Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLayer-wise Minimal Pair Probing Reveals Contextual Grammatical-Conceptual Hierarchy in Speech Representations
Transformer-based speech language models (SLMs) have significantly improved neural speech recognition and understanding. While existing research has examined how well SLMs encode shallow acoustic and phonetic features, the extent to which SLMs encode nuanced syntactic and conceptual features remains unclear. By drawing parallels with linguistic competence assessments for large language models, this study is the first to systematically evaluate the presence of contextual syntactic and semantic features across SLMs for self-supervised learning (S3M), automatic speech recognition (ASR), speech compression (codec), and as the encoder for auditory large language models (AudioLLMs). Through minimal pair designs and diagnostic feature analysis across 71 tasks spanning diverse linguistic levels, our layer-wise and time-resolved analysis uncovers that 1) all speech encode grammatical features more robustly than conceptual ones.
DSGram: Dynamic Weighting Sub-Metrics for Grammatical Error Correction in the Era of Large Language Models
Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations.
Probing LLMs for Joint Encoding of Linguistic Categories
Large Language Models (LLMs) exhibit impressive performance on a range of NLP tasks, due to the general-purpose linguistic knowledge acquired during pretraining. Existing model interpretability research (Tenney et al., 2019) suggests that a linguistic hierarchy emerges in the LLM layers, with lower layers better suited to solving syntactic tasks and higher layers employed for semantic processing. Yet, little is known about how encodings of different linguistic phenomena interact within the models and to what extent processing of linguistically-related categories relies on the same, shared model representations. In this paper, we propose a framework for testing the joint encoding of linguistic categories in LLMs. Focusing on syntax, we find evidence of joint encoding both at the same (related part-of-speech (POS) classes) and different (POS classes and related syntactic dependency relations) levels of linguistic hierarchy. Our cross-lingual experiments show that the same patterns hold across languages in multilingual LLMs.
Linguistic Structure Induction from Language Models
Linear sequences of words are implicitly represented in our brains by hierarchical structures that organize the composition of words in sentences. Linguists formalize different frameworks to model this hierarchy; two of the most common syntactic frameworks are Constituency and Dependency. Constituency represents sentences as nested groups of phrases, while dependency represents a sentence by assigning relations between its words. Recently, the pursuit of intelligent machines has produced Language Models (LMs) capable of solving many language tasks with a human-level performance. Many studies now question whether LMs implicitly represent syntactic hierarchies. This thesis focuses on producing constituency and dependency structures from LMs in an unsupervised setting. I review the critical methods in this field and highlight a line of work that utilizes a numerical representation for binary constituency trees (Syntactic Distance). I present a detailed study on StructFormer (SF) (Shen et al., 2021), which retrofits a transformer encoder architecture with a parser network to produce constituency and dependency structures. I present six experiments to analyze and address this field's challenges; experiments include investigating the effect of repositioning the parser network within the SF architecture, evaluating subword-based induced trees, and benchmarking the models developed in the thesis experiments on linguistic tasks. Models benchmarking is performed by participating in the BabyLM challenge, published at CoNLL 2023 (Momen et al., 2023). The results of this thesis encourage further development in the direction of retrofitting transformer-based models to induce syntactic structures, supported by the acceptable performance of SF in different experimental settings and the observed limitations that require innovative solutions to advance the state of syntactic structure induction.
HGCLIP: Exploring Vision-Language Models with Graph Representations for Hierarchical Understanding
Object categories are typically organized into a multi-granularity taxonomic hierarchy. When classifying categories at different hierarchy levels, traditional uni-modal approaches focus primarily on image features, revealing limitations in complex scenarios. Recent studies integrating Vision-Language Models (VLMs) with class hierarchies have shown promise, yet they fall short of fully exploiting the hierarchical relationships. These efforts are constrained by their inability to perform effectively across varied granularity of categories. To tackle this issue, we propose a novel framework (HGCLIP) that effectively combines CLIP with a deeper exploitation of the Hierarchical class structure via Graph representation learning. We explore constructing the class hierarchy into a graph, with its nodes representing the textual or image features of each category. After passing through a graph encoder, the textual features incorporate hierarchical structure information, while the image features emphasize class-aware features derived from prototypes through the attention mechanism. Our approach demonstrates significant improvements on 11 diverse visual recognition benchmarks. Our codes are fully available at https://github.com/richard-peng-xia/HGCLIP.
Structural Priming Demonstrates Abstract Grammatical Representations in Multilingual Language Models
Abstract grammatical knowledge - of parts of speech and grammatical patterns - is key to the capacity for linguistic generalization in humans. But how abstract is grammatical knowledge in large language models? In the human literature, compelling evidence for grammatical abstraction comes from structural priming. A sentence that shares the same grammatical structure as a preceding sentence is processed and produced more readily. Because confounds exist when using stimuli in a single language, evidence of abstraction is even more compelling from crosslingual structural priming, where use of a syntactic structure in one language primes an analogous structure in another language. We measure crosslingual structural priming in large language models, comparing model behavior to human experimental results from eight crosslingual experiments covering six languages, and four monolingual structural priming experiments in three non-English languages. We find evidence for abstract monolingual and crosslingual grammatical representations in the models that function similarly to those found in humans. These results demonstrate that grammatical representations in multilingual language models are not only similar across languages, but they can causally influence text produced in different languages.
