experts along with a routing mechanism to select the most appropriate expert for each query. It is lightweight and allows easy addition or removal of experts without additional training. Evaluation on the BEIR benchmark demonstrates that RouterRetriever outperforms both MSMARCO-trained (+2.1 absolute nDCG@10) and multi-task trained (+3.2) models. This is achieved by employing our routing mechanism, which surpasses other routing techniques (+1.8 on average) commonly used in language modeling. Furthermore, the benefit generalizes well to other datasets, even in the absence of a specific expert on the dataset. To our knowledge, RouterRetriever is the first work to demonstrate the advantages of using multiple domain-specific expert embedding models with effective routing over a single, general-purpose embedding model in retrieval tasks.
HuatuoGPT-II, One-stage Training for Medical Adaption of LLMs
Adapting a language model into a specific domain, a.k.a `domain adaption', is a common practice when specialized knowledge, e.g. medicine, is not encapsulated in a general language model like Llama2. The challenge lies in the heterogeneity of data across the two training stages, as it varies in languages, genres, or formats. To tackle this and simplify the learning protocol, we propose to transform heterogeneous data, from the both pre-training and supervised stages, into a unified, simple input-output pair format. We validate the new protocol in the domains where proprietary LLMs like ChatGPT perform relatively poorly, such as Traditional Chinese Medicine. The developed model, HuatuoGPT-II, has shown state-of-the-art performance in Chinese medicine domain on a number of benchmarks, e.g. medical licensing exams. It even outperforms proprietary models like ChatGPT and GPT-4 in some aspects, especially in Traditional Chinese Medicine. Expert manual evaluations further validate HuatuoGPT-II's advantages over existing LLMs. Notably, HuatuoGPT-II was benchmarked in a fresh Chinese National Medical Licensing Examination where it achieved the best performance, showcasing not only its effectiveness but also its generalization capabilities.
Evaluating Embedding APIs for Information Retrieval
The ever-increasing size of language models curtails their widespread access to the community, thereby galvanizing many companies and startups into offering access to large language models through APIs. One particular API, suitable for dense retrieval, is the semantic embedding API that builds vector representations of a given text. With a growing number of APIs at our disposal, in this paper, our goal is to analyze semantic embedding APIs in realistic retrieval scenarios in order to assist practitioners and researchers in finding suitable services according to their needs. Specifically, we wish to investigate the capabilities of existing APIs on domain generalization and multilingual retrieval. For this purpose, we evaluate the embedding APIs on two standard benchmarks, BEIR, and MIRACL. We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective on English, in contrast to the standard practice, i.e., employing them as first-stage retrievers. For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best albeit at a higher cost. We hope our work lays the groundwork for thoroughly evaluating APIs that are critical in search and more broadly, in information retrieval.
SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation
Graphs are able to model interconnected entities in many online services, supporting a wide range of applications on the Web. This raises an important question: How can we train a graph foundational model on multiple source domains and adapt to an unseen target domain? A major obstacle is that graphs from different domains often exhibit divergent characteristics. Some studies leverage large language models to align multiple domains based on textual descriptions associated with the graphs, limiting their applicability to text-attributed graphs. For text-free graphs, a few recent works attempt to align different feature distributions across domains, while generally neglecting structural differences. In this work, we propose a novel Structure Alignment framework for text-free Multi-domain Graph Pre-Training and cross-domain adaptation (SAMGPT). It is designed to learn multi-domain knowledge from graphs originating in multiple source domains, which can then be adapted to address applications in an unseen target domain. Specifically, we introduce a set of structure tokens to harmonize structure-based aggregation across source domains during the pre-training phase. Next, for cross-domain adaptation, we design dual prompts, namely, holistic prompts and specific prompts, which adapt unified multi-domain structural knowledge and fine-grained, domain-specific information, respectively, to a target domain. Finally, we conduct comprehensive experiments on seven public datasets to evaluate and analyze the effectiveness of SAMGPT.
LEGAL-BERT: The Muppets straight out of Law School
BERT has achieved impressive performance in several NLP tasks. However, there has been limited investigation on its adaptation guidelines in specialised domains. Here we focus on the legal domain, where we explore several approaches for applying BERT models to downstream legal tasks, evaluating on multiple datasets. Our findings indicate that the previous guidelines for pre-training and fine-tuning, often blindly followed, do not always generalize well in the legal domain. Thus we propose a systematic investigation of the available strategies when applying BERT in specialised domains. These are: (a) use the original BERT out of the box, (b) adapt BERT by additional pre-training on domain-specific corpora, and (c) pre-train BERT from scratch on domain-specific corpora. We also propose a broader hyper-parameter search space when fine-tuning for downstream tasks and we release LEGAL-BERT, a family of BERT models intended to assist legal NLP research, computational law, and legal technology applications.
BioMegatron: Larger Biomedical Domain Language Model
There has been an influx of biomedical domain-specific language models, showing language models pre-trained on biomedical text perform better on biomedical domain benchmarks than those trained on general domain text corpora such as Wikipedia and Books. Yet, most works do not study the factors affecting each domain language application deeply. Additionally, the study of model size on domain-specific models has been mostly missing. We empirically study and evaluate several factors that can affect performance on domain language applications, such as the sub-word vocabulary set, model size, pre-training corpus, and domain transfer. We show consistent improvements on benchmarks with our larger BioMegatron model trained on a larger domain corpus, contributing to our understanding of domain language model applications. We demonstrate noticeable improvements over the previous state-of-the-art (SOTA) on standard biomedical NLP benchmarks of named entity recognition, relation extraction, and question answering. Model checkpoints and code are available at [https://ngc.nvidia.com] and [https://github.com/NVIDIA/NeMo].
Tag-LLM: Repurposing General-Purpose LLMs for Specialized Domains
Large Language Models (LLMs) have demonstrated remarkable proficiency in understanding and generating natural language. However, their capabilities wane in highly specialized domains underrepresented in the pretraining corpus, such as physical and biomedical sciences. This work explores how to repurpose general LLMs into effective task solvers for specialized domains. We introduce a novel, model-agnostic framework for learning custom input tags, which are parameterized as continuous vectors appended to the LLM's embedding layer, to condition the LLM. We design two types of input tags: domain tags are used to delimit specialized representations (e.g., chemical formulas) and provide domain-relevant context; function tags are used to represent specific functions (e.g., predicting molecular properties) and compress function-solving instructions. We develop a three-stage protocol to learn these tags using auxiliary data and domain knowledge. By explicitly disentangling task domains from task functions, our method enables zero-shot generalization to unseen problems through diverse combinations of the input tags. It also boosts LLM's performance in various specialized domains, such as predicting protein or chemical properties and modeling drug-target interactions, outperforming expert models tailored to these tasks.
TransformLLM: Adapting Large Language Models via LLM-Transformed Reading Comprehension Text
Large Language Models (LLMs) have shown promise in highly-specialized domains, however challenges are still present in aspects of accuracy and costs. These limitations restrict the usage of existing models in domain-specific tasks. While fine-tuning pre-trained models have shown promising results, this process can be computationally expensive and require massive datasets of the specialized application in hand. In this work, we bridge that gap. We have developed Phi-2-Legal and Mistral-Legal-7B, which are language models specifically designed for legal applications. These models are based on Phi-2 and Mistral-7B-v0.1, and have gone through continued pre-training with over 500 million tokens of legal texts. Our innovative approach significantly improves capabilities in legal tasks by using Large Language Models (LLMs) to convert raw training data into reading comprehension text. Our legal LLMs have demonstrated superior performance in legal benchmarks, even outperforming models trained on much larger datasets with more resources. This work emphasizes the effectiveness of continued pre-training on domain-specific texts, while using affordable LLMs for data conversion, which gives these models domain expertise while retaining general language understanding capabilities. While this work uses the legal domain as a test case, our method can be scaled and applied to any pre-training dataset, resulting in significant improvements across different tasks. These findings underscore the potential of domain-adaptive pre-training and reading comprehension for the development of highly effective domain-specific language models.
Training LayoutLM from Scratch for Efficient Named-Entity Recognition in the Insurance Domain
Generic pre-trained neural networks may struggle to produce good results in specialized domains like finance and insurance. This is due to a domain mismatch between training data and downstream tasks, as in-domain data are often scarce due to privacy constraints. In this work, we compare different pre-training strategies for LayoutLM. We show that using domain-relevant documents improves results on a named-entity recognition (NER) problem using a novel dataset of anonymized insurance-related financial documents called Payslips. Moreover, we show that we can achieve competitive results using a smaller and faster model.
DAPFAM: A Domain-Aware Patent Retrieval Dataset Aggregated at the Family Level
In the landscape of publicly available patent retrieval datasets, the need for explicit indomain and out-of-domain labeling, multi-jurisdiction coverage, balanced query domain representation and manageable sizes that support sub document level experiments on moderate computational resources is often overlooked. To address these gaps, we propose DAPFAM, a new open access domain-aware patent retrieval dataset constructed at the simple-family level. The dataset contains 1,247 domain balanced full text query families and 45,336 full text target families. The dataset is enriched by clear relevance judgments (forward/backward citations as positive links, random negatives), as well as explicit in-domain or out-of-domain relationships via a novel proposed labelling scheme based on via International Patent Classification (IPC) codes, resulting in 49,869 evaluation pairs. The dataset is multi jurisdictional, requires little to no preprocessing for retrieval evaluation, and remains of a size manageable for entities with limited ressources allowing for sub document level retrieval experiments without excessive computational costs. We describe our three-step data-curation pipeline, present comprehensive dataset statistics, and provide baseline experiments using lexical and neural retrieval methods. Our baseline experiments highlight significant challenges in crossdomain patent retrieval. The dataset will be publicly available (for now the access link is this repository: https://osf.io/vbyzd/?view_only=1a40242e0d1941a58aa854af3e50cf6b).
M2D2: A Massively Multi-domain Language Modeling Dataset
We present M2D2, a fine-grained, massively multi-domain corpus for studying domain adaptation in language models (LMs). M2D2 consists of 8.5B tokens and spans 145 domains extracted from Wikipedia and Semantic Scholar. Using ontologies derived from Wikipedia and ArXiv categories, we organize the domains in each data source into 22 groups. This two-level hierarchy enables the study of relationships between domains and their effects on in- and out-of-domain performance after adaptation. We also present a number of insights into the nature of effective domain adaptation in LMs, as examples of the new types of studies M2D2 enables. To improve in-domain performance, we show the benefits of adapting the LM along a domain hierarchy; adapting to smaller amounts of fine-grained domain-specific data can lead to larger in-domain performance gains than larger amounts of weakly relevant data. We further demonstrate a trade-off between in-domain specialization and out-of-domain generalization within and across ontologies, as well as a strong correlation between out-of-domain performance and lexical overlap between domains.
FPDM: Domain-Specific Fast Pre-training Technique using Document-Level Metadata
Pre-training Transformers has shown promising results on open-domain and domain-specific downstream tasks. However, state-of-the-art Transformers require an unreasonably large amount of pre-training data and compute. In this paper, we propose FPDM (Fast Pre-training Technique using Document Level Metadata), a novel, compute-efficient framework that utilizes Document metadata and Domain-Specific Taxonomy as supervision signals to pre-train transformer encoder on a domain-specific corpus. The main innovation is that during domain-specific pretraining, an open-domain encoder is continually pre-trained using sentence-level embeddings as inputs (to accommodate long documents), however, fine-tuning is done with token-level embeddings as inputs to this encoder. We show that FPDM outperforms several transformer-based baselines in terms of character-level F1 scores and other automated metrics in the Customer Support, Scientific, and Legal Domains, and shows a negligible drop in performance on open-domain benchmarks. Importantly, the novel use of document-level supervision along with sentence-level embedding input for pre-training reduces pre-training compute by around 1,000, 4,500, and 500 times compared to MLM and/or NSP in Customer Support, Scientific, and Legal Domains, respectively. Code and datasets are available at https://bit.ly/FPDMCode.
Adapting Large Language Models via Reading Comprehension
We explore how continued pre-training on domain-specific corpora influences large language models, revealing that training on the raw corpora endows the model with domain knowledge, but drastically hurts its prompting ability for question answering. Taken inspiration from human learning via reading comprehension--practice after reading improves the ability to answer questions based on the learned knowledge--we propose a simple method for transforming raw corpora into reading comprehension texts. Each raw text is enriched with a series of tasks related to its content. Our method, highly scalable and applicable to any pre-training corpora, consistently enhances performance across various tasks in three different domains: biomedicine, finance, and law. Notably, our 7B language model achieves competitive performance with domain-specific models of much larger scales, such as BloombergGPT-50B. Furthermore, we demonstrate that domain-specific reading comprehension texts can improve the model's performance even on general benchmarks, showing the potential to develop a general model across even more domains. Our model, code, and data will be available at https://github.com/microsoft/LMOps.
A New Pipeline For Generating Instruction Dataset via RAG and Self Fine-Tuning
With the rapid development of large language models in recent years, there has been an increasing demand for domain-specific Agents that can cater to the unique needs of enterprises and organizations. Unlike general models, which strive for broad coverage, these specialized Agents rely on focused datasets tailored to their intended applications. This research proposes a pipeline that leverages the power of LLMs and the Retrieval-Augmented Generation related framework to construct high-quality instruction datasets for fine-tuning on specific domains using custom document collections. By ingesting domain-specific documents, the pipeline generates relevant and contextually appropriate instructions, thus effectively creating a comprehensive dataset for fine-tuning LLMs on the target domain. This approach overcomes the limitations of traditional dataset creation methods, which often rely on manual curation or web-scraping techniques that may introduce noise and irrelevant data. Notably, our pipeline offers a dynamic solution that can quickly adapt to updates or modifications in the domain-specific document collection, eliminating the need for complete retraining. Additionally, it addresses the challenge of data scarcity by enabling the generation of instruction datasets from a limited set of initial documents, rendering it suitable for unpopular or specialized domains where comprehensive datasets are scarce. As a case study, we apply this approach to the domain of psychiatry, a field requiring specialized knowledge and sensitive handling of patient information. The resulting fine-tuned LLM demonstrates showcases the viability of the proposed approach and underscores its potential for widespread adoption across various industries and domains where tailored, accurate, and contextually relevant language models are indispensable.
Localising In-Domain Adaptation of Transformer-Based Biomedical Language Models
In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings.
Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval
Passage retrieval is a fundamental task in information retrieval (IR) research, which has drawn much attention recently. In the English field, the availability of large-scale annotated dataset (e.g, MS MARCO) and the emergence of deep pre-trained language models (e.g, BERT) has resulted in a substantial improvement of existing passage retrieval systems. However, in the Chinese field, especially for specific domains, passage retrieval systems are still immature due to quality-annotated dataset being limited by scale. Therefore, in this paper, we present a novel multi-domain Chinese dataset for passage retrieval (Multi-CPR). The dataset is collected from three different domains, including E-commerce, Entertainment video and Medical. Each dataset contains millions of passages and a certain amount of human annotated query-passage related pairs. We implement various representative passage retrieval methods as baselines. We find that the performance of retrieval models trained on dataset from general domain will inevitably decrease on specific domain. Nevertheless, a passage retrieval system built on in-domain annotated dataset can achieve significant improvement, which indeed demonstrates the necessity of domain labeled data for further optimization. We hope the release of the Multi-CPR dataset could benchmark Chinese passage retrieval task in specific domain and also make advances for future studies.
Fine-Tuning Large Language Models for Scientific Text Classification: A Comparative Study
The exponential growth of online textual content across diverse domains has necessitated advanced methods for automated text classification. Large Language Models (LLMs) based on transformer architectures have shown significant success in this area, particularly in natural language processing (NLP) tasks. However, general-purpose LLMs often struggle with domain-specific content, such as scientific texts, due to unique challenges like specialized vocabulary and imbalanced data. In this study, we fine-tune four state-of-the-art LLMs BERT, SciBERT, BioBERT, and BlueBERT on three datasets derived from the WoS-46985 dataset to evaluate their performance in scientific text classification. Our experiments reveal that domain-specific models, particularly SciBERT, consistently outperform general-purpose models in both abstract-based and keyword-based classification tasks. Additionally, we compare our achieved results with those reported in the literature for deep learning models, further highlighting the advantages of LLMs, especially when utilized in specific domains. The findings emphasize the importance of domain-specific adaptations for LLMs to enhance their effectiveness in specialized text classification tasks.
Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding
Recent advances in natural language processing (NLP) can be largely attributed to the advent of pre-trained language models such as BERT and RoBERTa. While these models demonstrate remarkable performance on general datasets, they can struggle in specialized domains such as medicine, where unique domain-specific terminologies, domain-specific abbreviations, and varying document structures are common. This paper explores strategies for adapting these models to domain-specific requirements, primarily through continuous pre-training on domain-specific data. We pre-trained several German medical language models on 2.4B tokens derived from translated public English medical data and 3B tokens of German clinical data. The resulting models were evaluated on various German downstream tasks, including named entity recognition (NER), multi-label classification, and extractive question answering. Our results suggest that models augmented by clinical and translation-based pre-training typically outperform general domain models in medical contexts. We conclude that continuous pre-training has demonstrated the ability to match or even exceed the performance of clinical models trained from scratch. Furthermore, pre-training on clinical data or leveraging translated texts have proven to be reliable methods for domain adaptation in medical NLP tasks.
UDAPDR: Unsupervised Domain Adaptation via LLM Prompting and Distillation of Rerankers
Many information retrieval tasks require large labeled datasets for fine-tuning. However, such datasets are often unavailable, and their utility for real-world applications can diminish quickly due to domain shifts. To address this challenge, we develop and motivate a method for using large language models (LLMs) to generate large numbers of synthetic queries cheaply. The method begins by generating a small number of synthetic queries using an expensive LLM. After that, a much less expensive one is used to create large numbers of synthetic queries, which are used to fine-tune a family of reranker models. These rerankers are then distilled into a single efficient retriever for use in the target domain. We show that this technique boosts zero-shot accuracy in long-tail domains, even where only 2K synthetic queries are used for fine-tuning, and that it achieves substantially lower latency than standard reranking methods. We make our end-to-end approach, including our synthetic datasets and replication code, publicly available on Github: https://github.com/primeqa/primeqa.
CURE: Clinical Understanding & Retrieval Evaluation
Given the dominance of dense retrievers that do not generalize well beyond their training dataset distributions, domain-specific test sets are essential in evaluating retrieval. There are few test datasets for retrieval systems intended for use by healthcare providers in a point-of-care setting. To fill this gap we have collaborated with medical professionals to create CURE, an ad-hoc retrieval test dataset for passage ranking with 2000 queries spanning 10 medical domains with a monolingual (English) and two cross-lingual (French/Spanish -> English) conditions. In this paper, we describe how CURE was constructed and provide baseline results to showcase its effectiveness as an evaluation tool. CURE is published with a Creative Commons Attribution Non Commercial 4.0 license and can be accessed on Hugging Face.
GuideX: Guided Synthetic Data Generation for Zero-Shot Information Extraction
Information Extraction (IE) systems are traditionally domain-specific, requiring costly adaptation that involves expert schema design, data annotation, and model training. While Large Language Models have shown promise in zero-shot IE, performance degrades significantly in unseen domains where label definitions differ. This paper introduces GUIDEX, a novel method that automatically defines domain-specific schemas, infers guidelines, and generates synthetically labeled instances, allowing for better out-of-domain generalization. Fine-tuning Llama 3.1 with GUIDEX sets a new state-of-the-art across seven zeroshot Named Entity Recognition benchmarks. Models trained with GUIDEX gain up to 7 F1 points over previous methods without humanlabeled data, and nearly 2 F1 points higher when combined with it. Models trained on GUIDEX demonstrate enhanced comprehension of complex, domain-specific annotation schemas. Code, models, and synthetic datasets are available at neilus03.github.io/guidex.com
FinSage: A Multi-aspect RAG System for Financial Filings Question Answering
Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
On the Impact of Cross-Domain Data on German Language Models
Traditionally, large language models have been either trained on general web crawls or domain-specific data. However, recent successes of generative large language models, have shed light on the benefits of cross-domain datasets. To examine the significance of prioritizing data diversity over quality, we present a German dataset comprising texts from five domains, along with another dataset aimed at containing high-quality data. Through training a series of models ranging between 122M and 750M parameters on both datasets, we conduct a comprehensive benchmark on multiple downstream tasks. Our findings demonstrate that the models trained on the cross-domain dataset outperform those trained on quality data alone, leading to improvements up to 4.45% over the previous state-of-the-art. The models are available at https://huggingface.co/ikim-uk-essen
RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture
There are two common ways in which developers are incorporating proprietary and domain-specific data when building applications of Large Language Models (LLMs): Retrieval-Augmented Generation (RAG) and Fine-Tuning. RAG augments the prompt with the external data, while fine-Tuning incorporates the additional knowledge into the model itself. However, the pros and cons of both approaches are not well understood. In this paper, we propose a pipeline for fine-tuning and RAG, and present the tradeoffs of both for multiple popular LLMs, including Llama2-13B, GPT-3.5, and GPT-4. Our pipeline consists of multiple stages, including extracting information from PDFs, generating questions and answers, using them for fine-tuning, and leveraging GPT-4 for evaluating the results. We propose metrics to assess the performance of different stages of the RAG and fine-Tuning pipeline. We conduct an in-depth study on an agricultural dataset. Agriculture as an industry has not seen much penetration of AI, and we study a potentially disruptive application - what if we could provide location-specific insights to a farmer? Our results show the effectiveness of our dataset generation pipeline in capturing geographic-specific knowledge, and the quantitative and qualitative benefits of RAG and fine-tuning. We see an accuracy increase of over 6 p.p. when fine-tuning the model and this is cumulative with RAG, which increases accuracy by 5 p.p. further. In one particular experiment, we also demonstrate that the fine-tuned model leverages information from across geographies to answer specific questions, increasing answer similarity from 47% to 72%. Overall, the results point to how systems built using LLMs can be adapted to respond and incorporate knowledge across a dimension that is critical for a specific industry, paving the way for further applications of LLMs in other industrial domains.
Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey
Large Language Models (LLMs) have demonstrated remarkable success in various tasks such as natural language understanding, text summarization, and machine translation. However, their general-purpose nature often limits their effectiveness in domain-specific applications that require specialized knowledge, such as healthcare, chemistry, or legal analysis. To address this, researchers have explored diverse methods to enhance LLMs by integrating domain-specific knowledge. In this survey, we provide a comprehensive overview of these methods, which we categorize into four key approaches: dynamic knowledge injection, static knowledge embedding, modular adapters, and prompt optimization. Each approach offers unique mechanisms to equip LLMs with domain expertise, balancing trade-offs between flexibility, scalability, and efficiency. We discuss how these methods enable LLMs to tackle specialized tasks, compare their advantages and disadvantages, evaluate domain-specific LLMs against general LLMs, and highlight the challenges and opportunities in this emerging field. For those interested in delving deeper into this area, we also summarize the commonly used datasets and benchmarks. To keep researchers updated on the latest studies, we maintain an open-source at: https://github.com/abilliyb/Knowledge_Injection_Survey_Papers, dedicated to documenting research in the field of specialized LLM.
SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore
The legality of training language models (LMs) on copyrighted or otherwise restricted data is under intense debate. However, as we show, model performance significantly degrades if trained only on low-risk text (e.g., out-of-copyright books or government documents), due to its limited size and domain coverage. We present SILO, a new language model that manages this risk-performance tradeoff during inference. SILO is built by (1) training a parametric LM on Open License Corpus (OLC), a new corpus we curate with 228B tokens of public domain and permissively licensed text and (2) augmenting it with a more general and easily modifiable nonparametric datastore (e.g., containing copyrighted books or news) that is only queried during inference. The datastore allows use of high-risk data without training on it, supports sentence-level data attribution, and enables data producers to opt out from the model by removing content from the store. These capabilities can foster compliance with data-use regulations such as the fair use doctrine in the United States and the GDPR in the European Union. Our experiments show that the parametric LM struggles on domains not covered by OLC. However, access to the datastore greatly improves out of domain performance, closing 90% of the performance gap with an LM trained on the Pile, a more diverse corpus with mostly high-risk text. We also analyze which nonparametric approach works best, where the remaining errors lie, and how performance scales with datastore size. Our results suggest that it is possible to build high quality language models while mitigating their legal risk.
Know When to Fuse: Investigating Non-English Hybrid Retrieval in the Legal Domain
Hybrid search has emerged as an effective strategy to offset the limitations of different matching paradigms, especially in out-of-domain contexts where notable improvements in retrieval quality have been observed. However, existing research predominantly focuses on a limited set of retrieval methods, evaluated in pairs on domain-general datasets exclusively in English. In this work, we study the efficacy of hybrid search across a variety of prominent retrieval models within the unexplored field of law in the French language, assessing both zero-shot and in-domain scenarios. Our findings reveal that in a zero-shot context, fusing different domain-general models consistently enhances performance compared to using a standalone model, regardless of the fusion method. Surprisingly, when models are trained in-domain, we find that fusion generally diminishes performance relative to using the best single system, unless fusing scores with carefully tuned weights. These novel insights, among others, expand the applicability of prior findings across a new field and language, and contribute to a deeper understanding of hybrid search in non-English specialized domains.
Reformulating Domain Adaptation of Large Language Models as Adapt-Retrieve-Revise
While large language models (LLMs) like GPT-4 have recently demonstrated astonishing zero-shot capabilities in general domain tasks, they often generate content with hallucinations in specific domains such as Chinese law, hindering their application in these areas. This is typically due to the absence of training data that encompasses such a specific domain, preventing GPT-4 from acquiring in-domain knowledge. A pressing challenge is that it's not plausible to continue training LLMs of such scale on in-domain data. This paper introduces a simple and effective domain adaptation framework for GPT-4 by reformulating generation as an adapt-retrieve-revise process. The initial step is to adapt an affordable 7B LLM to the target domain by continuing learning on in-domain data. When solving a task, we leverage the adapted LLM to generate a draft answer given a task query. Then, the draft answer will be used to retrieve supporting evidence candidates from an external in-domain knowledge base. Finally, the draft answer and retrieved evidence are concatenated into a whole prompt to let GPT-4 assess the evidence and revise the draft answer to generate the final answer. Our proposal combines the advantages of the efficiency of adapting a smaller 7B model with the evidence-assessing capability of GPT-4 and effectively prevents GPT-4 from generating hallucinatory content. In the zero-shot setting of four Chinese legal tasks, our method improves accuracy by 33.3\% compared to the direct generation by GPT-4. When compared to two stronger retrieval-based baselines, our method outperforms them by 15.4\% and 23.9\%. Our code will be released
Standardize: Aligning Language Models with Expert-Defined Standards for Content Generation
Domain experts across engineering, healthcare, and education follow strict standards for producing quality content such as technical manuals, medication instructions, and children's reading materials. However, current works in controllable text generation have yet to explore using these standards as references for control. Towards this end, we introduce Standardize, a retrieval-style in-context learning-based framework to guide large language models to align with expert-defined standards. Focusing on English language standards in the education domain as a use case, we consider the Common European Framework of Reference for Languages (CEFR) and Common Core Standards (CCS) for the task of open-ended content generation. Our findings show that models can gain 40% to 100% increase in precise accuracy for Llama2 and GPT-4, respectively, demonstrating that the use of knowledge artifacts extracted from standards and integrating them in the generation process can effectively guide models to produce better standard-aligned content.
Selecting and Merging: Towards Adaptable and Scalable Named Entity Recognition with Large Language Models
Supervised fine-tuning (SFT) is widely used to align large language models (LLMs) with information extraction (IE) tasks, such as named entity recognition (NER). However, annotating such fine-grained labels and training domain-specific models is costly. Existing works typically train a unified model across multiple domains, but such approaches lack adaptation and scalability since not all training data benefits target domains and scaling trained models remains challenging. We propose the SaM framework, which dynamically Selects and Merges expert models at inference time. Specifically, for a target domain, we select domain-specific experts pre-trained on existing domains based on (i) domain similarity to the target domain and (ii) performance on sampled instances, respectively. The experts are then merged to create task-specific models optimized for the target domain. By dynamically merging experts beneficial to target domains, we improve generalization across various domains without extra training. Additionally, experts can be added or removed conveniently, leading to great scalability. Extensive experiments on multiple benchmarks demonstrate our framework's effectiveness, which outperforms the unified model by an average of 10%. We further provide insights into potential improvements, practical experience, and extensions of our framework.
Domain Expansion of Image Generators
Can one inject new concepts into an already trained generative model, while respecting its existing structure and knowledge? We propose a new task - domain expansion - to address this. Given a pretrained generator and novel (but related) domains, we expand the generator to jointly model all domains, old and new, harmoniously. First, we note the generator contains a meaningful, pretrained latent space. Is it possible to minimally perturb this hard-earned representation, while maximally representing the new domains? Interestingly, we find that the latent space offers unused, "dormant" directions, which do not affect the output. This provides an opportunity: By "repurposing" these directions, we can represent new domains without perturbing the original representation. In fact, we find that pretrained generators have the capacity to add several - even hundreds - of new domains! Using our expansion method, one "expanded" model can supersede numerous domain-specific models, without expanding the model size. Additionally, a single expanded generator natively supports smooth transitions between domains, as well as composition of domains. Code and project page available at https://yotamnitzan.github.io/domain-expansion/.
Retrieval-augmented reasoning with lean language models
This technical report details a novel approach to combining reasoning and retrieval augmented generation (RAG) within a single, lean language model architecture. While existing RAG systems typically rely on large-scale models and external APIs, our work addresses the increasing demand for performant and privacy-preserving solutions deployable in resource-constrained or secure environments. Building on recent developments in test-time scaling and small-scale reasoning models, we develop a retrieval augmented conversational agent capable of interpreting complex, domain-specific queries using a lightweight backbone model. Our system integrates a dense retriever with fine-tuned Qwen2.5-Instruct models, using synthetic query generation and reasoning traces derived from frontier models (e.g., DeepSeek-R1) over a curated corpus, in this case, the NHS A-to-Z condition pages. We explore the impact of summarisation-based document compression, synthetic data design, and reasoning-aware fine-tuning on model performance. Evaluation against both non-reasoning and general-purpose lean models demonstrates that our domain-specific fine-tuning approach yields substantial gains in answer accuracy and consistency, approaching frontier-level performance while remaining feasible for local deployment. All implementation details and code are publicly released to support reproducibility and adaptation across domains.
JaColBERT and Hard Negatives, Towards Better Japanese-First Embeddings for Retrieval: Early Technical Report
Document retrieval in many languages has been largely relying on multi-lingual models, and leveraging the vast wealth of English training data. In Japanese, the best performing deep-learning based retrieval approaches rely on multilingual dense embeddings. In this work, we introduce (1) a hard-negative augmented version of the Japanese MMARCO dataset and (2) JaColBERT, a document retrieval model built on the ColBERT model architecture, specifically for Japanese. JaColBERT vastly outperform all previous monolingual retrieval approaches and competes with the best multilingual methods, despite unfavourable evaluation settings (out-of-domain vs. in-domain for the multilingual models). JaColBERT reaches an average Recall@10 of 0.813, noticeably ahead of the previous monolingual best-performing model (0.716) and only slightly behind multilingual-e5-base (0.820), though more noticeably behind multilingual-e5-large (0.856). These results are achieved using only a limited, entirely Japanese, training set, more than two orders of magnitudes smaller than multilingual embedding models. We believe these results show great promise to support retrieval-enhanced application pipelines in a wide variety of domains.
Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
Copy Is All You Need
The dominant text generation models compose the output by sequentially selecting words from a fixed vocabulary. In this paper, we formulate text generation as progressively copying text segments (e.g., words or phrases) from an existing text collection. We compute the contextualized representations of meaningful text segments and index them using efficient vector search toolkits. The task of text generation is then decomposed into a series of copy-and-paste operations: at each time step, we seek suitable text spans from the text collection rather than selecting from a standalone vocabulary. Experiments on the standard language modeling benchmark (WikiText-103) show that our approach achieves better generation quality according to both automatic and human evaluations. Besides, its inference efficiency is comparable to token-level autoregressive models thanks to the reduction of decoding steps. We also show that our approach allows for effective domain adaptation by simply switching to domain-specific text collection without extra training. Finally, we observe that our approach attains additional performance gains by simply scaling up to larger text collections, again without further training.Our source codes are publicly available at \url{https://github.com/gmftbyGMFTBY/Copyisallyouneed.}
DSRAG: A Domain-Specific Retrieval Framework Based on Document-derived Multimodal Knowledge Graph
Current general-purpose large language models (LLMs) commonly exhibit knowledge hallucination and insufficient domain-specific adaptability in domain-specific tasks, limiting their effectiveness in specialized question answering scenarios. Retrieval-augmented generation (RAG) effectively tackles these challenges by integrating external knowledge to enhance accuracy and relevance. However, traditional RAG still faces limitations in domain knowledge accuracy and context modeling.To enhance domain-specific question answering performance, this work focuses on a graph-based RAG framework, emphasizing the critical role of knowledge graph quality during the generation process. We propose DSRAG (Domain-Specific RAG), a multimodal knowledge graph-driven retrieval-augmented generation framework designed for domain-specific applications. Our approach leverages domain-specific documents as the primary knowledge source, integrating heterogeneous information such as text, images, and tables to construct a multimodal knowledge graph covering both conceptual and instance layers. Building on this foundation, we introduce semantic pruning and structured subgraph retrieval mechanisms, combining knowledge graph context and vector retrieval results to guide the language model towards producing more reliable responses. Evaluations using the Langfuse multidimensional scoring mechanism show that our method excels in domain-specific question answering, validating the efficacy of integrating multimodal knowledge graphs with retrieval-augmented generation.
Does your data spark joy? Performance gains from domain upsampling at the end of training
Pretraining datasets for large language models (LLMs) have grown to trillions of tokens composed of large amounts of CommonCrawl (CC) web scrape along with smaller, domain-specific datasets. It is expensive to understand the impact of these domain-specific datasets on model capabilities as training at large FLOP scales is required to reveal significant changes to difficult and emergent benchmarks. Given the increasing cost of experimenting with pretraining data, how does one determine the optimal balance between the diversity in general web scrapes and the information density of domain specific data? In this work, we show how to leverage the smaller domain specific datasets by upsampling them relative to CC at the end of training to drive performance improvements on difficult benchmarks. This simple technique allows us to improve up to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)x2014a model trained for twice as long. We experiment with ablating the duration of domain upsampling from 5% to 30% of training and find that 10% to 20% percent is optimal for navigating the tradeoff between general language modeling capabilities and targeted benchmarks. We also use domain upsampling to characterize at scale the utility of individual datasets for improving various benchmarks by removing them during this final phase of training. This tool opens up the ability to experiment with the impact of different pretraining datasets at scale, but at an order of magnitude lower cost compared to full pretraining runs.
Improving Few-Shot Cross-Domain Named Entity Recognition by Instruction Tuning a Word-Embedding based Retrieval Augmented Large Language Model
Few-Shot Cross-Domain NER is the process of leveraging knowledge from data-rich source domains to perform entity recognition on data scarce target domains. Most previous state-of-the-art (SOTA) approaches use pre-trained language models (PLMs) for cross-domain NER. However, these models are often domain specific. To successfully use these models for new target domains, we need to modify either the model architecture or perform model finetuning using data from the new domains. Both of these result in the creation of entirely new NER models for each target domain which is infeasible for practical scenarios. Recently,several works have attempted to use LLMs to solve Few-Shot Cross-Domain NER. However, most of these are either too expensive for practical purposes or struggle to follow LLM prompt instructions. In this paper, we propose IF-WRANER (Instruction Finetuned Word-embedding based Retrieval Augmented large language model for Named Entity Recognition), a retrieval augmented LLM, finetuned for the NER task. By virtue of the regularization techniques used during LLM finetuning and the adoption of word-level embedding over sentence-level embedding during the retrieval of in-prompt examples, IF-WRANER is able to outperform previous SOTA Few-Shot Cross-Domain NER approaches. We have demonstrated the effectiveness of our model by benchmarking its performance on the open source CrossNER dataset, on which it shows more than 2% F1 score improvement over the previous SOTA model. We have deployed the model for multiple customer care domains of an enterprise. Accurate entity prediction through IF-WRANER helps direct customers to automated workflows for the domains, thereby reducing escalations to human agents by almost 15% and leading to millions of dollars in yearly savings for the company.
MeXtract: Light-Weight Metadata Extraction from Scientific Papers
Metadata plays a critical role in indexing, documenting, and analyzing scientific literature, yet extracting it accurately and efficiently remains a challenging task. Traditional approaches often rely on rule-based or task-specific models, which struggle to generalize across domains and schema variations. In this paper, we present MeXtract, a family of lightweight language models designed for metadata extraction from scientific papers. The models, ranging from 0.5B to 3B parameters, are built by fine-tuning Qwen 2.5 counterparts. In their size family, MeXtract achieves state-of-the-art performance on metadata extraction on the MOLE benchmark. To further support evaluation, we extend the MOLE benchmark to incorporate model-specific metadata, providing an out-of-domain challenging subset. Our experiments show that fine-tuning on a given schema not only yields high accuracy but also transfers effectively to unseen schemas, demonstrating the robustness and adaptability of our approach. We release all the code, datasets, and models openly for the research community.
Teaching Dense Retrieval Models to Specialize with Listwise Distillation and LLM Data Augmentation
While the current state-of-the-art dense retrieval models exhibit strong out-of-domain generalization, they might fail to capture nuanced domain-specific knowledge. In principle, fine-tuning these models for specialized retrieval tasks should yield higher effectiveness than relying on a one-size-fits-all model, but in practice, results can disappoint. We show that standard fine-tuning methods using an InfoNCE loss can unexpectedly degrade effectiveness rather than improve it, even for domain-specific scenarios. This holds true even when applying widely adopted techniques such as hard-negative mining and negative de-noising. To address this, we explore a training strategy that uses listwise distillation from a teacher cross-encoder, leveraging rich relevance signals to fine-tune the retriever. We further explore synthetic query generation using large language models. Through listwise distillation and training with a diverse set of queries ranging from natural user searches and factual claims to keyword-based queries, we achieve consistent effectiveness gains across multiple datasets. Our results also reveal that synthetic queries can rival human-written queries in training utility. However, we also identify limitations, particularly in the effectiveness of cross-encoder teachers as a bottleneck. We release our code and scripts to encourage further research.
GlotCC: An Open Broad-Coverage CommonCrawl Corpus and Pipeline for Minority Languages
The need for large text corpora has increased with the advent of pretrained language models and, in particular, the discovery of scaling laws for these models. Most available corpora have sufficient data only for languages with large dominant communities. However, there is no corpus available that (i) covers a wide range of minority languages; (ii) is generated by an open-source reproducible pipeline; and (iii) is rigorously cleaned from noise, making it trustworthy to use. We present GlotCC, a clean, document-level, 2TB general domain corpus derived from CommonCrawl, covering more than 1000 languages. We make GlotCC and the system used to generate it - including the pipeline, language identification model, and filters - available to the research community. Corpus v. 1.0 https://huggingface.co/datasets/cis-lmu/GlotCC-v1, Pipeline v. 3.0 https://github.com/cisnlp/GlotCC.
RARe: Retrieval Augmented Retrieval with In-Context Examples
We investigate whether in-context examples, widely used in decoder-only language models (LLMs), can improve embedding model performance in retrieval tasks. Unlike in LLMs, naively prepending in-context examples (query-document pairs) to the target query at inference time does not work out of the box. We introduce a simple approach to enable retrievers to use in-context examples. Our approach, RARe, finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query. This can be applied to adapt various base architectures (i.e., decoder-only language models, retriever models) and consistently achieves performance gains of up to +2.72% nDCG across various open-domain retrieval datasets (BeIR, RAR-b). In particular, we find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples, similar to what is seen for in-context learning in LLMs. We further provide analysis on the design choices of in-context example augmentation and lay the foundation for future work in this space.
A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP
We present a Japanese domain-specific language model for the pharmaceutical field, developed through continual pretraining on 2 billion Japanese pharmaceutical tokens and 8 billion English biomedical tokens. To enable rigorous evaluation, we introduce three new benchmarks: YakugakuQA, based on national pharmacist licensing exams; NayoseQA, which tests cross-lingual synonym and terminology normalization; and SogoCheck, a novel task designed to assess consistency reasoning between paired statements. We evaluate our model against both open-source medical LLMs and commercial models, including GPT-4o. Results show that our domain-specific model outperforms existing open models and achieves competitive performance with commercial ones, particularly on terminology-heavy and knowledge-based tasks. Interestingly, even GPT-4o performs poorly on SogoCheck, suggesting that cross-sentence consistency reasoning remains an open challenge. Our benchmark suite offers a broader diagnostic lens for pharmaceutical NLP, covering factual recall, lexical variation, and logical consistency. This work demonstrates the feasibility of building practical, secure, and cost-effective language models for Japanese domain-specific applications, and provides reusable evaluation resources for future research in pharmaceutical and healthcare NLP. Our model, codes, and datasets are released at https://github.com/EQUES-Inc/pharma-LLM-eval.
ClimateGPT: Towards AI Synthesizing Interdisciplinary Research on Climate Change
This paper introduces ClimateGPT, a model family of domain-specific large language models that synthesize interdisciplinary research on climate change. We trained two 7B models from scratch on a science-oriented dataset of 300B tokens. For the first model, the 4.2B domain-specific tokens were included during pre-training and the second was adapted to the climate domain after pre-training. Additionally, ClimateGPT-7B, 13B and 70B are continuously pre-trained from Llama~2 on a domain-specific dataset of 4.2B tokens. Each model is instruction fine-tuned on a high-quality and human-generated domain-specific dataset that has been created in close cooperation with climate scientists. To reduce the number of hallucinations, we optimize the model for retrieval augmentation and propose a hierarchical retrieval strategy. To increase the accessibility of our model to non-English speakers, we propose to make use of cascaded machine translation and show that this approach can perform comparably to natively multilingual models while being easier to scale to a large number of languages. Further, to address the intrinsic interdisciplinary aspect of climate change we consider different research perspectives. Therefore, the model can produce in-depth answers focusing on different perspectives in addition to an overall answer. We propose a suite of automatic climate-specific benchmarks to evaluate LLMs. On these benchmarks, ClimateGPT-7B performs on par with the ten times larger Llama-2-70B Chat model while not degrading results on general domain benchmarks. Our human evaluation confirms the trends we saw in our benchmarks. All models were trained and evaluated using renewable energy and are released publicly.
RAFT: Adapting Language Model to Domain Specific RAG
Pretraining Large Language Models (LLMs) on large corpora of textual data is now a standard paradigm. When using these LLMs for many downstream applications, it is common to additionally bake in new knowledge (e.g., time-critical news, or private domain knowledge) into the pretrained model either through RAG-based-prompting, or fine-tuning. However, the optimal methodology for the model to gain such new knowledge remains an open question. In this paper, we present Retrieval Augmented FineTuning (RAFT), a training recipe that improves the model's ability to answer questions in a "open-book" in-domain settings. In RAFT, given a question, and a set of retrieved documents, we train the model to ignore those documents that don't help in answering the question, which we call, distractor documents. RAFT accomplishes this by citing verbatim the right sequence from the relevant document that would help answer the question. This coupled with RAFT's chain-of-thought-style response helps improve the model's ability to reason. In domain-specific RAG, RAFT consistently improves the model's performance across PubMed, HotpotQA, and Gorilla datasets, presenting a post-training recipe to improve pre-trained LLMs to in-domain RAG. RAFT's code and demo are open-sourced at github.com/ShishirPatil/gorilla.
Exploring the Impact of Table-to-Text Methods on Augmenting LLM-based Question Answering with Domain Hybrid Data
Augmenting Large Language Models (LLMs) for Question Answering (QA) with domain specific data has attracted wide attention. However, domain data often exists in a hybrid format, including text and semi-structured tables, posing challenges for the seamless integration of information. Table-to-Text Generation is a promising solution by facilitating the transformation of hybrid data into a uniformly text-formatted corpus. Although this technique has been widely studied by the NLP community, there is currently no comparative analysis on how corpora generated by different table-to-text methods affect the performance of QA systems. In this paper, we address this research gap in two steps. First, we innovatively integrate table-to-text generation into the framework of enhancing LLM-based QA systems with domain hybrid data. Then, we utilize this framework in real-world industrial data to conduct extensive experiments on two types of QA systems (DSFT and RAG frameworks) with four representative methods: Markdown format, Template serialization, TPLM-based method, and LLM-based method. Based on the experimental results, we draw some empirical findings and explore the underlying reasons behind the success of some methods. We hope the findings of this work will provide a valuable reference for the academic and industrial communities in developing robust QA systems.
Retrieval Augmented Generation for Domain-specific Question Answering
Question answering (QA) has become an important application in the advanced development of large language models. General pre-trained large language models for question-answering are not trained to properly understand the knowledge or terminology for a specific domain, such as finance, healthcare, education, and customer service for a product. To better cater to domain-specific understanding, we build an in-house question-answering system for Adobe products. We propose a novel framework to compile a large question-answer database and develop the approach for retrieval-aware finetuning of a Large Language model. We showcase that fine-tuning the retriever leads to major improvements in the final generation. Our overall approach reduces hallucinations during generation while keeping in context the latest retrieval information for contextual grounding.
Zero-Shot Entity Linking by Reading Entity Descriptions
We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pre-trained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pre-training strategy, which we term domain-adaptive pre-training (DAP), to address the domain shift problem associated with linking unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pre-training baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.
Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment
Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.
From LAION-5B to LAION-EO: Filtering Billions of Images Using Anchor Datasets for Satellite Image Extraction
Large datasets, such as LAION-5B, contain a diverse distribution of images shared online. However, extraction of domain-specific subsets of large image corpora is challenging. The extraction approach based on an anchor dataset, combined with further filtering, is proposed here and demonstrated for the domain of satellite imagery. This results in the release of LAION-EO, a dataset sourced from the web containing pairs of text and satellite images in high (pixel-wise) resolution. The paper outlines the acquisition procedure as well as some of the features of the dataset.
DANSK and DaCy 2.6.0: Domain Generalization of Danish Named Entity Recognition
Named entity recognition is one of the cornerstones of Danish NLP, essential for language technology applications within both industry and research. However, Danish NER is inhibited by a lack of available datasets. As a consequence, no current models are capable of fine-grained named entity recognition, nor have they been evaluated for potential generalizability issues across datasets and domains. To alleviate these limitations, this paper introduces: 1) DANSK: a named entity dataset providing for high-granularity tagging as well as within-domain evaluation of models across a diverse set of domains; 2) DaCy 2.6.0 that includes three generalizable models with fine-grained annotation; and 3) an evaluation of current state-of-the-art models' ability to generalize across domains. The evaluation of existing and new models revealed notable performance discrepancies across domains, which should be addressed within the field. Shortcomings of the annotation quality of the dataset and its impact on model training and evaluation are also discussed. Despite these limitations, we advocate for the use of the new dataset DANSK alongside further work on the generalizability within Danish NER.
DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine
In this paper, we present DuReader_retrieval, a large-scale Chinese dataset for passage retrieval. DuReader_retrieval contains more than 90K queries and over 8M unique passages from a commercial search engine. To alleviate the shortcomings of other datasets and ensure the quality of our benchmark, we (1) reduce the false negatives in development and test sets by manually annotating results pooled from multiple retrievers, and (2) remove the training queries that are semantically similar to the development and testing queries. Additionally, we provide two out-of-domain testing sets for cross-domain evaluation, as well as a set of human translated queries for for cross-lingual retrieval evaluation. The experiments demonstrate that DuReader_retrieval is challenging and a number of problems remain unsolved, such as the salient phrase mismatch and the syntactic mismatch between queries and paragraphs. These experiments also show that dense retrievers do not generalize well across domains, and cross-lingual retrieval is essentially challenging. DuReader_retrieval is publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval.
Computer Science Named Entity Recognition in the Open Research Knowledge Graph
Domain-specific named entity recognition (NER) on Computer Science (CS) scholarly articles is an information extraction task that is arguably more challenging for the various annotation aims that can beset the task and has been less studied than NER in the general domain. Given that significant progress has been made on NER, we believe that scholarly domain-specific NER will receive increasing attention in the years to come. Currently, progress on CS NER -- the focus of this work -- is hampered in part by its recency and the lack of a standardized annotation aim for scientific entities/terms. This work proposes a standardized task by defining a set of seven contribution-centric scholarly entities for CS NER viz., research problem, solution, resource, language, tool, method, and dataset. Following which, its main contributions are: combines existing CS NER resources that maintain their annotation focus on the set or subset of contribution-centric scholarly entities we consider; further, noting the need for big data to train neural NER models, this work additionally supplies thousands of contribution-centric entity annotations from article titles and abstracts, thus releasing a cumulative large novel resource for CS NER; and, finally, trains a sequence labeling CS NER model inspired after state-of-the-art neural architectures from the general domain NER task. Throughout the work, several practical considerations are made which can be useful to information technology designers of the digital libraries.
EvoCodeBench: An Evolving Code Generation Benchmark with Domain-Specific Evaluations
How to evaluate Large Language Models (LLMs) in code generation remains an open question. Existing benchmarks have two limitations - data leakage and lack of domain-specific evaluation. The former hurts the fairness of benchmarks, and the latter hinders practitioners from selecting superior LLMs for specific programming domains. To address these two limitations, we propose a new benchmark - EvoCodeBench, which has the following advances: (1) Evolving data. EvoCodeBench will be dynamically updated every period (e.g., 6 months) to avoid data leakage. This paper releases the first version - EvoCodeBench-2403, containing 275 samples from 25 repositories. (2) A domain taxonomy and domain labels. Based on the statistics of open-source communities, we design a programming domain taxonomy consisting of 10 popular domains. Based on the taxonomy, we annotate each sample in EvoCodeBench with a domain label. (3) Domain-specific evaluations. Besides the Pass@k, we compute the Domain-Specific Improvement (DSI) and define LLMs' comfort and strange domains. These evaluations help practitioners select superior LLMs in specific domains and discover the shortcomings of existing LLMs. We evaluate 8 popular LLMs (e.g., gpt-4, DeepSeek Coder) on EvoCodeBench and summarize some insights. EvoCodeBench reveals the actual abilities of these LLMs in real-world repositories. For example, the highest Pass@1 of gpt-4 on EvoCodeBench-2403 is only 20.74%. Besides, we evaluate LLMs in different domains and discover their comfort and strange domains. For example, gpt-4 performs best in most domains but falls behind others in the Internet domain. StarCoder 2-15B unexpectedly performs well in the Database domain and even outperforms 33B LLMs. EvoCodeBench has been released.
DAEDRA: A language model for predicting outcomes in passive pharmacovigilance reporting
Over the recent years, the emergence of large language models (LLMs) has given rise to a proliferation of domain-specific models that are intended to reflect the particularities of linguistic context and content as a correlate of the originating domain. This paper details the conception, design, training and evaluation of DAEDRA, a LLM designed to detect regulatory-relevant outcomes (mortality, ER attendance and hospitalisation) in adverse event reports elicited through passive reporting (PR). While PR is a highly cost-efficient way of eliciting information from a wide and diverse audience -- typically including not only physicians and healthcare providers but also patients, family members and other lay stakeholders --, this diversity makes PR corpora difficult to analyse. Generic language models may not capture the complex clinical dimensions while specific clinical or biomedical models may not perform well on lay reports. To evaluate the utility of a subdomain-specific language model, an adaptive training approach was adapted, wherein base language model candidates were evaluated on a subset of the corpus, and the best performer was trained on the entire corpus. This yielded a small but significant improvement in F_1 (+1%), precision (+2.5%) and recall (+3.8%), at a relatively low training cost and a single-day training time. Subdomain-specific LLMs continue to be viable options for better results when analysing highly specialised corpora.
Out-of-Domain Semantics to the Rescue! Zero-Shot Hybrid Retrieval Models
The pre-trained language model (eg, BERT) based deep retrieval models achieved superior performance over lexical retrieval models (eg, BM25) in many passage retrieval tasks. However, limited work has been done to generalize a deep retrieval model to other tasks and domains. In this work, we carefully select five datasets, including two in-domain datasets and three out-of-domain datasets with different levels of domain shift, and study the generalization of a deep model in a zero-shot setting. Our findings show that the performance of a deep retrieval model is significantly deteriorated when the target domain is very different from the source domain that the model was trained on. On the contrary, lexical models are more robust across domains. We thus propose a simple yet effective framework to integrate lexical and deep retrieval models. Our experiments demonstrate that these two models are complementary, even when the deep model is weaker in the out-of-domain setting. The hybrid model obtains an average of 20.4% relative gain over the deep retrieval model, and an average of 9.54% over the lexical model in three out-of-domain datasets.
Evaluation of Word Embeddings for the Social Sciences
Word embeddings are an essential instrument in many NLP tasks. Most available resources are trained on general language from Web corpora or Wikipedia dumps. However, word embeddings for domain-specific language are rare, in particular for the social science domain. Therefore, in this work, we describe the creation and evaluation of word embedding models based on 37,604 open-access social science research papers. In the evaluation, we compare domain-specific and general language models for (i) language coverage, (ii) diversity, and (iii) semantic relationships. We found that the created domain-specific model, even with a relatively small vocabulary size, covers a large part of social science concepts, their neighborhoods are diverse in comparison to more general models. Across all relation types, we found a more extensive coverage of semantic relationships.
Clinical Document Corpora and Assorted Domain Proxies: A Survey of Diversity in Corpus Design, with Focus on German Text Data
We survey clinical document corpora, with focus on German textual data. Due to rigid data privacy legislation in Germany these resources, with only few exceptions, are stored in safe clinical data spaces and locked against clinic-external researchers. This situation stands in stark contrast with established workflows in the field of natural language processing where easy accessibility and reuse of data collections are common practice. Hence, alternative corpus designs have been examined to escape from this data poverty. Besides machine translation of English clinical datasets and the generation of synthetic corpora with fictitious clinical contents, several other types of domain proxies have come up as substitutes for authentic clinical documents. Common instances of close proxies are medical journal publications, clinical therapy guidelines, drug labels, etc., more distant proxies include online encyclopedic medical articles or medical contents from social media channels. After PRISM-conformant screening of 359 hits from four bibliographic systems, 75 relevant documents were finally selected for this review and 59 distinct corpora were determined. We identified 24 real clinical corpora (from 40 publications) out of which only 5 are publicly distributable. 2 translations of real corpora and 3 synthetic ones complement the set of clinical corpora. 14 corpora were categorized as close domain proxies, 16 as distant ones. There is a clear divide between the large number of non-accessible authentic clinical German-language corpora and their publicly accessible substitutes: translated or synthetic, close or more distant proxies. So on first sight, the data bottleneck seems broken. Intuitively yet, differences in genre-specific writing style, wording and medical domain expertise in this typological space are also obvious. This raises the question how valid alternative corpus designs really are.
Exploring the Viability of Synthetic Query Generation for Relevance Prediction
Query-document relevance prediction is a critical problem in Information Retrieval systems. This problem has increasingly been tackled using (pretrained) transformer-based models which are finetuned using large collections of labeled data. However, in specialized domains such as e-commerce and healthcare, the viability of this approach is limited by the dearth of large in-domain data. To address this paucity, recent methods leverage these powerful models to generate high-quality task and domain-specific synthetic data. Prior work has largely explored synthetic data generation or query generation (QGen) for Question-Answering (QA) and binary (yes/no) relevance prediction, where for instance, the QGen models are given a document, and trained to generate a query relevant to that document. However in many problems, we have a more fine-grained notion of relevance than a simple yes/no label. Thus, in this work, we conduct a detailed study into how QGen approaches can be leveraged for nuanced relevance prediction. We demonstrate that -- contrary to claims from prior works -- current QGen approaches fall short of the more conventional cross-domain transfer-learning approaches. Via empirical studies spanning 3 public e-commerce benchmarks, we identify new shortcomings of existing QGen approaches -- including their inability to distinguish between different grades of relevance. To address this, we introduce label-conditioned QGen models which incorporates knowledge about the different relevance. While our experiments demonstrate that these modifications help improve performance of QGen techniques, we also find that QGen approaches struggle to capture the full nuance of the relevance label space and as a result the generated queries are not faithful to the desired relevance label.
CrowdSpeech and VoxDIY: Benchmark Datasets for Crowdsourced Audio Transcription
Domain-specific data is the crux of the successful transfer of machine learning systems from benchmarks to real life. In simple problems such as image classification, crowdsourcing has become one of the standard tools for cheap and time-efficient data collection: thanks in large part to advances in research on aggregation methods. However, the applicability of crowdsourcing to more complex tasks (e.g., speech recognition) remains limited due to the lack of principled aggregation methods for these modalities. The main obstacle towards designing aggregation methods for more advanced applications is the absence of training data, and in this work, we focus on bridging this gap in speech recognition. For this, we collect and release CrowdSpeech -- the first publicly available large-scale dataset of crowdsourced audio transcriptions. Evaluation of existing and novel aggregation methods on our data shows room for improvement, suggesting that our work may entail the design of better algorithms. At a higher level, we also contribute to the more general challenge of developing the methodology for reliable data collection via crowdsourcing. In that, we design a principled pipeline for constructing datasets of crowdsourced audio transcriptions in any novel domain. We show its applicability on an under-resourced language by constructing VoxDIY -- a counterpart of CrowdSpeech for the Russian language. We also release the code that allows a full replication of our data collection pipeline and share various insights on best practices of data collection via crowdsourcing.
Do We Need Domain-Specific Embedding Models? An Empirical Investigation
Embedding models play a crucial role in representing and retrieving information across various NLP applications. Recent advancements in Large Language Models (LLMs) have further enhanced the performance of embedding models, which are trained on massive amounts of text covering almost every domain. These models are often benchmarked on general-purpose datasets like Massive Text Embedding Benchmark (MTEB), where they demonstrate superior performance. However, a critical question arises: Is the development of domain-specific embedding models necessary when general-purpose models are trained on vast corpora that already include specialized domain texts? In this paper, we empirically investigate this question, choosing the finance domain as an example. We introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a counterpart to MTEB that consists of financial domain-specific text datasets. We evaluate the performance of seven state-of-the-art embedding models on FinMTEB and observe a significant performance drop compared to their performance on MTEB. To account for the possibility that this drop is driven by FinMTEB's higher complexity, we propose four measures to quantify dataset complexity and control for this factor in our analysis. Our analysis provides compelling evidence that state-of-the-art embedding models struggle to capture domain-specific linguistic and semantic patterns, even when trained on large general-purpose corpora. This study sheds light on the necessity of developing domain-specific embedding models in the LLM era, offering valuable insights for researchers and practitioners.
Zero-Shot Dense Retrieval with Embeddings from Relevance Feedback
Building effective dense retrieval systems remains difficult when relevance supervision is not available. Recent work has looked to overcome this challenge by using a Large Language Model (LLM) to generate hypothetical documents that can be used to find the closest real document. However, this approach relies solely on the LLM to have domain-specific knowledge relevant to the query, which may not be practical. Furthermore, generating hypothetical documents can be inefficient as it requires the LLM to generate a large number of tokens for each query. To address these challenges, we introduce Real Document Embeddings from Relevance Feedback (ReDE-RF). Inspired by relevance feedback, ReDE-RF proposes to re-frame hypothetical document generation as a relevance estimation task, using an LLM to select which documents should be used for nearest neighbor search. Through this re-framing, the LLM no longer needs domain-specific knowledge but only needs to judge what is relevant. Additionally, relevance estimation only requires the LLM to output a single token, thereby improving search latency. Our experiments show that ReDE-RF consistently surpasses state-of-the-art zero-shot dense retrieval methods across a wide range of low-resource retrieval datasets while also making significant improvements in latency per-query.
The German Commons - 154 Billion Tokens of Openly Licensed Text for German Language Models
Large language model development relies on large-scale training corpora, yet most contain data of unclear licensing status, limiting the development of truly open models. This problem is exacerbated for non-English languages, where openly licensed text remains critically scarce. We introduce the German Commons, the largest collection of openly licensed German text to date. It compiles data from 41 sources across seven domains, encompassing legal, scientific, cultural, political, news, economic, and web text. Through systematic sourcing from established data providers with verifiable licensing, it yields 154.56 billion tokens of high-quality text for language model training. Our processing pipeline implements comprehensive quality filtering, deduplication, and text formatting fixes, ensuring consistent quality across heterogeneous text sources. All domain subsets feature licenses of at least CC-BY-SA 4.0 or equivalent, ensuring legal compliance for model training and redistribution. The German Commons therefore addresses the critical gap in openly licensed German pretraining data, and enables the development of truly open German language models. We also release code for corpus construction and data filtering tailored to German language text, rendering the German Commons fully reproducible and extensible.
Juru: Legal Brazilian Large Language Model from Reputable Sources
The high computational cost associated with pretraining large language models limits their research. Two strategies have emerged to address this issue: domain specialization and pretraining with high-quality data. To explore these strategies, we specialized the Sabi\'a-2 Small model with 1.9 billion unique tokens from reputable Brazilian legal sources and conducted few-shot evaluations on legal and general knowledge exams. Our model, Juru, demonstrates the benefits of domain specialization with a reduced amount of pretraining data. However, this specialization comes at the expense of degrading performance in other knowledge areas within the same language. This study contributes to the growing body of scientific evidence showing that pretraining data selection may enhance the performance of large language models, enabling the exploration of these models at a lower cost.
InPars: Data Augmentation for Information Retrieval using Large Language Models
The information retrieval community has recently witnessed a revolution due to large pretrained transformer models. Another key ingredient for this revolution was the MS MARCO dataset, whose scale and diversity has enabled zero-shot transfer learning to various tasks. However, not all IR tasks and domains can benefit from one single dataset equally. Extensive research in various NLP tasks has shown that using domain-specific training data, as opposed to a general-purpose one, improves the performance of neural models. In this work, we harness the few-shot capabilities of large pretrained language models as synthetic data generators for IR tasks. We show that models finetuned solely on our unsupervised dataset outperform strong baselines such as BM25 as well as recently proposed self-supervised dense retrieval methods. Furthermore, retrievers finetuned on both supervised and our synthetic data achieve better zero-shot transfer than models finetuned only on supervised data. Code, models, and data are available at https://github.com/zetaalphavector/inpars .