SpaDeLeF: A Dataset for Hierarchical Classification of Lexical Functions for Collocations in Spanish
In natural language processing (NLP), lexical function is a concept to unambiguously represent semantic and syntactic features of words and phrases in text first crafted in the Meaning-Text Theory. Hierarchical classification of lexical functions involves organizing these features into a tree-like hierarchy of categories or labels. This is a challenging task as it requires a good understanding of the context and the relationships among words and phrases in text. It also needs large amounts of labeled data to train language models effectively. In this paper, we present a dataset of most frequent Spanish verb-noun collocations and sentences where they occur, each collocation is assigned to one of 37 lexical functions defined as classes for a hierarchical classification task. Each class represents a relation between the noun and the verb in a collocation involving their semantic and syntactic features. We combine the classes in a tree-based structure, and introduce classification objectives for each level of the structure. The dataset was created by dependency tree parsing and matching of the phrases in Spanish news. We provide baselines and data splits for each objective.
Grokking of Hierarchical Structure in Vanilla Transformers
For humans, language production and comprehension is sensitive to the hierarchical structure of sentences. In natural language processing, past work has questioned how effectively neural sequence models like transformers capture this hierarchical structure when generalizing to structurally novel inputs. We show that transformer language models can learn to generalize hierarchically after training for extremely long periods -- far beyond the point when in-domain accuracy has saturated. We call this phenomenon structural grokking. On multiple datasets, structural grokking exhibits inverted U-shaped scaling in model depth: intermediate-depth models generalize better than both very deep and very shallow transformers. When analyzing the relationship between model-internal properties and grokking, we find that optimal depth for grokking can be identified using the tree-structuredness metric of murty2023projections. Overall, our work provides strong evidence that, with extended training, vanilla transformers discover and use hierarchical structure.
Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages
The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of O(n|N|) (where n is the string length and |N| is the size of the nonterminal set) and more space-efficient by a factor of O(|Gamma|) (where |Gamma| is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of O(|Gamma|^2) and O(|Gamma|^3), respectively. Finally, we give the first PAA stringsum and allsum algorithms.
HiBench: Benchmarking LLMs Capability on Hierarchical Structure Reasoning
Structure reasoning is a fundamental capability of large language models (LLMs), enabling them to reason about structured commonsense and answer multi-hop questions. However, existing benchmarks for structure reasoning mainly focus on horizontal and coordinate structures (e.g. graphs), overlooking the hierarchical relationships within them. Hierarchical structure reasoning is crucial for human cognition, particularly in memory organization and problem-solving. It also plays a key role in various real-world tasks, such as information extraction and decision-making. To address this gap, we propose HiBench, the first framework spanning from initial structure generation to final proficiency assessment, designed to benchmark the hierarchical reasoning capabilities of LLMs systematically. HiBench encompasses six representative scenarios, covering both fundamental and practical aspects, and consists of 30 tasks with varying hierarchical complexity, totaling 39,519 queries. To evaluate LLMs comprehensively, we develop five capability dimensions that depict different facets of hierarchical structure understanding. Through extensive evaluation of 20 LLMs from 10 model families, we reveal key insights into their capabilities and limitations: 1) existing LLMs show proficiency in basic hierarchical reasoning tasks; 2) they still struggle with more complex structures and implicit hierarchical representations, especially in structural modification and textual reasoning. Based on these findings, we create a small yet well-designed instruction dataset, which enhances LLMs' performance on HiBench by an average of 88.84\% (Llama-3.1-8B) and 31.38\% (Qwen2.5-7B) across all tasks. The HiBench dataset and toolkit are available here, https://github.com/jzzzzh/HiBench, to encourage evaluation.
Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions
Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences.
IHEval: Evaluating Language Models on Following the Instruction Hierarchy
The instruction hierarchy, which establishes a priority order from system messages to user messages, conversation history, and tool outputs, is essential for ensuring consistent and safe behavior in language models (LMs). Despite its importance, this topic receives limited attention, and there is a lack of comprehensive benchmarks for evaluating models' ability to follow the instruction hierarchy. We bridge this gap by introducing IHEval, a novel benchmark comprising 3,538 examples across nine tasks, covering cases where instructions in different priorities either align or conflict. Our evaluation of popular LMs highlights their struggle to recognize instruction priorities. All evaluated models experience a sharp performance decline when facing conflicting instructions, compared to their original instruction-following performance. Moreover, the most competitive open-source model only achieves 48% accuracy in resolving such conflicts. Our results underscore the need for targeted optimization in the future development of LMs.