EUROPA: A Legal Multilingual Keyphrase Generation Dataset
Keyphrase generation has primarily been explored within the context of academic research articles, with a particular focus on scientific domains and the English language. In this work, we present EUROPA, a dataset for multilingual keyphrase generation in the legal domain. It is derived from legal judgments from the Court of Justice of the European Union (EU), and contains instances in all 24 EU official languages. We run multilingual models on our corpus and analyze the results, showing room for improvement on a domain-specific multilingual corpus such as the one we present.
Weakly supervised information extraction from inscrutable handwritten document images
State-of-the-art information extraction methods are limited by OCR errors. They work well for printed text in form-like documents, but unstructured, handwritten documents still remain a challenge. Adapting existing models to domain-specific training data is quite expensive, because of two factors, 1) limited availability of the domain-specific documents (such as handwritten prescriptions, lab notes, etc.), and 2) annotations become even more challenging as one needs domain-specific knowledge to decode inscrutable handwritten document images. In this work, we focus on the complex problem of extracting medicine names from handwritten prescriptions using only weakly labeled data. The data consists of images along with the list of medicine names in it, but not their location in the image. We solve the problem by first identifying the regions of interest, i.e., medicine lines from just weak labels and then injecting a domain-specific medicine language model learned using only synthetically generated data. Compared to off-the-shelf state-of-the-art methods, our approach performs >2.5x better in medicine names extraction from prescriptions.
Leveraging Domain Adaptation and Data Augmentation to Improve Qur'anic IR in English and Arabic
In this work, we approach the problem of Qur'anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur'anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur'anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur'anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages.
Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?
Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.
Pretraining and Updating Language- and Domain-specific Large Language Model: A Case Study in Japanese Business Domain
Several previous studies have considered language- and domain-specific large language models (LLMs) as separate topics. This study explores the combination of a non-English language and a high-demand industry domain, focusing on a Japanese business-specific LLM. This type of a model requires expertise in the business domain, strong language skills, and regular updates of its knowledge. We trained a 13-billion-parameter LLM from scratch using a new dataset of business texts and patents, and continually pretrained it with the latest business documents. Further we propose a new benchmark for Japanese business domain question answering (QA) and evaluate our models on it. The results show that our pretrained model improves QA accuracy without losing general knowledge, and that continual pretraining enhances adaptation to new information. Our pretrained model and business domain benchmark are publicly available.
ChineseEcomQA: A Scalable E-commerce Concept Evaluation Benchmark for Large Language Models
With the increasing use of Large Language Models (LLMs) in fields such as e-commerce, domain-specific concept evaluation benchmarks are crucial for assessing their domain capabilities. Existing LLMs may generate factually incorrect information within the complex e-commerce applications. Therefore, it is necessary to build an e-commerce concept benchmark. Existing benchmarks encounter two primary challenges: (1) handle the heterogeneous and diverse nature of tasks, (2) distinguish between generality and specificity within the e-commerce field. To address these problems, we propose ChineseEcomQA, a scalable question-answering benchmark focused on fundamental e-commerce concepts. ChineseEcomQA is built on three core characteristics: Focus on Fundamental Concept, E-commerce Generality and E-commerce Expertise. Fundamental concepts are designed to be applicable across a diverse array of e-commerce tasks, thus addressing the challenge of heterogeneity and diversity. Additionally, by carefully balancing generality and specificity, ChineseEcomQA effectively differentiates between broad e-commerce concepts, allowing for precise validation of domain capabilities. We achieve this through a scalable benchmark construction process that combines LLM validation, Retrieval-Augmented Generation (RAG) validation, and rigorous manual annotation. Based on ChineseEcomQA, we conduct extensive evaluations on mainstream LLMs and provide some valuable insights. We hope that ChineseEcomQA could guide future domain-specific evaluations, and facilitate broader LLM adoption in e-commerce applications.
Studying the role of named entities for content preservation in text style transfer
Text style transfer techniques are gaining popularity in Natural Language Processing, finding various applications such as text detoxification, sentiment, or formality transfer. However, the majority of the existing approaches were tested on such domains as online communications on public platforms, music, or entertainment yet none of them were applied to the domains which are typical for task-oriented production systems, such as personal plans arrangements (e.g. booking of flights or reserving a table in a restaurant). We fill this gap by studying formality transfer in this domain. We noted that the texts in this domain are full of named entities, which are very important for keeping the original sense of the text. Indeed, if for example, someone communicates the destination city of a flight it must not be altered. Thus, we concentrate on the role of named entities in content preservation for formality text style transfer. We collect a new dataset for the evaluation of content similarity measures in text style transfer. It is taken from a corpus of task-oriented dialogues and contains many important entities related to realistic requests that make this dataset particularly useful for testing style transfer models before using them in production. Besides, we perform an error analysis of a pre-trained formality transfer model and introduce a simple technique to use information about named entities to enhance the performance of baseline content similarity measures used in text style transfer.
Improving Domain Generalization with Domain Relations
Distribution shift presents a significant challenge in machine learning, where models often underperform during the test stage when faced with a different distribution than the one they were trained on. This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on, and propose a new approach called D^3G. Unlike previous methods that aim to learn a single model that is domain invariant, D^3G leverages domain similarities based on domain metadata to learn domain-specific models. Concretely, D^3G learns a set of training-domain-specific functions during the training stage and reweights them based on domain relations during the test stage. These domain relations can be directly obtained and learned from domain metadata. Under mild assumptions, we theoretically prove that using domain relations to reweight training-domain-specific functions achieves stronger out-of-domain generalization compared to the conventional averaging approach. Empirically, we evaluate the effectiveness of D^3G using real-world datasets for tasks such as temperature regression, land use classification, and molecule-protein binding affinity prediction. Our results show that D^3G consistently outperforms state-of-the-art methods.
BSharedRAG: Backbone Shared Retrieval-Augmented Generation for the E-commerce Domain
Retrieval Augmented Generation (RAG) system is important in domains such as e-commerce, which has many long-tail entities and frequently updated information. Most existing works adopt separate modules for retrieval and generation, which may be suboptimal since the retrieval task and the generation task cannot benefit from each other to improve performance. We propose a novel Backbone Shared RAG framework (BSharedRAG). It first uses a domain-specific corpus to continually pre-train a base model as a domain-specific backbone model and then trains two plug-and-play Low-Rank Adaptation (LoRA) modules based on the shared backbone to minimize retrieval and generation losses respectively. Experimental results indicate that our proposed BSharedRAG outperforms baseline models by 5% and 13% in Hit@3 upon two datasets in retrieval evaluation and by 23% in terms of BLEU-3 in generation evaluation. Our codes, models, and dataset are available at https://bsharedrag.github.io.
BenchHub: A Unified Benchmark Suite for Holistic and Customizable LLM Evaluation
As large language models (LLMs) continue to advance, the need for up-to-date and well-organized benchmarks becomes increasingly critical. However, many existing datasets are scattered, difficult to manage, and make it challenging to perform evaluations tailored to specific needs or domains, despite the growing importance of domain-specific models in areas such as math or code. In this paper, we introduce BenchHub, a dynamic benchmark repository that empowers researchers and developers to evaluate LLMs more effectively. BenchHub aggregates and automatically classifies benchmark datasets from diverse domains, integrating 303K questions across 38 benchmarks. It is designed to support continuous updates and scalable data management, enabling flexible and customizable evaluation tailored to various domains or use cases. Through extensive experiments with various LLM families, we demonstrate that model performance varies significantly across domain-specific subsets, emphasizing the importance of domain-aware benchmarking. We believe BenchHub can encourage better dataset reuse, more transparent model comparisons, and easier identification of underrepresented areas in existing benchmarks, offering a critical infrastructure for advancing LLM evaluation research.
GenAI Content Detection Task 3: Cross-Domain Machine-Generated Text Detection Challenge
Recently there have been many shared tasks targeting the detection of generated text from Large Language Models (LLMs). However, these shared tasks tend to focus either on cases where text is limited to one particular domain or cases where text can be from many domains, some of which may not be seen during test time. In this shared task, using the newly released RAID benchmark, we aim to answer whether or not models can detect generated text from a large, yet fixed, number of domains and LLMs, all of which are seen during training. Over the course of three months, our task was attempted by 9 teams with 23 detector submissions. We find that multiple participants were able to obtain accuracies of over 99% on machine-generated text from RAID while maintaining a 5% False Positive Rate -- suggesting that detectors are able to robustly detect text from many domains and models simultaneously. We discuss potential interpretations of this result and provide directions for future research.
No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval
Recent work has shown that small distilled language models are strong competitors to models that are orders of magnitude larger and slower in a wide range of information retrieval tasks. This has made distilled and dense models, due to latency constraints, the go-to choice for deployment in real-world retrieval applications. In this work, we question this practice by showing that the number of parameters and early query-document interaction play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that rerankers largely outperform dense ones of similar size in several tasks. Our largest reranker reaches the state of the art in 12 of the 18 datasets of the Benchmark-IR (BEIR) and surpasses the previous state of the art by 3 average points. Finally, we confirm that in-domain effectiveness is not a good indicator of zero-shot effectiveness. Code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git
A Compass for Navigating the World of Sentence Embeddings for the Telecom Domain
A plethora of sentence embedding models makes it challenging to choose one, especially for domains such as telecom, rich with specialized vocabulary. We evaluate multiple embeddings obtained from publicly available models and their domain-adapted variants, on both point retrieval accuracies as well as their (95\%) confidence intervals. We establish a systematic method to obtain thresholds for similarity scores for different embeddings. We observe that fine-tuning improves mean bootstrapped accuracies as well as tightens confidence intervals. The pre-training combined with fine-tuning makes confidence intervals even tighter. To understand these variations, we analyse and report significant correlations between the distributional overlap between top-K, correct and random sentence similarities with retrieval accuracies and similarity thresholds. Following current literature, we analyze if retrieval accuracy variations can be attributed to isotropy of embeddings. Our conclusions are that isotropy of embeddings (as measured by two independent state-of-the-art isotropy metric definitions) cannot be attributed to better retrieval performance. However, domain adaptation which improves retrieval accuracies also improves isotropy. We establish that domain adaptation moves domain specific embeddings further away from general domain embeddings.
Exploring Underexplored Limitations of Cross-Domain Text-to-SQL Generalization
Recently, there has been significant progress in studying neural networks for translating text descriptions into SQL queries under the zero-shot cross-domain setting. Despite achieving good performance on some public benchmarks, we observe that existing text-to-SQL models do not generalize when facing domain knowledge that does not frequently appear in the training data, which may render the worse prediction performance for unseen domains. In this work, we investigate the robustness of text-to-SQL models when the questions require rarely observed domain knowledge. In particular, we define five types of domain knowledge and introduce Spider-DK (DK is the abbreviation of domain knowledge), a human-curated dataset based on the Spider benchmark for text-to-SQL translation. NL questions in Spider-DK are selected from Spider, and we modify some samples by adding domain knowledge that reflects real-world question paraphrases. We demonstrate that the prediction accuracy dramatically drops on samples that require such domain knowledge, even if the domain knowledge appears in the training set, and the model provides the correct predictions for related training samples.
Large Language Models are Built-in Autoregressive Search Engines
Document retrieval is a key stage of standard Web search engines. Existing dual-encoder dense retrievers obtain representations for questions and documents independently, allowing for only shallow interactions between them. To overcome this limitation, recent autoregressive search engines replace the dual-encoder architecture by directly generating identifiers for relevant documents in the candidate pool. However, the training cost of such autoregressive search engines rises sharply as the number of candidate documents increases. In this paper, we find that large language models (LLMs) can follow human instructions to directly generate URLs for document retrieval. Surprisingly, when providing a few {Query-URL} pairs as in-context demonstrations, LLMs can generate Web URLs where nearly 90\% of the corresponding documents contain correct answers to open-domain questions. In this way, LLMs can be thought of as built-in search engines, since they have not been explicitly trained to map questions to document identifiers. Experiments demonstrate that our method can consistently achieve better retrieval performance than existing retrieval approaches by a significant margin on three open-domain question answering benchmarks, under both zero and few-shot settings. The code for this work can be found at https://github.com/Ziems/llm-url.
DocCGen: Document-based Controlled Code Generation
Recent developments show that Large Language Models (LLMs) produce state-of-the-art performance on natural language (NL) to code generation for resource-rich general-purpose languages like C++, Java, and Python. However, their practical usage for structured domain-specific languages (DSLs) such as YAML, JSON is limited due to domain-specific schema, grammar, and customizations generally unseen by LLMs during pre-training. Efforts have been made to mitigate this challenge via in-context learning through relevant examples or by fine-tuning. However, it suffers from problems, such as limited DSL samples and prompt sensitivity but enterprises maintain good documentation of the DSLs. Therefore, we propose DocCGen, a framework that can leverage such rich knowledge by breaking the NL-to-Code generation task for structured code languages into a two-step process. First, it detects the correct libraries using the library documentation that best matches the NL query. Then, it utilizes schema rules extracted from the documentation of these libraries to constrain the decoding. We evaluate our framework for two complex structured languages, Ansible YAML and Bash command, consisting of two settings: Out-of-domain (OOD) and In-domain (ID). Our extensive experiments show that DocCGen consistently improves different-sized language models across all six evaluation metrics, reducing syntactic and semantic errors in structured code. We plan to open-source the datasets and code to motivate research in constrained code generation.
Bilingual BSARD: Extending Statutory Article Retrieval to Dutch
Statutory article retrieval plays a crucial role in making legal information more accessible to both laypeople and legal professionals. Multilingual countries like Belgium present unique challenges for retrieval models due to the need for handling legal issues in multiple languages. Building on the Belgian Statutory Article Retrieval Dataset (BSARD) in French, we introduce the bilingual version of this dataset, bBSARD. The dataset contains parallel Belgian statutory articles in both French and Dutch, along with legal questions from BSARD and their Dutch translation. Using bBSARD, we conduct extensive benchmarking of retrieval models available for Dutch and French. Our benchmarking setup includes lexical models, zero-shot dense models, and fine-tuned small foundation models. Our experiments show that BM25 remains a competitive baseline compared to many zero-shot dense models in both languages. We also observe that while proprietary models outperform open alternatives in the zero-shot setting, they can be matched or surpassed by fine-tuning small language-specific models. Our dataset and evaluation code are publicly available.
SimRAG: Self-Improving Retrieval-Augmented Generation for Adapting Large Language Models to Specialized Domains
Retrieval-augmented generation (RAG) enhances the question-answering (QA) abilities of large language models (LLMs) by integrating external knowledge. However, adapting general-purpose RAG systems to specialized fields such as science and medicine poses unique challenges due to distribution shifts and limited access to domain-specific data. To tackle this, we propose SimRAG, a self-training approach that equips the LLM with joint capabilities of question answering and question generation for domain adaptation. Our method first fine-tunes the LLM on instruction-following, question-answering, and search-related data. Then, it prompts the same LLM to generate diverse domain-relevant questions from unlabeled corpora, with an additional filtering strategy to retain high-quality synthetic examples. By leveraging these synthetic examples, the LLM can improve their performance on domain-specific RAG tasks. Experiments on 11 datasets, spanning two backbone sizes and three domains, demonstrate that SimRAG outperforms baselines by 1.2\%--8.6\%.
Toward Robust URL Extraction for Open Science: A Study of arXiv File Formats and Temporal Trends
In this work, we study how URL extraction results depend on input format. We compiled a pilot dataset by extracting URLs from 10 arXiv papers and used the same heuristic method to extract URLs from four formats derived from the PDF files or the source LaTeX files. We found that accurate and complete URL extraction from any single format or a combination of multiple formats is challenging, with the best F1-score of 0.71. Using the pilot dataset, we evaluate extraction performance across formats and show that structured formats like HTML and XML produce more accurate results than PDFs or Text. Combining multiple formats improves coverage, especially when targeting research-critical resources. We further apply URL extraction on two tasks, namely classifying URLs into open-access datasets and software and the others, and analyzing the trend of URLs usage in arXiv papers from 1992 to 2024. These results suggest that using a combination of multiple formats achieves better performance on URL extraction than a single format, and the number of URLs in arXiv papers has been steadily increasing since 1992 to 2014 and has been drastically increasing from 2014 to 2024. The dataset and the Jupyter notebooks used for the preliminary analysis are publicly available at https://github.com/lamps-lab/arxiv-urls
SCALE: Scaling up the Complexity for Advanced Language Model Evaluation
Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.
Chunk Twice, Embed Once: A Systematic Study of Segmentation and Representation Trade-offs in Chemistry-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems are increasingly vital for navigating the ever-expanding body of scientific literature, particularly in high-stakes domains such as chemistry. Despite the promise of RAG, foundational design choices -- such as how documents are segmented and represented -- remain underexplored in domain-specific contexts. This study presents the first large-scale, systematic evaluation of chunking strategies and embedding models tailored to chemistry-focused RAG systems. We investigate 25 chunking configurations across five method families and evaluate 48 embedding models on three chemistry-specific benchmarks, including the newly introduced QuestChemRetrieval dataset. Our results reveal that recursive token-based chunking (specifically R100-0) consistently outperforms other approaches, offering strong performance with minimal resource overhead. We also find that retrieval-optimized embeddings -- such as Nomic and Intfloat E5 variants -- substantially outperform domain-specialized models like SciBERT. By releasing our datasets, evaluation framework, and empirical benchmarks, we provide actionable guidelines for building effective and efficient chemistry-aware RAG systems.
Neural Pipeline for Zero-Shot Data-to-Text Generation
In data-to-text (D2T) generation, training on in-domain data leads to overfitting to the data representation and repeating training data noise. We examine how to avoid finetuning pretrained language models (PLMs) on D2T generation datasets while still taking advantage of surface realization capabilities of PLMs. Inspired by pipeline approaches, we propose to generate text by transforming single-item descriptions with a sequence of modules trained on general-domain text-based operations: ordering, aggregation, and paragraph compression. We train PLMs for performing these operations on a synthetic corpus WikiFluent which we build from English Wikipedia. Our experiments on two major triple-to-text datasets -- WebNLG and E2E -- show that our approach enables D2T generation from RDF triples in zero-shot settings.
Learning the Wrong Lessons: Syntactic-Domain Spurious Correlations in Language Models
For an LLM to correctly respond to an instruction it must understand both the semantics and the domain (i.e., subject area) of a given task-instruction pair. However, syntax can also convey implicit information Recent work shows that syntactic templates -- frequent sequences of Part-of-Speech (PoS) tags -- are prevalent in training data and often appear in model outputs. In this work we characterize syntactic templates, domain, and semantics in task-instruction pairs. We identify cases of spurious correlations between syntax and domain, where models learn to associate a domain with syntax during training; this can sometimes override prompt semantics. Using a synthetic training dataset, we find that the syntactic-domain correlation can lower performance (mean 0.51 +/- 0.06) on entity knowledge tasks in OLMo-2 models (1B-13B). We introduce an evaluation framework to detect this phenomenon in trained models, and show that it occurs on a subset of the FlanV2 dataset in open (OLMo-2-7B; Llama-4-Maverick), and closed (GPT-4o) models. Finally, we present a case study on the implications for safety finetuning, showing that unintended syntactic-domain correlations can be used to bypass refusals in OLMo-2-7B Instruct and GPT-4o. Our findings highlight two needs: (1) to explicitly test for syntactic-domain correlations, and (2) to ensure syntactic diversity in training data, specifically within domains, to prevent such spurious correlations.
Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval
Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace.
Named entity recognition for Serbian legal documents: Design, methodology and dataset development
Recent advancements in the field of natural language processing (NLP) and especially large language models (LLMs) and their numerous applications have brought research attention to design of different document processing tools and enhancements in the process of document archiving, search and retrieval. Domain of official, legal documents is especially interesting due to vast amount of data generated on the daily basis, as well as the significant community of interested practitioners (lawyers, law offices, administrative workers, state institutions and citizens). Providing efficient ways for automation of everyday work involving legal documents is therefore expected to have significant impact in different fields. In this work we present one LLM based solution for Named Entity Recognition (NER) in the case of legal documents written in Serbian language. It leverages on the pre-trained bidirectional encoder representations from transformers (BERT), which had been carefully adapted to the specific task of identifying and classifying specific data points from textual content. Besides novel dataset development for Serbian language (involving public court rulings), presented system design and applied methodology, the paper also discusses achieved performance metrics and their implications for objective assessment of the proposed solution. Performed cross-validation tests on the created manually labeled dataset with mean F_1 score of 0.96 and additional results on the examples of intentionally modified text inputs confirm applicability of the proposed system design and robustness of the developed NER solution.
KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.
LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development
In this work, we conduct a detailed analysis on the performance of legal-oriented pre-trained language models (PLMs). We examine the interplay between their original objective, acquired knowledge, and legal language understanding capacities which we define as the upstream, probing, and downstream performance, respectively. We consider not only the models' size but also the pre-training corpora used as important dimensions in our study. To this end, we release a multinational English legal corpus (LeXFiles) and a legal knowledge probing benchmark (LegalLAMA) to facilitate training and detailed analysis of legal-oriented PLMs. We release two new legal PLMs trained on LeXFiles and evaluate them alongside others on LegalLAMA and LexGLUE. We find that probing performance strongly correlates with upstream performance in related legal topics. On the other hand, downstream performance is mainly driven by the model's size and prior legal knowledge which can be estimated by upstream and probing performance. Based on these findings, we can conclude that both dimensions are important for those seeking the development of domain-specific PLMs.
Chatting with Logs: An exploratory study on Finetuning LLMs for LogQL
Logging is a critical function in modern distributed applications, but the lack of standardization in log query languages and formats creates significant challenges. Developers currently must write ad hoc queries in platform-specific languages, requiring expertise in both the query language and application-specific log details -- an impractical expectation given the variety of platforms and volume of logs and applications. While generating these queries with large language models (LLMs) seems intuitive, we show that current LLMs struggle with log-specific query generation due to the lack of exposure to domain-specific knowledge. We propose a novel natural language (NL) interface to address these inconsistencies and aide log query generation, enabling developers to create queries in a target log query language by providing NL inputs. We further introduce ~NL2QL, a manually annotated, real-world dataset of natural language questions paired with corresponding LogQL queries spread across three log formats, to promote the training and evaluation of NL-to-loq query systems. Using NL2QL, we subsequently fine-tune and evaluate several state of the art LLMs, and demonstrate their improved capability to generate accurate LogQL queries. We perform further ablation studies to demonstrate the effect of additional training data, and the transferability across different log formats. In our experiments, we find up to 75\% improvement of finetuned models to generate LogQL queries compared to non finetuned models.
CrossNER: Evaluating Cross-Domain Named Entity Recognition
Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leading to a less effective cross-domain evaluation. To address these obstacles, we introduce a cross-domain NER dataset (CrossNER), a fully-labeled collection of NER data spanning over five diverse domains with specialized entity categories for different domains. Additionally, we also provide a domain-related corpus since using it to continue pre-training language models (domain-adaptive pre-training) is effective for the domain adaptation. We then conduct comprehensive experiments to explore the effectiveness of leveraging different levels of the domain corpus and pre-training strategies to do domain-adaptive pre-training for the cross-domain task. Results show that focusing on the fractional corpus containing domain-specialized entities and utilizing a more challenging pre-training strategy in domain-adaptive pre-training are beneficial for the NER domain adaptation, and our proposed method can consistently outperform existing cross-domain NER baselines. Nevertheless, experiments also illustrate the challenge of this cross-domain NER task. We hope that our dataset and baselines will catalyze research in the NER domain adaptation area. The code and data are available at https://github.com/zliucr/CrossNER.
Continuous Training and Fine-tuning for Domain-Specific Language Models in Medical Question Answering
Large language models exhibit promising general capabilities but often lack specialized knowledge for domain-specific tasks. Developing domain experts from a base model enables a range of applications without prohibitive training costs. This work demonstrates a method using continuous training and instruction fine-tuning to rapidly adapt Llama 2 base models to the Chinese medical domain. We first conduct continuous training on 1B tokens from Chinese medical references to teach relevant vocabulary and knowledge. The models are then fine-tuned on 54K examples sourced from the Chinese National Medical Licensing Examination. Experiments on Chinese medical data confirm the effectiveness of this approach, producing a model comparable to GPT-3.5-turbo while using way less computational resource. The resulting domain-specific model could be useful for various Chinese medical applications. More broadly, this provides a template for domain-specific training of large language models in areas where pre-trained models lack the required expertise, such as law, science, and engineering.
Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models
Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision Omega and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision Omega = 0.28 at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model
Matching Table Metadata with Business Glossaries Using Large Language Models
Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.
Tabular Embedding Model (TEM): Finetuning Embedding Models For Tabular RAG Applications
In recent times Large Language Models have exhibited tremendous capabilities, especially in the areas of mathematics, code generation and general-purpose reasoning. However for specialized domains especially in applications that require parsing and analyzing large chunks of numeric or tabular data even state-of-the-art (SOTA) models struggle. In this paper, we introduce a new approach to solving domain-specific tabular data analysis tasks by presenting a unique RAG workflow that mitigates the scalability issues of existing tabular LLM solutions. Specifically, we present Tabular Embedding Model (TEM), a novel approach to fine-tune embedding models for tabular Retrieval-Augmentation Generation (RAG) applications. Embedding models form a crucial component in the RAG workflow and even current SOTA embedding models struggle as they are predominantly trained on textual datasets and thus underperform in scenarios involving complex tabular data. The evaluation results showcase that our approach not only outperforms current SOTA embedding models in this domain but also does so with a notably smaller and more efficient model structure.
Artificial Intuition: Efficient Classification of Scientific Abstracts
It is desirable to coarsely classify short scientific texts, such as grant or publication abstracts, for strategic insight or research portfolio management. These texts efficiently transmit dense information to experts possessing a rich body of knowledge to aid interpretation. Yet this task is remarkably difficult to automate because of brevity and the absence of context. To address this gap, we have developed a novel approach to generate and appropriately assign coarse domain-specific labels. We show that a Large Language Model (LLM) can provide metadata essential to the task, in a process akin to the augmentation of supplemental knowledge representing human intuition, and propose a workflow. As a pilot study, we use a corpus of award abstracts from the National Aeronautics and Space Administration (NASA). We develop new assessment tools in concert with established performance metrics.
OntoTune: Ontology-Driven Self-training for Aligning Large Language Models
Existing domain-specific Large Language Models (LLMs) are typically developed by fine-tuning general-purposed LLMs with large-scale domain-specific corpora. However, training on large-scale corpora often fails to effectively organize domain knowledge of LLMs, leading to fragmented understanding. Inspired by how humans connect concepts and organize knowledge through mind maps, we aim to emulate this approach by using ontology with hierarchical conceptual knowledge to reorganize LLM's domain knowledge. From this perspective, we propose an ontology-driven self-training framework called OntoTune, which aims to align LLMs with ontology through in-context learning, enabling the generation of responses guided by the ontology. We leverage in-context learning to identify whether the LLM has acquired the specific concept's ontology knowledge, and select the entries not yet mastered by LLM as the training set to further align the LLM with ontology. Compared to existing domain LLMs based on newly collected large-scale domain-specific corpora, our OntoTune, which relies on the existing, long-term developed ontology and LLM itself, significantly reduces data maintenance costs and offers improved generalization ability. We conduct our study in the medical domain to evaluate the effectiveness of OntoTune, utilizing a standardized medical ontology, SNOMED CT as our ontology source. Experimental results demonstrate that OntoTune achieves state-of-the-art performance in both in-ontology task hypernym discovery and out-of-ontology task medical domain QA. Moreover, compared to the latest direct ontology injection method TaxoLLaMA, our OntoTune better preserves original knowledge of LLM. The code and data are available at https://github.com/zjukg/OntoTune.
Do We Still Need Clinical Language Models?
Although recent advances in scaling large language models (LLMs) have resulted in improvements on many NLP tasks, it remains unclear whether these models trained primarily with general web text are the right tool in highly specialized, safety critical domains such as clinical text. Recent results have suggested that LLMs encode a surprising amount of medical knowledge. This raises an important question regarding the utility of smaller domain-specific language models. With the success of general-domain LLMs, is there still a need for specialized clinical models? To investigate this question, we conduct an extensive empirical analysis of 12 language models, ranging from 220M to 175B parameters, measuring their performance on 3 different clinical tasks that test their ability to parse and reason over electronic health records. As part of our experiments, we train T5-Base and T5-Large models from scratch on clinical notes from MIMIC III and IV to directly investigate the efficiency of clinical tokens. We show that relatively small specialized clinical models substantially outperform all in-context learning approaches, even when finetuned on limited annotated data. Further, we find that pretraining on clinical tokens allows for smaller, more parameter-efficient models that either match or outperform much larger language models trained on general text. We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.
A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning
Knowledge-intensive language tasks (KILTs) benefit from retrieving high-quality relevant contexts from large external knowledge corpora. Learning task-specific retrievers that return relevant contexts at an appropriate level of semantic granularity, such as a document retriever, passage retriever, sentence retriever, and entity retriever, may help to achieve better performance on the end-to-end task. But a task-specific retriever usually has poor generalization ability to new domains and tasks, and it may be costly to deploy a variety of specialised retrievers in practice. We propose a unified generative retriever (UGR) that combines task-specific effectiveness with robust performance over different retrieval tasks in KILTs. To achieve this goal, we make two major contributions: (i) To unify different retrieval tasks into a single generative form, we introduce an n-gram-based identifier for relevant contexts at different levels of granularity in KILTs. And (ii) to address different retrieval tasks with a single model, we employ a prompt learning strategy and investigate three methods to design prompt tokens for each task. In this way, the proposed UGR model can not only share common knowledge across tasks for better generalization, but also perform different retrieval tasks effectively by distinguishing task-specific characteristics. We train UGR on a heterogeneous set of retrieval corpora with well-designed prompts in a supervised and multi-task fashion. Experimental results on the KILT benchmark demonstrate the effectiveness of UGR on in-domain datasets, out-of-domain datasets, and unseen tasks.
Domain-Specific Text Generation for Machine Translation
Preservation of domain knowledge from the source to target is crucial in any translation workflow. It is common in the translation industry to receive highly specialized projects, where there is hardly any parallel in-domain data. In such scenarios where there is insufficient in-domain data to fine-tune Machine Translation (MT) models, producing translations that are consistent with the relevant context is challenging. In this work, we propose a novel approach to domain adaptation leveraging state-of-the-art pretrained language models (LMs) for domain-specific data augmentation for MT, simulating the domain characteristics of either (a) a small bilingual dataset, or (b) the monolingual source text to be translated. Combining this idea with back-translation, we can generate huge amounts of synthetic bilingual in-domain data for both use cases. For our investigation, we use the state-of-the-art Transformer architecture. We employ mixed fine-tuning to train models that significantly improve translation of in-domain texts. More specifically, in both scenarios, our proposed methods achieve improvements of approximately 5-6 BLEU and 2-3 BLEU, respectively, on the Arabic-to-English and English-to-Arabic language pairs. Furthermore, the outcome of human evaluation corroborates the automatic evaluation results.
RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for incorporating domain-specific knowledge into user-facing chat applications powered by Large Language Models (LLMs). RAG systems are characterized by (1) a document retriever that queries a domain-specific corpus for context information relevant to an input query, and (2) an LLM that generates a response based on the provided query and context. However, comprehensive evaluation of RAG systems remains a challenge due to the lack of unified evaluation criteria and annotated datasets. In response, we introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples. It covers five unique industry-specific domains and various RAG task types. RAGBench examples are sourced from industry corpora such as user manuals, making it particularly relevant for industry applications. Further, we formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains. We release the labeled dataset at https://huggingface.co/datasets/rungalileo/ragbench. RAGBench explainable labels facilitate holistic evaluation of RAG systems, enabling actionable feedback for continuous improvement of production applications. Thorough extensive benchmarking, we find that LLM-based RAG evaluation methods struggle to compete with a finetuned RoBERTa model on the RAG evaluation task. We identify areas where existing approaches fall short and propose the adoption of RAGBench with TRACe towards advancing the state of RAG evaluation systems.
MixGR: Enhancing Retriever Generalization for Scientific Domain through Complementary Granularity
Recent studies show the growing significance of document retrieval in the generation of LLMs, i.e., RAG, within the scientific domain by bridging their knowledge gap. However, dense retrievers often struggle with domain-specific retrieval and complex query-document relationships, particularly when query segments correspond to various parts of a document. To alleviate such prevalent challenges, this paper introduces MixGR, which improves dense retrievers' awareness of query-document matching across various levels of granularity in queries and documents using a zero-shot approach. MixGR fuses various metrics based on these granularities to a united score that reflects a comprehensive query-document similarity. Our experiments demonstrate that MixGR outperforms previous document retrieval by 24.7%, 9.8%, and 6.9% on nDCG@5 with unsupervised, supervised, and LLM-based retrievers, respectively, averaged on queries containing multiple subqueries from five scientific retrieval datasets. Moreover, the efficacy of two downstream scientific question-answering tasks highlights the advantage of MixGR to boost the application of LLMs in the scientific domain. The code and experimental datasets are available.
Autoregressive Entity Retrieval
Entities are at the center of how we represent and aggregate knowledge. For instance, Encyclopedias such as Wikipedia are structured by entities (e.g., one per Wikipedia article). The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering. Current approaches can be understood as classifiers among atomic labels, one for each entity. Their weight vectors are dense entity representations produced by encoding entity meta information such as their descriptions. This approach has several shortcomings: (i) context and entity affinity is mainly captured through a vector dot product, potentially missing fine-grained interactions; (ii) a large memory footprint is needed to store dense representations when considering large entity sets; (iii) an appropriately hard set of negative data has to be subsampled at training time. In this work, we propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion. This mitigates the aforementioned technical issues since: (i) the autoregressive formulation directly captures relations between context and entity name, effectively cross encoding both; (ii) the memory footprint is greatly reduced because the parameters of our encoder-decoder architecture scale with vocabulary size, not entity count; (iii) the softmax loss is computed without subsampling negative data. We experiment with more than 20 datasets on entity disambiguation, end-to-end entity linking and document retrieval tasks, achieving new state-of-the-art or very competitive results while using a tiny fraction of the memory footprint of competing systems. Finally, we demonstrate that new entities can be added by simply specifying their names. Code and pre-trained models at https://github.com/facebookresearch/GENRE.
OASum: Large-Scale Open Domain Aspect-based Summarization
Aspect or query-based summarization has recently caught more attention, as it can generate differentiated summaries based on users' interests. However, the current dataset for aspect or query-based summarization either focuses on specific domains, contains relatively small-scale instances, or includes only a few aspect types. Such limitations hinder further explorations in this direction. In this work, we take advantage of crowd-sourcing knowledge on Wikipedia.org and automatically create a high-quality, large-scale open-domain aspect-based summarization dataset named OASum, which contains more than 3.7 million instances with around 1 million different aspects on 2 million Wikipedia pages. We provide benchmark results on OASum and demonstrate its ability for diverse aspect-based summarization generation. To overcome the data scarcity problem on specific domains, we also perform zero-shot, few-shot, and fine-tuning on seven downstream datasets. Specifically, zero/few-shot and fine-tuning results show that the model pre-trained on our corpus demonstrates a strong aspect or query-focused generation ability compared with the backbone model. Our dataset and pre-trained checkpoints are publicly available.
BUSTER: a "BUSiness Transaction Entity Recognition" dataset
Albeit Natural Language Processing has seen major breakthroughs in the last few years, transferring such advances into real-world business cases can be challenging. One of the reasons resides in the displacement between popular benchmarks and actual data. Lack of supervision, unbalanced classes, noisy data and long documents often affect real problems in vertical domains such as finance, law and health. To support industry-oriented research, we present BUSTER, a BUSiness Transaction Entity Recognition dataset. The dataset consists of 3779 manually annotated documents on financial transactions. We establish several baselines exploiting both general-purpose and domain-specific language models. The best performing model is also used to automatically annotate 6196 documents, which we release as an additional silver corpus to BUSTER.
Rethinking Search: Making Domain Experts out of Dilettantes
When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice.
Balancing Specialized and General Skills in LLMs: The Impact of Modern Tuning and Data Strategy
This paper introduces a multifaceted methodology for fine-tuning and evaluating large language models (LLMs) for specialized monetization tasks. The goal is to balance general language proficiency with domain-specific skills. The methodology has three main components: 1) Carefully blending in-domain and general-purpose data during fine-tuning to achieve an optimal balance between general and specialized capabilities; 2) Designing a comprehensive evaluation framework with 45 questions tailored to assess performance on functionally relevant dimensions like reliability, consistency, and business impact; 3) Analyzing how model size and continual training influence metrics to guide efficient resource allocation during fine-tuning. The paper details the design, data collection, analytical techniques, and results validating the proposed frameworks. It aims to provide businesses and researchers with actionable insights on effectively adapting LLMs for specialized contexts. We also intend to make public the comprehensive evaluation framework, which includes the 45 tailored questions and their respective scoring guidelines, to foster transparency and collaboration in adapting LLMs for specialized tasks.
Natural Answer Generation: From Factoid Answer to Full-length Answer using Grammar Correction
Question Answering systems these days typically use template-based language generation. Though adequate for a domain-specific task, these systems are too restrictive and predefined for domain-independent systems. This paper proposes a system that outputs a full-length answer given a question and the extracted factoid answer (short spans such as named entities) as the input. Our system uses constituency and dependency parse trees of questions. A transformer-based Grammar Error Correction model GECToR (2020), is used as a post-processing step for better fluency. We compare our system with (i) Modified Pointer Generator (SOTA) and (ii) Fine-tuned DialoGPT for factoid questions. We also test our approach on existential (yes-no) questions with better results. Our model generates accurate and fluent answers than the state-of-the-art (SOTA) approaches. The evaluation is done on NewsQA and SqUAD datasets with an increment of 0.4 and 0.9 percentage points in ROUGE-1 score respectively. Also the inference time is reduced by 85\% as compared to the SOTA. The improved datasets used for our evaluation will be released as part of the research contribution.
Exploring Language Model Generalization in Low-Resource Extractive QA
In this paper, we investigate Extractive Question Answering (EQA) with Large Language Models (LLMs) under domain drift, i.e., can LLMs generalize to domains that require specific knowledge such as medicine and law in a zero-shot fashion without additional in-domain training? To this end, we devise a series of experiments to explain the performance gap empirically. Our findings suggest that: (a) LLMs struggle with dataset demands of closed domains such as retrieving long answer spans; (b) Certain LLMs, despite showing strong overall performance, display weaknesses in meeting basic requirements as discriminating between domain-specific senses of words which we link to pre-processing decisions; (c) Scaling model parameters is not always effective for cross domain generalization; and (d) Closed-domain datasets are quantitatively much different than open-domain EQA datasets and current LLMs struggle to deal with them. Our findings point out important directions for improving existing LLMs.
Dataset and Baseline System for Multi-lingual Extraction and Normalization of Temporal and Numerical Expressions
Temporal and numerical expression understanding is of great importance in many downstream Natural Language Processing (NLP) and Information Retrieval (IR) tasks. However, much previous work covers only a few sub-types and focuses only on entity extraction, which severely limits the usability of identified mentions. In order for such entities to be useful in downstream scenarios, coverage and granularity of sub-types are important; and, even more so, providing resolution into concrete values that can be manipulated. Furthermore, most previous work addresses only a handful of languages. Here we describe a multi-lingual evaluation dataset - NTX - covering diverse temporal and numerical expressions across 14 languages and covering extraction, normalization, and resolution. Along with the dataset we provide a robust rule-based system as a strong baseline for comparisons against other models to be evaluated in this dataset. Data and code are available at https://aka.ms/NTX.
BhashaBench V1: A Comprehensive Benchmark for the Quadrant of Indic Domains
The rapid advancement of large language models(LLMs) has intensified the need for domain and culture specific evaluation. Existing benchmarks are largely Anglocentric and domain-agnostic, limiting their applicability to India-centric contexts. To address this gap, we introduce BhashaBench V1, the first domain-specific, multi-task, bilingual benchmark focusing on critical Indic knowledge systems. BhashaBench V1 contains 74,166 meticulously curated question-answer pairs, with 52,494 in English and 21,672 in Hindi, sourced from authentic government and domain-specific exams. It spans four major domains: Agriculture, Legal, Finance, and Ayurveda, comprising 90+ subdomains and covering 500+ topics, enabling fine-grained evaluation. Evaluation of 29+ LLMs reveals significant domain and language specific performance gaps, with especially large disparities in low-resource domains. For instance, GPT-4o achieves 76.49% overall accuracy in Legal but only 59.74% in Ayurveda. Models consistently perform better on English content compared to Hindi across all domains. Subdomain-level analysis shows that areas such as Cyber Law, International Finance perform relatively well, while Panchakarma, Seed Science, and Human Rights remain notably weak. BhashaBench V1 provides a comprehensive dataset for evaluating large language models across India's diverse knowledge domains. It enables assessment of models' ability to integrate domain-specific knowledge with bilingual understanding. All code, benchmarks, and resources are publicly available to support open research.
Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) has emerged as a promising framework to mitigate hallucinations in Large Language Models (LLMs), yet its overall performance is dependent on the underlying retrieval system. In the finance domain, documents such as 10-K reports pose distinct challenges due to domain-specific vocabulary and multi-hierarchical tabular data. In this work, we introduce an efficient, end-to-end RAG pipeline that enhances retrieval for financial documents through a three-phase approach: pre-retrieval, retrieval, and post-retrieval. In the pre-retrieval phase, various query and corpus preprocessing techniques are employed to enrich input data. During the retrieval phase, we fine-tuned state-of-the-art (SOTA) embedding models with domain-specific knowledge and implemented a hybrid retrieval strategy that combines dense and sparse representations. Finally, the post-retrieval phase leverages Direct Preference Optimization (DPO) training and document selection methods to further refine the results. Evaluations on seven financial question answering datasets-FinDER, FinQABench, FinanceBench, TATQA, FinQA, ConvFinQA, and MultiHiertt-demonstrate substantial improvements in retrieval performance, leading to more accurate and contextually appropriate generation. These findings highlight the critical role of tailored retrieval techniques in advancing the effectiveness of RAG systems for financial applications. A fully replicable pipeline is available on GitHub: https://github.com/seohyunwoo-0407/GAR.
AboutMe: Using Self-Descriptions in Webpages to Document the Effects of English Pretraining Data Filters
Large language models' (LLMs) abilities are drawn from their pretraining data, and model development begins with data curation. However, decisions around what data is retained or removed during this initial stage is under-scrutinized. In our work, we ground web text, which is a popular pretraining data source, to its social and geographic contexts. We create a new dataset of 10.3 million self-descriptions of website creators, and extract information about who they are and where they are from: their topical interests, social roles, and geographic affiliations. Then, we conduct the first study investigating how ten "quality" and English language identification (langID) filters affect webpages that vary along these social dimensions. Our experiments illuminate a range of implicit preferences in data curation: we show that some quality classifiers act like topical domain filters, and langID can overlook English content from some regions of the world. Overall, we hope that our work will encourage a new line of research on pretraining data curation practices and its social implications.
AI-assisted Coding with Cody: Lessons from Context Retrieval and Evaluation for Code Recommendations
In this work, we discuss a recently popular type of recommender system: an LLM-based coding assistant. Connecting the task of providing code recommendations in multiple formats to traditional RecSys challenges, we outline several similarities and differences due to domain specifics. We emphasize the importance of providing relevant context to an LLM for this use case and discuss lessons learned from context enhancements & offline and online evaluation of such AI-assisted coding systems.
Improving Fake News Detection of Influential Domain via Domain- and Instance-Level Transfer
Both real and fake news in various domains, such as politics, health, and entertainment are spread via online social media every day, necessitating fake news detection for multiple domains. Among them, fake news in specific domains like politics and health has more serious potential negative impacts on the real world (e.g., the infodemic led by COVID-19 misinformation). Previous studies focus on multi-domain fake news detection, by equally mining and modeling the correlation between domains. However, these multi-domain methods suffer from a seesaw problem: the performance of some domains is often improved at the cost of hurting the performance of other domains, which could lead to an unsatisfying performance in specific domains. To address this issue, we propose a Domain- and Instance-level Transfer Framework for Fake News Detection (DITFEND), which could improve the performance of specific target domains. To transfer coarse-grained domain-level knowledge, we train a general model with data of all domains from the meta-learning perspective. To transfer fine-grained instance-level knowledge and adapt the general model to a target domain, we train a language model on the target domain to evaluate the transferability of each data instance in source domains and re-weigh each instance's contribution. Offline experiments on two datasets demonstrate the effectiveness of DITFEND. Online experiments show that DITFEND brings additional improvements over the base models in a real-world scenario.
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset
While self-supervised learning has made rapid advances in natural language processing, it remains unclear when researchers should engage in resource-intensive domain-specific pretraining (domain pretraining). The law, puzzlingly, has yielded few documented instances of substantial gains to domain pretraining in spite of the fact that legal language is widely seen to be unique. We hypothesize that these existing results stem from the fact that existing legal NLP tasks are too easy and fail to meet conditions for when domain pretraining can help. To address this, we first present CaseHOLD (Case Holdings On Legal Decisions), a new dataset comprised of over 53,000+ multiple choice questions to identify the relevant holding of a cited case. This dataset presents a fundamental task to lawyers and is both legally meaningful and difficult from an NLP perspective (F1 of 0.4 with a BiLSTM baseline). Second, we assess performance gains on CaseHOLD and existing legal NLP datasets. While a Transformer architecture (BERT) pretrained on a general corpus (Google Books and Wikipedia) improves performance, domain pretraining (using corpus of approximately 3.5M decisions across all courts in the U.S. that is larger than BERT's) with a custom legal vocabulary exhibits the most substantial performance gains with CaseHOLD (gain of 7.2% on F1, representing a 12% improvement on BERT) and consistent performance gains across two other legal tasks. Third, we show that domain pretraining may be warranted when the task exhibits sufficient similarity to the pretraining corpus: the level of performance increase in three legal tasks was directly tied to the domain specificity of the task. Our findings inform when researchers should engage resource-intensive pretraining and show that Transformer-based architectures, too, learn embeddings suggestive of distinct legal language.
Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard
BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.
Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models
Large Language Models (LLMs) have the unique capability to understand and generate human-like text from input queries. When fine-tuned, these models show enhanced performance on domain-specific queries. OpenAI highlights the process of fine-tuning, stating: "To fine-tune a model, you are required to provide at least 10 examples. We typically see clear improvements from fine-tuning on 50 to 100 training examples, but the right number varies greatly based on the exact use case." This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines, which aim to improve accuracy and relevance by leveraging external corpus data for information retrieval. However, RAG's promise of delivering optimal responses often falls short in complex query scenarios. This study aims to specifically examine the effects of fine-tuning LLMs on their ability to extract and integrate contextual data to enhance the performance of RAG systems across multiple domains. We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding by comparing the accuracy and completeness of fine-tuned models against baseline performances across datasets from multiple domains. Our findings indicate that fine-tuning resulted in a decline in performance compared to the baseline models, contrary to the improvements observed in standalone LLM applications as suggested by OpenAI. This study highlights the need for vigorous investigation and validation of fine-tuned models for domain-specific tasks.
A Probabilistic Generative Grammar for Semantic Parsing
Domain-general semantic parsing is a long-standing goal in natural language processing, where the semantic parser is capable of robustly parsing sentences from domains outside of which it was trained. Current approaches largely rely on additional supervision from new domains in order to generalize to those domains. We present a generative model of natural language utterances and logical forms and demonstrate its application to semantic parsing. Our approach relies on domain-independent supervision to generalize to new domains. We derive and implement efficient algorithms for training, parsing, and sentence generation. The work relies on a novel application of hierarchical Dirichlet processes (HDPs) for structured prediction, which we also present in this manuscript. This manuscript is an excerpt of chapter 4 from the Ph.D. thesis of Saparov (2022), where the model plays a central role in a larger natural language understanding system. This manuscript provides a new simplified and more complete presentation of the work first introduced in Saparov, Saraswat, and Mitchell (2017). The description and proofs of correctness of the training algorithm, parsing algorithm, and sentence generation algorithm are much simplified in this new presentation. We also describe the novel application of hierarchical Dirichlet processes for structured prediction. In addition, we extend the earlier work with a new model of word morphology, which utilizes the comprehensive morphological data from Wiktionary.
MACRONYM: A Large-Scale Dataset for Multilingual and Multi-Domain Acronym Extraction
Acronym extraction is the task of identifying acronyms and their expanded forms in texts that is necessary for various NLP applications. Despite major progress for this task in recent years, one limitation of existing AE research is that they are limited to the English language and certain domains (i.e., scientific and biomedical). As such, challenges of AE in other languages and domains is mainly unexplored. Lacking annotated datasets in multiple languages and domains has been a major issue to hinder research in this area. To address this limitation, we propose a new dataset for multilingual multi-domain AE. Specifically, 27,200 sentences in 6 typologically different languages and 2 domains, i.e., Legal and Scientific, is manually annotated for AE. Our extensive experiments on the proposed dataset show that AE in different languages and different learning settings has unique challenges, emphasizing the necessity of further research on multilingual and multi-domain AE.
Unsupervised Matching of Data and Text
Entity resolution is a widely studied problem with several proposals to match records across relations. Matching textual content is a widespread task in many applications, such as question answering and search. While recent methods achieve promising results for these two tasks, there is no clear solution for the more general problem of matching textual content and structured data. We introduce a framework that supports this new task in an unsupervised setting for any pair of corpora, being relational tables or text documents. Our method builds a fine-grained graph over the content of the corpora and derives word embeddings to represent the objects to match in a low dimensional space. The learned representation enables effective and efficient matching at different granularity, from relational tuples to text sentences and paragraphs. Our flexible framework can exploit pre-trained resources, but it does not depends on their existence and achieves better quality performance in matching content when the vocabulary is domain specific. We also introduce optimizations in the graph creation process with an "expand and compress" approach that first identifies new valid relationships across elements, to improve matching, and then prunes nodes and edges, to reduce the graph size. Experiments on real use cases and public datasets show that our framework produces embeddings that outperform word embeddings and fine-tuned language models both in results' quality and in execution times.
Does Corpus Quality Really Matter for Low-Resource Languages?
The vast majority of non-English corpora are derived from automatically filtered versions of CommonCrawl. While prior work has identified major issues on the quality of these datasets (Kreutzer et al., 2021), it is not clear how this impacts downstream performance. Taking representation learning in Basque as a case study, we explore tailored crawling (manually identifying and scraping websites with high-quality content) as an alternative to filtering CommonCrawl. Our new corpus, called EusCrawl, is similar in size to the Basque portion of popular multilingual corpora like CC100 and mC4, yet it has a much higher quality according to native annotators. For instance, 66% of documents are rated as high-quality for EusCrawl, in contrast with <33% for both mC4 and CC100. Nevertheless, we obtain similar results on downstream NLU tasks regardless of the corpus used for pre-training. Our work suggests that NLU performance in low-resource languages is not primarily constrained by the quality of the data, and other factors like corpus size and domain coverage can play a more important role.
Lawyer LLaMA Technical Report
Large Language Models (LLMs), like LLaMA, have exhibited remarkable performance across various tasks. Nevertheless, when deployed to specific domains such as law or medicine, the models still confront the challenge of a deficiency in domain-specific knowledge and an inadequate capability to leverage that knowledge to resolve domain-related problems. In this paper, we propose a new framework to adapt LLMs to specific domains and build Lawyer LLaMA, a legal domain LLM, based on this framework. Specifically, we inject domain knowledge during the continual training stage and teach the model to learn professional skills using properly designed supervised fine-tuning tasks. Moreover, to alleviate the hallucination problem during the model's generation, we add a retrieval module and extract relevant legal articles before the model answers any queries. When learning domain-specific skills, we find that experts' experience is much more useful than experiences distilled from ChatGPT, where hundreds of expert-written data outperform tens of thousands of ChatGPT-generated ones. We will release our model and data.
Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers
Query rewriting is a crucial technique for passage retrieval in open-domain conversational question answering (CQA). It decontexualizes conversational queries into self-contained questions suitable for off-the-shelf retrievers. Existing methods attempt to incorporate retriever's preference during the training of rewriting models. However, these approaches typically rely on extensive annotations such as in-domain rewrites and/or relevant passage labels, limiting the models' generalization and adaptation capabilities. In this paper, we introduce AdaQR (Adaptive Query Rewriting), a framework for training query rewriting models with limited rewrite annotations from seed datasets and completely no passage label. Our approach begins by fine-tuning compact large language models using only ~10% of rewrite annotations from the seed dataset training split. The models are then utilized to generate rewrite candidates for each query instance. A novel approach is then proposed to assess retriever's preference for these candidates by the probability of answers conditioned on the conversational query by marginalizing the Top-K passages. This serves as the reward for optimizing the rewriter further using Direct Preference Optimization (DPO), a process free of rewrite and retrieval annotations. Experimental results on four open-domain CQA datasets demonstrate that AdaQR not only enhances the in-domain capabilities of the rewriter with limited annotation requirement, but also adapts effectively to out-of-domain datasets.
Promptagator: Few-shot Dense Retrieval From 8 Examples
Much recent research on information retrieval has focused on how to transfer from one task (typically with abundant supervised data) to various other tasks where supervision is limited, with the implicit assumption that it is possible to generalize from one task to all the rest. However, this overlooks the fact that there are many diverse and unique retrieval tasks, each targeting different search intents, queries, and search domains. In this paper, we suggest to work on Few-shot Dense Retrieval, a setting where each task comes with a short description and a few examples. To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data. Powered by LLM's generalization ability, Promptagator makes it possible to create task-specific end-to-end retrievers solely based on a few examples {without} using Natural Questions or MS MARCO to train %question generators or dual encoders. Surprisingly, LLM prompting with no more than 8 examples allows dual encoders to outperform heavily engineered models trained on MS MARCO like ColBERT v2 by more than 1.2 nDCG on average on 11 retrieval sets. Further training standard-size re-rankers using the same generated data yields another 5.0 point nDCG improvement. Our studies determine that query generation can be far more effective than previously observed, especially when a small amount of task-specific knowledge is given.
DOM-LM: Learning Generalizable Representations for HTML Documents
HTML documents are an important medium for disseminating information on the Web for human consumption. An HTML document presents information in multiple text formats including unstructured text, structured key-value pairs, and tables. Effective representation of these documents is essential for machine understanding to enable a wide range of applications, such as Question Answering, Web Search, and Personalization. Existing work has either represented these documents using visual features extracted by rendering them in a browser, which is typically computationally expensive, or has simply treated them as plain text documents, thereby failing to capture useful information presented in their HTML structure. We argue that the text and HTML structure together convey important semantics of the content and therefore warrant a special treatment for their representation learning. In this paper, we introduce a novel representation learning approach for web pages, dubbed DOM-LM, which addresses the limitations of existing approaches by encoding both text and DOM tree structure with a transformer-based encoder and learning generalizable representations for HTML documents via self-supervised pre-training. We evaluate DOM-LM on a variety of webpage understanding tasks, including Attribute Extraction, Open Information Extraction, and Question Answering. Our extensive experiments show that DOM-LM consistently outperforms all baselines designed for these tasks. In particular, DOM-LM demonstrates better generalization performance both in few-shot and zero-shot settings, making it attractive for making it suitable for real-world application settings with limited labeled data.
GAPrune: Gradient-Alignment Pruning for Domain-Aware Embeddings
Domain-specific embedding models have shown promise for applications that require specialized semantic understanding, such as coding agents and financial retrieval systems, often achieving higher performance gains than general models. However, state-of-the-art embedding models are typically based on LLMs, which contain billions of parameters, making deployment challenging in resource-constrained environments. Model compression through pruning offers a promising solution, but existing pruning methods treat all parameters uniformly, failing to distinguish between general semantic representations and domain-specific patterns, leading to suboptimal pruning decisions. Thus, we propose GAPrune, a pruning framework that addresses this challenge by considering both domain importance and preserving general linguistic foundation. Our method uses Fisher Information to measure importance and general-domain gradient alignment to assess parameter behavior, then combines these signals using our Domain Alignment Importance (DAI) scoring. Lower DAI scores indicate that the parameter is either less important for the domain task or creates conflicts between domain and general objectives. Experiments on two domain benchmarks, FinMTEB and ChemTEB, show that GAPrune maintains performance within 2.5% of dense models in one-shot pruning at 50% sparsity, while outperforming all baselines. With retraining in 100 steps, GAPrune achieves +4.51% improvement on FinMTEB and +1.73% on ChemTEB, demonstrating that our pruning strategy not only preserves but enhances domain-specific capabilities. Our findings demonstrate that principled pruning strategies can achieve model compression and enhanced domain specialization, providing the research community with a new approach for development.
WeQA: A Benchmark for Retrieval Augmented Generation in Wind Energy Domain
In the rapidly evolving landscape of Natural Language Processing (NLP) and text generation, the emergence of Retrieval Augmented Generation (RAG) presents a promising avenue for improving the quality and reliability of generated text by leveraging information retrieved from user specified database. Benchmarking is essential to evaluate and compare the performance of the different RAG configurations in terms of retriever and generator, providing insights into their effectiveness, scalability, and suitability for the specific domain and applications. In this paper, we present a comprehensive framework to generate a domain relevant RAG benchmark. Our framework is based on automatic question-answer generation with Human (domain experts)-AI Large Language Model (LLM) teaming. As a case study, we demonstrate the framework by introducing WeQA, a first-of-its-kind benchmark on the wind energy domain which comprises of multiple scientific documents/reports related to environmental impact of wind energy projects. Our framework systematically evaluates RAG performance using diverse metrics and multiple question types with varying complexity level. We also demonstrate the performance of different models on our benchmark.
Training CLIP models on Data from Scientific Papers
Contrastive Language-Image Pretraining (CLIP) models are able to capture the semantic relationship of images and texts and have enabled a wide range of applications, from image retrieval to classification. These models are trained with datasets extracted from web crawls, which are of large quantity but limited quality. This paper explores whether limited amounts higher quality data in a specific domain improve the general performance of CLIP models. To this purpose, we extract text-image data from scientific papers hosted in the arXiv and PubMed Central repositories. Experiments on small-scale CLIP models (ViT B/32) show that model performance increases on average, but only moderately. This result indicates that using the data sources considered in the paper to train large-scale CLIP models is a worthwile research direction.
MultiCQA: Zero-Shot Transfer of Self-Supervised Text Matching Models on a Massive Scale
We study the zero-shot transfer capabilities of text matching models on a massive scale, by self-supervised training on 140 source domains from community question answering forums in English. We investigate the model performances on nine benchmarks of answer selection and question similarity tasks, and show that all 140 models transfer surprisingly well, where the large majority of models substantially outperforms common IR baselines. We also demonstrate that considering a broad selection of source domains is crucial for obtaining the best zero-shot transfer performances, which contrasts the standard procedure that merely relies on the largest and most similar domains. In addition, we extensively study how to best combine multiple source domains. We propose to incorporate self-supervised with supervised multi-task learning on all available source domains. Our best zero-shot transfer model considerably outperforms in-domain BERT and the previous state of the art on six benchmarks. Fine-tuning of our model with in-domain data results in additional large gains and achieves the new state of the art on all nine benchmarks.
Query of CC: Unearthing Large Scale Domain-Specific Knowledge from Public Corpora
Large language models have demonstrated remarkable potential in various tasks, however, there remains a significant scarcity of open-source models and data for specific domains. Previous works have primarily focused on manually specifying resources and collecting high-quality data on specific domains, which significantly consume time and effort. To address this limitation, we propose an efficient data collection method~Query of CC based on large language models. This method bootstraps seed information through a large language model and retrieves related data from public corpora. It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures. Through the application of this method, we have curated a high-quality dataset called~Knowledge Pile, encompassing four major domains, including stem and humanities sciences, among others. Experimental results demonstrate that~Knowledge Pile significantly improves the performance of large language models in mathematical and knowledge-related reasoning ability tests. To facilitate academic sharing, we open-source our dataset and code, providing valuable support to the academic community.
Generate rather than Retrieve: Large Language Models are Strong Context Generators
Knowledge-intensive tasks, such as open-domain question answering (QA), require access to a large amount of world or domain knowledge. A common approach for knowledge-intensive tasks is to employ a retrieve-then-read pipeline that first retrieves a handful of relevant contextual documents from an external corpus such as Wikipedia and then predicts an answer conditioned on the retrieved documents. In this paper, we present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators. We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer. Furthermore, we propose a novel clustering-based prompting method that selects distinct prompts, resulting in the generated documents that cover different perspectives, leading to better recall over acceptable answers. We conduct extensive experiments on three different knowledge-intensive tasks, including open-domain QA, fact checking, and dialogue system. Notably, GenRead achieves 71.6 and 54.4 exact match scores on TriviaQA and WebQ, significantly outperforming the state-of-the-art retrieve-then-read pipeline DPR-FiD by +4.0 and +3.9, without retrieving any documents from any external knowledge source. Lastly, we demonstrate the model performance can be further improved by combining retrieval and generation. Our code and generated documents can be found at https://github.com/wyu97/GenRead.
Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning
Artificial intelligence (AI) is widely deployed to solve problems related to marketing attribution and budget optimization. However, AI models can be quite complex, and it can be difficult to understand model workings and insights without extensive implementation teams. In principle, recently developed large language models (LLMs), like GPT-4, can be deployed to provide marketing insights, reducing the time and effort required to make critical decisions. In practice, there are substantial challenges that need to be overcome to reliably use such models. We focus on domain-specific question-answering, SQL generation needed for data retrieval, and tabular analysis and show how a combination of semantic search, prompt engineering, and fine-tuning can be applied to dramatically improve the ability of LLMs to execute these tasks accurately. We compare both proprietary models, like GPT-4, and open-source models, like Llama-2-70b, as well as various embedding methods. These models are tested on sample use cases specific to marketing mix modeling and attribution.
CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation
Building high-quality datasets for specialized tasks is a time-consuming and resource-intensive process that often requires specialized domain knowledge. We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets, given a small number of user-written few-shots that demonstrate the task to be performed. Given the few-shot examples, we use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents. Lastly, instruction-tuned large language models (LLMs) augment the retrieved documents into custom-formatted task samples, which then can be used for fine-tuning. We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks: biology question-answering (QA), medicine QA and commonsense QA as well as summarization. Our experiments show that CRAFT-based models outperform or achieve comparable performance to general LLMs for QA tasks, while CRAFT-based summarization models outperform models trained on human-curated data by 46 preference points.
Data Selection for Language Models via Importance Resampling
Selecting a suitable training dataset is crucial for both general-domain (e.g., GPT-3) and domain-specific (e.g., Codex) language models (LMs). We formalize this data selection problem as selecting a subset of a large raw unlabeled dataset to match a desired target distribution, given some unlabeled target samples. Due to the large scale and dimensionality of the raw text data, existing methods use simple heuristics to select data that are similar to a high-quality reference corpus (e.g., Wikipedia), or leverage experts to manually curate data. Instead, we extend the classic importance resampling approach used in low-dimensions for LM data selection. Crucially, we work in a reduced feature space to make importance weight estimation tractable over the space of text. To determine an appropriate feature space, we first show that KL reduction, a data metric that measures the proximity between selected data and the target in a feature space, has high correlation with average accuracy on 8 downstream tasks (r=0.89) when computed with simple n-gram features. From this observation, we present Data Selection with Importance Resampling (DSIR), an efficient and scalable algorithm that estimates importance weights in a reduced feature space (e.g., n-gram features in our instantiation) and selects data with importance resampling according to these weights. When training general-domain models (target is Wikipedia + books), DSIR improves over random selection and heuristic filtering baselines by 2--2.5% on the GLUE benchmark. When performing continued pretraining towards a specific domain, DSIR performs comparably to expert curated data across 8 target distributions.
INDUS: Effective and Efficient Language Models for Scientific Applications
Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this pivotal insight, we developed INDUS, a comprehensive suite of LLMs tailored for the Earth science, biology, physics, heliophysics, planetary sciences and astrophysics domains and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address natural language understanding tasks, (2) a contrastive-learning-based general text embedding model trained using a diverse set of datasets drawn from multiple sources to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation techniques to address applications which have latency or resource constraints. We also created three new scientific benchmark datasets namely, CLIMATE-CHANGE-NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. Finally, we show that our models outperform both general-purpose encoders (RoBERTa) and existing domain-specific encoders (SciBERT) on these new tasks as well as existing benchmark tasks in the domains of interest.
Soft Prompt Tuning for Augmenting Dense Retrieval with Large Language Models
Dense retrieval (DR) converts queries and documents into dense embeddings and measures the similarity between queries and documents in vector space. One of the challenges in DR is the lack of domain-specific training data. While DR models can learn from large-scale public datasets like MS MARCO through transfer learning, evidence shows that not all DR models and domains can benefit from transfer learning equally. Recently, some researchers have resorted to large language models (LLMs) to improve the zero-shot and few-shot DR models. However, the hard prompts or human-written prompts utilized in these works cannot guarantee the good quality of generated weak queries. To tackle this, we propose soft prompt tuning for augmenting DR (SPTAR): For each task, we leverage soft prompt-tuning to optimize a task-specific soft prompt on limited ground truth data and then prompt the LLMs to tag unlabeled documents with weak queries, yielding enough weak document-query pairs to train task-specific dense retrievers. We design a filter to select high-quality example document-query pairs in the prompt to further improve the quality of weak tagged queries. To the best of our knowledge, there is no prior work utilizing soft prompt tuning to augment DR models. The experiments demonstrate that SPTAR outperforms the unsupervised baselines BM25 and the recently proposed LLMs-based augmentation method for DR.
Semi-supervised URL Segmentation with Recurrent Neural Networks Pre-trained on Knowledge Graph Entities
Breaking domain names such as openresearch into component words open and research is important for applications like Text-to-Speech synthesis and web search. We link this problem to the classic problem of Chinese word segmentation and show the effectiveness of a tagging model based on Recurrent Neural Networks (RNNs) using characters as input. To compensate for the lack of training data, we propose a pre-training method on concatenated entity names in a large knowledge database. Pre-training improves the model by 33% and brings the sequence accuracy to 85%.
Only-IF:Revealing the Decisive Effect of Instruction Diversity on Generalization
Understanding and accurately following instructions is critical for large language models (LLMs) to be effective across diverse tasks. In this work, we rigorously examine the key factors that enable models to generalize to unseen instructions, providing insights to guide the collection of data for instruction-tuning. Through controlled experiments, inspired by the Turing-complete Markov algorithm, we demonstrate that such generalization only emerges when training data is diversified enough across semantic domains. Our findings also reveal that merely diversifying within limited domains fails to ensure robust generalization. In contrast, cross-domain data diversification, even under constrained data budgets, significantly enhances a model's adaptability. We further extend our analysis to real-world scenarios, including fine-tuning of $textbf{specialist} and textbf{generalist}$ models. In both cases, we demonstrate that 1) better performance can be achieved by increasing the diversity of an established dataset while keeping the data size constant, and 2) when scaling up the data, diversifying the semantics of instructions is more effective than simply increasing the quantity of similar data. Our research provides important insights for dataset collation, particularly when optimizing model performance by expanding training data for both specialist and generalist scenarios. We show that careful consideration of data diversification is key: training specialist models with data extending beyond their core domain leads to significant performance improvements, while generalist models benefit from diverse data mixtures that enhance their overall instruction-following capabilities across a wide range of applications. Our results highlight the critical role of strategic diversification and offer clear guidelines for improving data quality.
Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines
We present a systematic investigation of Multi-modal Retrieval Augmented Multi-modal Generation (M^2RAG), a novel task that enables foundation models to process multi-modal web content and generate multi-modal responses, which exhibits better information density and readability. Despite its potential impact, M^2RAG remains understudied, lacking comprehensive analysis and high-quality data resources. To address this gap, we establish a comprehensive benchmark through a rigorous data curation pipeline, and employ text-modal metrics and multi-modal metrics based on foundation models for evaluation. We further propose several strategies for foundation models to process M^2RAG effectively and construct a training set by filtering high-quality samples using designed metrics. Our extensive experiments demonstrate the reliability of our proposed metrics, a landscape of model performance within our designed strategies, and show that our fine-tuned 7B-8B models outperform the state-of-the-art GPT-4o model. Additionally, we perform fine-grained analyses across diverse domains and validate the effectiveness of our designs in data curation pipeline. All resources, including codes, datasets, and model weights, will be publicly released.
Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization
Single-source domain generalization attempts to learn a model on a source domain and deploy it to unseen target domains. Limiting access only to source domain data imposes two key challenges - how to train a model that can generalize and how to verify that it does. The standard practice of validation on the training distribution does not accurately reflect the model's generalization ability, while validation on the test distribution is a malpractice to avoid. In this work, we construct an independent validation set by transforming source domain images with a comprehensive list of augmentations, covering a broad spectrum of potential distribution shifts in target domains. We demonstrate a high correlation between validation and test performance for multiple methods and across various datasets. The proposed validation achieves a relative accuracy improvement over the standard validation equal to 15.4% or 1.6% when used for method selection or learning rate tuning, respectively. Furthermore, we introduce a novel family of methods that increase the shape bias through enhanced edge maps. To benefit from the augmentations during training and preserve the independence of the validation set, a k-fold validation process is designed to separate the augmentation types used in training and validation. The method that achieves the best performance on the augmented validation is selected from the proposed family. It achieves state-of-the-art performance on various standard benchmarks. Code at: https://github.com/NikosEfth/crafting-shifts
Cross-Domain Robustness of Transformer-based Keyphrase Generation
Modern models for text generation show state-of-the-art results in many natural language processing tasks. In this work, we explore the effectiveness of abstractive text summarization models for keyphrase selection. A list of keyphrases is an important element of a text in databases and repositories of electronic documents. In our experiments, abstractive text summarization models fine-tuned for keyphrase generation show quite high results for a target text corpus. However, in most cases, the zero-shot performance on other corpora and domains is significantly lower. We investigate cross-domain limitations of abstractive text summarization models for keyphrase generation. We present an evaluation of the fine-tuned BART models for the keyphrase selection task across six benchmark corpora for keyphrase extraction including scientific texts from two domains and news texts. We explore the role of transfer learning between different domains to improve the BART model performance on small text corpora. Our experiments show that preliminary fine-tuning on out-of-domain corpora can be effective under conditions of a limited number of samples.
PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains
Natural Language Processing algorithms have made incredible progress, but they still struggle when applied to out-of-distribution examples. We address a challenging and underexplored version of this domain adaptation problem, where an algorithm is trained on several source domains, and then applied to examples from unseen domains that are unknown at training time. Particularly, no examples, labeled or unlabeled, or any other knowledge about the target domain are available to the algorithm at training time. We present PADA: An example-based autoregressive Prompt learning algorithm for on-the-fly Any-Domain Adaptation, based on the T5 language model. Given a test example, PADA first generates a unique prompt for it and then, conditioned on this prompt, labels the example with respect to the NLP prediction task. PADA is trained to generate a prompt which is a token sequence of unrestricted length, consisting of Domain Related Features (DRFs) that characterize each of the source domains. Intuitively, the generated prompt is a unique signature that maps the test example to a semantic space spanned by the source domains. In experiments with 3 tasks (text classification and sequence tagging), for a total of 14 multi-source adaptation scenarios, PADA substantially outperforms strong baselines.
Benchmarking Information Retrieval Models on Complex Retrieval Tasks
Large language models (LLMs) are incredible and versatile tools for text-based tasks that have enabled countless, previously unimaginable, applications. Retrieval models, in contrast, have not yet seen such capable general-purpose models emerge. To achieve this goal, retrieval models must be able to perform complex retrieval tasks, where queries contain multiple parts, constraints, or requirements in natural language. These tasks represent a natural progression from the simple, single-aspect queries that are used in the vast majority of existing, commonly used evaluation sets. Complex queries naturally arise as people expect search systems to handle more specific and often ambitious information requests, as is demonstrated by how people use LLM-based information systems. Despite the growing desire for retrieval models to expand their capabilities in complex retrieval tasks, there exist limited resources to assess the ability of retrieval models on a comprehensive set of diverse complex tasks. The few resources that do exist feature a limited scope and often lack realistic settings making it hard to know the true capabilities of retrieval models on complex real-world retrieval tasks. To address this shortcoming and spur innovation in next-generation retrieval models, we construct a diverse and realistic set of complex retrieval tasks and benchmark a representative set of state-of-the-art retrieval models. Additionally, we explore the impact of LLM-based query expansion and rewriting on retrieval quality. Our results show that even the best models struggle to produce high-quality retrieval results with the highest average nDCG@10 of only 0.346 and R@100 of only 0.587 across all tasks. Although LLM augmentation can help weaker models, the strongest model has decreased performance across all metrics with all rewriting techniques.
Novel Benchmark for NER in the Wastewater and Stormwater Domain
Effective wastewater and stormwater management is essential for urban sustainability and environmental protection. Extracting structured knowledge from reports and regulations is challenging due to domainspecific terminology and multilingual contexts. This work focuses on domain-specific Named Entity Recognition (NER) as a first step towards effective relation and information extraction to support decision making. A multilingual benchmark is crucial for evaluating these methods. This study develops a French-Italian domain-specific text corpus for wastewater management. It evaluates state-of-the-art NER methods, including LLM-based approaches, to provide a reliable baseline for future strategies and explores automated annotation projection in view of an extension of the corpus to new languages.
Granite Embedding R2 Models
We introduce the Granite Embedding R2 models, a comprehensive family of high-performance English encoder-based embedding models engineered for enterprise-scale dense retrieval applications. Building upon our first-generation release, these models deliver substantial improvements, including 16x expanded context length (8,192 tokens), state-of-the-art performance across diverse retrieval domains - text, code, long-document search, multi-turn conversational, and tabular data - and measurable speed advantages of 19-44\% over leading competitors while maintaining superior accuracy. Our release encompasses both bi-encoder and cross-encoder architectures, featuring a highly effective 22-layer retriever model and its efficient 12-layer counterpart, alongside a high-quality reranker model, all trained exclusively on enterprise-appropriate data with comprehensive governance oversight. The models demonstrate exceptional versatility across standard benchmarks, IBM-developed evaluation suites, and real-world enterprise use cases, establishing new performance standards for open-source embedding models. In an era where retrieval speed and accuracy are paramount for competitive advantage, the Granite R2 models deliver a compelling combination of cutting-edge performance, enterprise-ready licensing, and transparent data provenance that organizations require for mission-critical deployments. All models are publicly available under the Apache 2.0 license at https://huggingface.co/collections/ibm-granite, enabling unrestricted research and commercial use.
RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation
Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimization of retrieval and generation. To address these issues, we propose RetroLLM, a unified framework that integrates retrieval and generation into a single, cohesive process, enabling LLMs to directly generate fine-grained evidence from the corpus with constrained decoding. Moreover, to mitigate false pruning in the process of constrained evidence generation, we introduce (1) hierarchical FM-Index constraints, which generate corpus-constrained clues to identify a subset of relevant documents before evidence generation, reducing irrelevant decoding space; and (2) a forward-looking constrained decoding strategy, which considers the relevance of future sequences to improve evidence accuracy. Extensive experiments on five open-domain QA datasets demonstrate RetroLLM's superior performance across both in-domain and out-of-domain tasks. The code is available at https://github.com/sunnynexus/RetroLLM.
OnlySportsLM: Optimizing Sports-Domain Language Models with SOTA Performance under Billion Parameters
This paper explores the potential of a small, domain-specific language model trained exclusively on sports-related data. We investigate whether extensive training data with specially designed small model structures can overcome model size constraints. The study introduces the OnlySports collection, comprising OnlySportsLM, OnlySports Dataset, and OnlySports Benchmark. Our approach involves: 1) creating a massive 600 billion tokens OnlySports Dataset from FineWeb, 2) optimizing the RWKV architecture for sports-related tasks, resulting in a 196M parameters model with 20-layer, 640-dimension structure, 3) training the OnlySportsLM on part of OnlySports Dataset, and 4) testing the resultant model on OnlySports Benchmark. OnlySportsLM achieves a 37.62%/34.08% accuracy improvement over previous 135M/360M state-of-the-art models and matches the performance of larger models such as SomlLM 1.7B and Qwen 1.5B in the sports domain. Additionally, the OnlySports collection presents a comprehensive workflow for building high-quality, domain-specific language models, providing a replicable blueprint for efficient AI development across various specialized fields.
Synthetic Target Domain Supervision for Open Retrieval QA
Neural passage retrieval is a new and promising approach in open retrieval question answering. In this work, we stress-test the Dense Passage Retriever (DPR) -- a state-of-the-art (SOTA) open domain neural retrieval model -- on closed and specialized target domains such as COVID-19, and find that it lags behind standard BM25 in this important real-world setting. To make DPR more robust under domain shift, we explore its fine-tuning with synthetic training examples, which we generate from unlabeled target domain text using a text-to-text generator. In our experiments, this noisy but fully automated target domain supervision gives DPR a sizable advantage over BM25 in out-of-domain settings, making it a more viable model in practice. Finally, an ensemble of BM25 and our improved DPR model yields the best results, further pushing the SOTA for open retrieval QA on multiple out-of-domain test sets.
A Comparative Study of DSL Code Generation: Fine-Tuning vs. Optimized Retrieval Augmentation
Natural Language to Code Generation has made significant progress in recent years with the advent of Large Language Models(LLMs). While generation for general-purpose languages like C, C++, and Python has improved significantly, LLMs struggle with custom function names in Domain Specific Languages or DSLs. This leads to higher hallucination rates and syntax errors, specially for DSLs having a high number of custom function names. Additionally, constant updates to function names add to the challenge as LLMs need to stay up-to-date. In this paper, we present optimizations for using Retrieval Augmented Generation (or RAG) with LLMs for DSL generation along with an ablation study comparing these strategies. We generated a train as well as test dataset with a DSL to represent automation tasks across roughly 700 APIs in public domain. We used the training dataset to fine-tune a Codex model for this DSL. Our results showed that the fine-tuned model scored the best on code similarity metric. With our RAG optimizations, we achieved parity for similarity metric. The compilation rate, however, showed that both the models still got the syntax wrong many times, with RAG-based method being 2 pts better. Conversely, hallucination rate for RAG model lagged by 1 pt for API names and by 2 pts for API parameter keys. We conclude that an optimized RAG model can match the quality of fine-tuned models and offer advantages for new, unseen APIs.
Digestion Algorithm in Hierarchical Symbolic Forests: A Fast Text Normalization Algorithm and Semantic Parsing Framework for Specific Scenarios and Lightweight Deployment
Text Normalization and Semantic Parsing have numerous applications in natural language processing, such as natural language programming, paraphrasing, data augmentation, constructing expert systems, text matching, and more. Despite the prominent achievements of deep learning in Large Language Models (LLMs), the interpretability of neural network architectures is still poor, which affects their credibility and hence limits the deployments of risk-sensitive scenarios. In certain scenario-specific domains with scarce data, rapidly obtaining a large number of supervised learning labels is challenging, and the workload of manually labeling data would be enormous. Catastrophic forgetting in neural networks further leads to low data utilization rates. In situations where swift responses are vital, the density of the model makes local deployment difficult and the response time long, which is not conducive to local applications of these fields. Inspired by the multiplication rule, a principle of combinatorial mathematics, and human thinking patterns, a multilayer framework along with its algorithm, the Digestion Algorithm in Hierarchical Symbolic Forests (DAHSF), is proposed to address these above issues, combining text normalization and semantic parsing workflows. The Chinese Scripting Language "Fire Bunny Intelligent Development Platform V2.0" is an important test and application of the technology discussed in this paper. DAHSF can run locally in scenario-specific domains on little datasets, with model size and memory usage optimized by at least two orders of magnitude, thus improving the execution speed, and possessing a promising optimization outlook.
BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models
Large Language Models (LLMs) like ChatGPT and GPT-4 are versatile and capable of addressing a diverse range of tasks. However, general LLMs, which are developed on open-domain data, may lack the domain-specific knowledge essential for tasks in vertical domains, such as legal, medical, etc. To address this issue, previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs. Unfortunately, these strategies are either cost-intensive or unreliable in practical applications. To this end, we present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models. BLADE consists of a black-box LLM and a small domain-specific LM. The small LM preserves domain-specific knowledge and offers specialized insights, while the general LLM contributes robust language comprehension and reasoning capabilities. Specifically, our method involves three steps: 1) pre-training the small LM with domain-specific data, 2) fine-tuning this model using knowledge instruction data, and 3) joint Bayesian optimization of the general LLM and the small LM. Extensive experiments conducted on public legal and medical benchmarks reveal that BLADE significantly outperforms existing approaches. This shows the potential of BLADE as an effective and cost-efficient solution in adapting general LLMs for vertical domains.
SParC: Cross-Domain Semantic Parsing in Context
We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.
Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data
This report investigates enhancing semantic caching effectiveness by employing specialized, fine-tuned embedding models. Semantic caching relies on embedding similarity rather than exact key matching, presenting unique challenges in balancing precision, query latency, and computational efficiency. We propose leveraging smaller, domain-specific embedding models, fine-tuned with targeted real-world and synthetically generated datasets. Our empirical evaluations demonstrate that compact embedding models fine-tuned for just one epoch on specialized datasets significantly surpass both state-of-the-art open-source and proprietary alternatives in precision and recall. Moreover, we introduce a novel synthetic data generation pipeline for the semantic cache that mitigates the challenge of limited domain-specific annotated data, further boosting embedding performance. Our approach effectively balances computational overhead and accuracy, establishing a viable and efficient strategy for practical semantic caching implementations.
SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.
Adapting Large Language Models for Multi-Domain Retrieval-Augmented-Generation
Retrieval-Augmented Generation (RAG) enhances LLM factuality, but multi-domain applications face challenges like lack of diverse benchmarks and poor out-of-domain generalization. The first contribution of this work is to introduce a diverse benchmark comprising a variety of question-answering tasks from 8 sources and covering 13 domains. Our second contribution consists in systematically testing out-of-domain generalization for typical RAG tuning strategies. While our findings reveal that standard fine-tuning fails to generalize effectively, we show that sequence-level distillation with teacher-generated labels improves out-of-domain performance by providing more coherent supervision. Our findings highlight key strategies for improving multi-domain RAG robustness.
SciGPT: A Large Language Model for Scientific Literature Understanding and Knowledge Discovery
Scientific literature is growing exponentially, creating a critical bottleneck for researchers to efficiently synthesize knowledge. While general-purpose Large Language Models (LLMs) show potential in text processing, they often fail to capture scientific domain-specific nuances (e.g., technical jargon, methodological rigor) and struggle with complex scientific tasks, limiting their utility for interdisciplinary research. To address these gaps, this paper presents SciGPT, a domain-adapted foundation model for scientific literature understanding and ScienceBench, an open source benchmark tailored to evaluate scientific LLMs. Built on the Qwen3 architecture, SciGPT incorporates three key innovations: (1) low-cost domain distillation via a two-stage pipeline to balance performance and efficiency; (2) a Sparse Mixture-of-Experts (SMoE) attention mechanism that cuts memory consumption by 55\% for 32,000-token long-document reasoning; and (3) knowledge-aware adaptation integrating domain ontologies to bridge interdisciplinary knowledge gaps. Experimental results on ScienceBench show that SciGPT outperforms GPT-4o in core scientific tasks including sequence labeling, generation, and inference. It also exhibits strong robustness in unseen scientific tasks, validating its potential to facilitate AI-augmented scientific discovery.
Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
Recently, the development of large language models (LLMs) has attracted wide attention in academia and industry. Deploying LLMs to real scenarios is one of the key directions in the current Internet industry. In this paper, we present a novel pipeline to apply LLMs for domain-specific question answering (QA) that incorporates domain knowledge graphs (KGs), addressing an important direction of LLM application. As a real-world application, the content generated by LLMs should be user-friendly to serve the customers. Additionally, the model needs to utilize domain knowledge properly to generate reliable answers. These two issues are the two major difficulties in the LLM application as vanilla fine-tuning can not adequately address them. We think both requirements can be unified as the model preference problem that needs to align with humans to achieve practical application. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference set called style preference set and knowledge preference set respectively to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with human preference, aiming to train a better LLM for real-scenario domain-specific QA to generate reliable and user-friendly answers. Adequate experiments and comprehensive with 15 baseline methods demonstrate that our KnowPAT is an outperforming pipeline for real-scenario domain-specific QA with LLMs. Our code is open-source at https://github.com/zjukg/KnowPAT.
MultiReQA: A Cross-Domain Evaluation for Retrieval Question Answering Models
Retrieval question answering (ReQA) is the task of retrieving a sentence-level answer to a question from an open corpus (Ahmad et al.,2019).This paper presents MultiReQA, anew multi-domain ReQA evaluation suite com-posed of eight retrieval QA tasks drawn from publicly available QA datasets. We provide the first systematic retrieval based evaluation over these datasets using two supervised neural models, based on fine-tuning BERT andUSE-QA models respectively, as well as a surprisingly strong information retrieval baseline,BM25. Five of these tasks contain both train-ing and test data, while three contain test data only. Performance on the five tasks with train-ing data shows that while a general model covering all domains is achievable, the best performance is often obtained by training exclusively on in-domain data.
The TechQA Dataset
We introduce TechQA, a domain-adaptation question answering dataset for the technical support domain. The TechQA corpus highlights two real-world issues from the automated customer support domain. First, it contains actual questions posed by users on a technical forum, rather than questions generated specifically for a competition or a task. Second, it has a real-world size -- 600 training, 310 dev, and 490 evaluation question/answer pairs -- thus reflecting the cost of creating large labeled datasets with actual data. Consequently, TechQA is meant to stimulate research in domain adaptation rather than being a resource to build QA systems from scratch. The dataset was obtained by crawling the IBM Developer and IBM DeveloperWorks forums for questions with accepted answers that appear in a published IBM Technote---a technical document that addresses a specific technical issue. We also release a collection of the 801,998 publicly available Technotes as of April 4, 2019 as a companion resource that might be used for pretraining, to learn representations of the IT domain language.
AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR Prediction
Large-scale commercial platforms usually involve numerous business domains for diverse business strategies and expect their recommendation systems to provide click-through rate (CTR) predictions for multiple domains simultaneously. Existing promising and widely-used multi-domain models discover domain relationships by explicitly constructing domain-specific networks, but the computation and memory boost significantly with the increase of domains. To reduce computational complexity, manually grouping domains with particular business strategies is common in industrial applications. However, this pre-defined data partitioning way heavily relies on prior knowledge, and it may neglect the underlying data distribution of each domain, hence limiting the model's representation capability. Regarding the above issues, we propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM), which is an end-to-end optimization hierarchical structure consisting of a clustering process and classification process. Specifically, we design a distribution adaptation module with a customized dynamic routing mechanism. Instead of introducing prior knowledge for pre-defined data allocation, this routing algorithm adaptively provides a distribution coefficient for each sample to determine which cluster it belongs to. Each cluster corresponds to a particular distribution so that the model can sufficiently capture the commonalities and distinctions between these distinct clusters. Extensive experiments on both public and large-scale Alibaba industrial datasets verify the effectiveness and efficiency of AdaptDHM: Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.
Schema-Driven Information Extraction from Heterogeneous Tables
In this paper, we explore the question of whether large language models can support cost-efficient information extraction from tables. We introduce schema-driven information extraction, a new task that transforms tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we present a benchmark comprised of tables from four diverse domains: machine learning papers, chemistry literature, material science journals, and webpages. We use this collection of annotated tables to evaluate the ability of open-source and API-based language models to extract information from tables covering diverse domains and data formats. Our experiments demonstrate that surprisingly competitive performance can be achieved without requiring task-specific pipelines or labels, achieving F1 scores ranging from 74.2 to 96.1, while maintaining cost efficiency. Moreover, through detailed ablation studies and analyses, we investigate the factors contributing to model success and validate the practicality of distilling compact models to reduce API reliance.
MultiLegalPile: A 689GB Multilingual Legal Corpus
Large, high-quality datasets are crucial for training Large Language Models (LLMs). However, so far, there are few datasets available for specialized critical domains such as law and the available ones are often only for the English language. We curate and release MultiLegalPile, a 689GB corpus in 24 languages from 17 jurisdictions. The MultiLegalPile corpus, which includes diverse legal data sources with varying licenses, allows for pretraining NLP models under fair use, with more permissive licenses for the Eurlex Resources and Legal mC4 subsets. We pretrain two RoBERTa models and one Longformer multilingually, and 24 monolingual models on each of the language-specific subsets and evaluate them on LEXTREME. Additionally, we evaluate the English and multilingual models on LexGLUE. Our multilingual models set a new SotA on LEXTREME and our English models on LexGLUE. We release the dataset, the trained models, and all of the code under the most open possible licenses.
Hypercube-Based Retrieval-Augmented Generation for Scientific Question-Answering
Large language models (LLMs) often need to incorporate external knowledge to solve theme-specific problems. Retrieval-augmented generation (RAG) has shown its high promise, empowering LLMs to generate more qualified responses with retrieved external data and knowledge. However, most RAG methods retrieve relevant documents based on either sparse or dense retrieval methods or their combinations, which overlooks the essential, multi-dimensional, and structured semantic information present in documents. This structured information plays a critical role in finding concise yet highly relevant information for domain knowledge-intensive tasks, such as scientific question-answering (QA). In this work, we introduce a multi-dimensional (cube) structure, Hypercube, which can index and allocate documents in a pre-defined multi-dimensional space. Built on the hypercube, we further propose Hypercube-RAG, a novel RAG framework for precise and efficient retrieval. Given a query, Hypercube-RAG first decomposes it based on its entities, phrases, and topics along with pre-defined hypercube dimensions, and then retrieves relevant documents from cubes by aligning these decomposed components with corresponding dimensions. Experiments on three datasets across different domains demonstrate that our method improves response accuracy by 3.7% and retrieval accuracy by 5.3% over the strongest RAG baseline. It also boosts retrieval efficiency (speed) by one or two magnitudes faster than graph-based RAG. Notably, our Hypercube-RAG inherently offers explainability by revealing those underlying dimensions used for retrieval. The code and data are available at https://github.com/JimengShi/Hypercube-RAG.
SearchInstruct: Enhancing Domain Adaptation via Retrieval-Based Instruction Dataset Creation
Supervised Fine-Tuning (SFT) is essential for training large language models (LLMs), significantly enhancing critical capabilities such as instruction following and in-context learning. Nevertheless, creating suitable training datasets tailored for specific domains remains challenging due to unique domain constraints and data scarcity. In this paper, we propose SearchInstruct, an innovative method explicitly designed to construct high quality instruction datasets for SFT. Our approach begins with a limited set of domain specific, human generated questions, which are systematically expanded using a large language model. Subsequently, domain relevant resources are dynamically retrieved to generate accurate and contextually appropriate answers for each augmented question. Experimental evaluation demonstrates that SearchInstruct enhances both the diversity and quality of SFT datasets, leading to measurable improvements in LLM performance within specialized domains. Additionally, we show that beyond dataset generation, the proposed method can also effectively facilitate tasks such as model editing, enabling efficient updates to existing models. To facilitate reproducibility and community adoption, we provide full implementation details, the complete set of generated instruction response pairs, and the source code in a publicly accessible Git repository: [https://github.com/mostafaamiri/SearchInstruct](https://github.com/mostafaamiri/SearchInstruct)
Summarizing, Simplifying, and Synthesizing Medical Evidence Using GPT-3 (with Varying Success)
Large language models, particularly GPT-3, are able to produce high quality summaries of general domain news articles in few- and zero-shot settings. However, it is unclear if such models are similarly capable in more specialized, high-stakes domains such as biomedicine. In this paper, we enlist domain experts (individuals with medical training) to evaluate summaries of biomedical articles generated by GPT-3, given zero supervision. We consider both single- and multi-document settings. In the former, GPT-3 is tasked with generating regular and plain-language summaries of articles describing randomized controlled trials; in the latter, we assess the degree to which GPT-3 is able to synthesize evidence reported across a collection of articles. We design an annotation scheme for evaluating model outputs, with an emphasis on assessing the factual accuracy of generated summaries. We find that while GPT-3 is able to summarize and simplify single biomedical articles faithfully, it struggles to provide accurate aggregations of findings over multiple documents. We release all data and annotations used in this work.
Dense Passage Retrieval for Open-Domain Question Answering
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.
Evaluating the Factuality of Zero-shot Summarizers Across Varied Domains
Recent work has shown that large language models (LLMs) are capable of generating summaries zero-shot (i.e., without explicit supervision) that, under human assessment, are often comparable or even preferred to manually composed reference summaries. However, this prior work has focussed almost exclusively on evaluating news article summarization. How do zero-shot summarizers perform in other (potentially more specialized) domains? In this work we evaluate zero-shot generated summaries across specialized domains including biomedical articles, and legal bills (in addition to standard news benchmarks for reference). We focus especially on the factuality of outputs. We acquire annotations from domain experts to identify inconsistencies in summaries and systematically categorize these errors. We analyze whether the prevalence of a given domain in the pretraining corpus affects extractiveness and faithfulness of generated summaries of articles in this domain. We release all collected annotations to facilitate additional research toward measuring and realizing factually accurate summarization, beyond news articles. The dataset can be downloaded from https://github.com/sanjanaramprasad/zero_shot_faceval_domains
JParaCrawl: A Large Scale Web-Based English-Japanese Parallel Corpus
Recent machine translation algorithms mainly rely on parallel corpora. However, since the availability of parallel corpora remains limited, only some resource-rich language pairs can benefit from them. We constructed a parallel corpus for English-Japanese, for which the amount of publicly available parallel corpora is still limited. We constructed the parallel corpus by broadly crawling the web and automatically aligning parallel sentences. Our collected corpus, called JParaCrawl, amassed over 8.7 million sentence pairs. We show how it includes a broader range of domains and how a neural machine translation model trained with it works as a good pre-trained model for fine-tuning specific domains. The pre-training and fine-tuning approaches achieved or surpassed performance comparable to model training from the initial state and reduced the training time. Additionally, we trained the model with an in-domain dataset and JParaCrawl to show how we achieved the best performance with them. JParaCrawl and the pre-trained models are freely available online for research purposes.
Transcending Domains through Text-to-Image Diffusion: A Source-Free Approach to Domain Adaptation
Domain Adaptation (DA) is a method for enhancing a model's performance on a target domain with inadequate annotated data by applying the information the model has acquired from a related source domain with sufficient labeled data. The escalating enforcement of data-privacy regulations like HIPAA, COPPA, FERPA, etc. have sparked a heightened interest in adapting models to novel domains while circumventing the need for direct access to the source data, a problem known as Source-Free Domain Adaptation (SFDA). In this paper, we propose a novel framework for SFDA that generates source data using a text-to-image diffusion model trained on the target domain samples. Our method starts by training a text-to-image diffusion model on the labeled target domain samples, which is then fine-tuned using the pre-trained source model to generate samples close to the source data. Finally, we use Domain Adaptation techniques to align the artificially generated source data with the target domain data, resulting in significant performance improvements of the model on the target domain. Through extensive comparison against several baselines on the standard Office-31, Office-Home, and VisDA benchmarks, we demonstrate the effectiveness of our approach for the SFDA task.
CommonForms: A Large, Diverse Dataset for Form Field Detection
This paper introduces CommonForms, a web-scale dataset for form field detection. It casts the problem of form field detection as object detection: given an image of a page, predict the location and type (Text Input, Choice Button, Signature) of form fields. The dataset is constructed by filtering Common Crawl to find PDFs that have fillable elements. Starting with 8 million documents, the filtering process is used to arrive at a final dataset of roughly 55k documents that have over 450k pages. Analysis shows that the dataset contains a diverse mixture of languages and domains; one third of the pages are non-English, and among the 14 classified domains, no domain makes up more than 25% of the dataset. In addition, this paper presents a family of form field detectors, FFDNet-Small and FFDNet-Large, which attain a very high average precision on the CommonForms test set. Each model cost less than $500 to train. Ablation results show that high-resolution inputs are crucial for high-quality form field detection, and that the cleaning process improves data efficiency over using all PDFs that have fillable fields in Common Crawl. A qualitative analysis shows that they outperform a popular, commercially available PDF reader that can prepare forms. Unlike the most popular commercially available solutions, FFDNet can predict checkboxes in addition to text and signature fields. This is, to our knowledge, the first large scale dataset released for form field detection, as well as the first open source models. The dataset, models, and code will be released at https://github.com/jbarrow/commonforms
MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
UniGen: Universal Domain Generalization for Sentiment Classification via Zero-shot Dataset Generation
Although pre-trained language models have exhibited great flexibility and versatility with prompt-based few-shot learning, they suffer from the extensive parameter size and limited applicability for inference. Recent studies have suggested that PLMs be used as dataset generators and a tiny task-specific model be trained to achieve efficient inference. However, their applicability to various domains is limited because they tend to generate domain-specific datasets. In this work, we propose a novel approach to universal domain generalization that generates a dataset regardless of the target domain. This allows for generalization of the tiny task model to any domain that shares the label space, thus enhancing the real-world applicability of the dataset generation paradigm. Our experiments indicate that the proposed method accomplishes generalizability across various domains while using a parameter set that is orders of magnitude smaller than PLMs.
ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance & Efficiency on a Specific Domain
Recent advancements in language models have started a new era of superior information retrieval and content generation, with embedding models playing an important role in optimizing data representation efficiency and performance. While benchmarks like the Massive Text Embedding Benchmark (MTEB) have standardized the evaluation of general domain embedding models, a gap remains in specialized fields such as chemistry, which require tailored approaches due to domain-specific challenges. This paper introduces a novel benchmark, the Chemical Text Embedding Benchmark (ChemTEB), designed specifically for the chemical sciences. ChemTEB addresses the unique linguistic and semantic complexities of chemical literature and data, offering a comprehensive suite of tasks on chemical domain data. Through the evaluation of 34 open-source and proprietary models using this benchmark, we illuminate the strengths and weaknesses of current methodologies in processing and understanding chemical information. Our work aims to equip the research community with a standardized, domain-specific evaluation framework, promoting the development of more precise and efficient NLP models for chemistry-related applications. Furthermore, it provides insights into the performance of generic models in a domain-specific context. ChemTEB comes with open-source code and data, contributing further to its accessibility and utility.
Language Modelling Approaches to Adaptive Machine Translation
Consistency is a key requirement of high-quality translation. It is especially important to adhere to pre-approved terminology and adapt to corrected translations in domain-specific projects. Machine translation (MT) has achieved significant progress in the area of domain adaptation. However, in-domain data scarcity is common in translation settings, due to the lack of specialised datasets and terminology, or inconsistency and inaccuracy of available in-domain translations. In such scenarios where there is insufficient in-domain data to fine-tune MT models, producing translations that are consistent with the relevant context is challenging. While real-time adaptation can make use of smaller amounts of in-domain data to improve the translation on the fly, it remains challenging due to supported context limitations and efficiency constraints. Large language models (LLMs) have recently shown interesting capabilities of in-context learning, where they learn to replicate certain input-output text generation patterns, without further fine-tuning. Such capabilities have opened new horizons for domain-specific data augmentation and real-time adaptive MT. This work attempts to address two main relevant questions: 1) in scenarios involving human interaction and continuous feedback, can we employ language models to improve the quality of adaptive MT at inference time? and 2) in the absence of sufficient in-domain data, can we use pre-trained large-scale language models to improve the process of MT domain adaptation?
Knowledge AI: Fine-tuning NLP Models for Facilitating Scientific Knowledge Extraction and Understanding
This project investigates the efficacy of Large Language Models (LLMs) in understanding and extracting scientific knowledge across specific domains and to create a deep learning framework: Knowledge AI. As a part of this framework, we employ pre-trained models and fine-tune them on datasets in the scientific domain. The models are adapted for four key Natural Language Processing (NLP) tasks: summarization, text generation, question answering, and named entity recognition. Our results indicate that domain-specific fine-tuning significantly enhances model performance in each of these tasks, thereby improving their applicability for scientific contexts. This adaptation enables non-experts to efficiently query and extract information within targeted scientific fields, demonstrating the potential of fine-tuned LLMs as a tool for knowledge discovery in the sciences.
Term Set Expansion based NLP Architect by Intel AI Lab
We present SetExpander, a corpus-based system for expanding a seed set of terms into amore complete set of terms that belong to the same semantic class. SetExpander implements an iterative end-to-end workflow. It enables users to easily select a seed set of terms, expand it, view the expanded set, validate it, re-expand the validated set and store it, thus simplifying the extraction of domain-specific fine-grained semantic classes.SetExpander has been used successfully in real-life use cases including integration into an automated recruitment system and an issues and defects resolution system. A video demo of SetExpander is available at https://drive.google.com/open?id=1e545bB87Autsch36DjnJHmq3HWfSd1Rv (some images were blurred for privacy reasons)
SciDFM: A Large Language Model with Mixture-of-Experts for Science
Recently, there has been a significant upsurge of interest in leveraging large language models (LLMs) to assist scientific discovery. However, most LLMs only focus on general science, while they lack domain-specific knowledge, such as chemical molecules and amino acid sequences. To bridge these gaps, we introduce SciDFM, a mixture-of-experts LLM, which is trained from scratch and is able to conduct college-level scientific reasoning and understand molecules and amino acid sequences. We collect a large-scale training corpus containing numerous scientific papers and books from different disciplines as well as data from domain-specific databases. We further fine-tune the pre-trained model on lots of instruction data to improve performances on downstream benchmarks. From experiment results, we show that SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reaches a SOTA performance on domain-specific benchmarks among models of similar size. We further analyze the expert layers and show that the results of expert selection vary with data from different disciplines. To benefit the broader research community, we open-source SciDFM at https://huggingface.co/OpenDFM/SciDFM-MoE-A5.6B-v1.0.
CoIR: A Comprehensive Benchmark for Code Information Retrieval Models
Despite the substantial success of Information Retrieval (IR) in various NLP tasks, most IR systems predominantly handle queries and corpora in natural language, neglecting the domain of code retrieval. Code retrieval is critically important yet remains under-explored, with existing methods and benchmarks inadequately representing the diversity of code in various domains and tasks. Addressing this gap, we present \name (Code Information Retrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities. \name comprises ten meticulously curated code datasets, spanning eight distinctive retrieval tasks across seven diverse domains. We first discuss the construction of \name and its diverse dataset composition. Further, we evaluate nine widely used retrieval models using \name, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems. To facilitate easy adoption and integration within existing research workflows, \name has been developed as a user-friendly Python framework, readily installable via pip. It shares same data schema as other popular benchmarks like MTEB and BEIR, enabling seamless cross-benchmark evaluations. Through \name, we aim to invigorate research in the code retrieval domain, providing a versatile benchmarking tool that encourages further development and exploration of code retrieval systems\url{ https://github.com/CoIR-team/coir}.
Heterogeneous LLM Methods for Ontology Learning (Few-Shot Prompting, Ensemble Typing, and Attention-Based Taxonomies)
We present a comprehensive system for addressing Tasks A, B, and C of the LLMs4OL 2025 challenge, which together span the full ontology construction pipeline: term extraction, typing, and taxonomy discovery. Our approach combines retrieval-augmented prompting, zero-shot classification, and attention-based graph modeling -- each tailored to the demands of the respective task. For Task A, we jointly extract domain-specific terms and their ontological types using a retrieval-augmented generation (RAG) pipeline. Training data was reformulated into a document to terms and types correspondence, while test-time inference leverages semantically similar training examples. This single-pass method requires no model finetuning and improves overall performance through lexical augmentation Task B, which involves assigning types to given terms, is handled via a dual strategy. In the few-shot setting (for domains with labeled training data), we reuse the RAG scheme with few-shot prompting. In the zero-shot setting (for previously unseen domains), we use a zero-shot classifier that combines cosine similarity scores from multiple embedding models using confidence-based weighting. In Task C, we model taxonomy discovery as graph inference. Using embeddings of type labels, we train a lightweight cross-attention layer to predict is-a relations by approximating a soft adjacency matrix. These modular, task-specific solutions enabled us to achieve top-ranking results in the official leaderboard across all three tasks. Taken together these strategies showcase the scalability, adaptability, and robustness of LLM-based architectures for ontology learning across heterogeneous domains. Code is available at: https://github.com/BelyaevaAlex/LLMs4OL-Challenge-Alexbek