Language Models as Hierarchy Encoders
Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by re-training on hyperbolic cluster and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained and fine-tuned LMs, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform both pre-trained and fine-tuned LMs in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders.
Dynamic Chunking for End-to-End Hierarchical Sequence Modeling
Despite incredible progress in language models (LMs) in recent years, largely resulting from moving away from specialized models designed for specific tasks to general models based on powerful architectures (e.g. the Transformer) that learn everything from raw data, pre-processing steps such as tokenization remain a barrier to true end-to-end foundation models. We introduce a collection of new techniques that enable a dynamic chunking mechanism which automatically learns content -- and context -- dependent segmentation strategies learned jointly with the rest of the model. Incorporating this into an explicit hierarchical network (H-Net) allows replacing the (implicitly hierarchical) tokenization-LM-detokenization pipeline with a single model learned fully end-to-end. When compute- and data- matched, an H-Net with one stage of hierarchy operating at the byte level outperforms a strong Transformer language model operating over BPE tokens. Iterating the hierarchy to multiple stages further increases its performance by modeling multiple levels of abstraction, demonstrating significantly better scaling with data and matching a token-based Transformer of twice its size. H-Nets pretrained on English show significantly increased character-level robustness, and qualitatively learn meaningful data-dependent chunking strategies without any heuristics or explicit supervision. Finally, the H-Net's improvement over tokenized pipelines is further increased in languages and modalities with weaker tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4x improvement in data efficiency over baselines), showing the potential of true end-to-end models that learn and scale better from unprocessed data.
Hierarchical Verbalizer for Few-Shot Hierarchical Text Classification
Due to the complex label hierarchy and intensive labeling cost in practice, the hierarchical text classification (HTC) suffers a poor performance especially when low-resource or few-shot settings are considered. Recently, there is a growing trend of applying prompts on pre-trained language models (PLMs), which has exhibited effectiveness in the few-shot flat text classification tasks. However, limited work has studied the paradigm of prompt-based learning in the HTC problem when the training data is extremely scarce. In this work, we define a path-based few-shot setting and establish a strict path-based evaluation metric to further explore few-shot HTC tasks. To address the issue, we propose the hierarchical verbalizer ("HierVerb"), a multi-verbalizer framework treating HTC as a single- or multi-label classification problem at multiple layers and learning vectors as verbalizers constrained by hierarchical structure and hierarchical contrastive learning. In this manner, HierVerb fuses label hierarchy knowledge into verbalizers and remarkably outperforms those who inject hierarchy through graph encoders, maximizing the benefits of PLMs. Extensive experiments on three popular HTC datasets under the few-shot settings demonstrate that prompt with HierVerb significantly boosts the HTC performance, meanwhile indicating an elegant way to bridge the gap between the large pre-trained model and downstream hierarchical classification tasks. Our code and few-shot dataset are publicly available at https://github.com/1KE-JI/HierVerb.
Review of Unsupervised POS Tagging and Its Implications on Language Acquisition
An ability that underlies human syntactic knowledge is determining which words can appear in the similar structures (i.e. grouping words by their syntactic categories). These groupings enable humans to combine structures in order to communicate complex meanings. A foundational question is how do children acquire this ability underlying syntactic knowledge. In exploring this process, we will review various engineering approaches whose goal is similar to that of a child's -- without prior syntactic knowledge, correctly identify the parts of speech (POS) of the words in a sample of text. In reviewing these unsupervised tagging efforts, we will discuss common themes that support the advances in the models and their relevance for language acquisition. For example, we discuss how each model judges success (evaluation metrics), the "additional information" that constrains the POS learning (such as orthographic information), and the context used to determine POS (only previous word, words before and after the target, etc). The identified themes pave the way for future investigations into the cognitive processes that underpin the acquisition of syntactic categories and provide a useful layout of current state of the art unsupervised POS tagging models.
Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: https://github.com/JHU-CLSP/science-hierarchography{https://github.com/JHU-CLSP/science-hierarchography}
Grammar-Based Code Representation: Is It a Worthy Pursuit for LLMs?
Grammar serves as a cornerstone in programming languages and software engineering, providing frameworks to define the syntactic space and program structure. Existing research demonstrates the effectiveness of grammar-based code representations in small-scale models, showing their ability to reduce syntax errors and enhance performance. However, as language models scale to the billion level or beyond, syntax-level errors become rare, making it unclear whether grammar information still provides performance benefits. To explore this, we develop a series of billion-scale GrammarCoder models, incorporating grammar rules in the code generation process. Experiments on HumanEval (+) and MBPP (+) demonstrate a notable improvement in code generation accuracy. Further analysis shows that grammar-based representations enhance LLMs' ability to discern subtle code differences, reducing semantic errors caused by minor variations. These findings suggest that grammar-based code representations remain valuable even in billion-scale models, not only by maintaining syntax correctness but also by improving semantic differentiation.
Global and Local Hierarchy-aware Contrastive Framework for Implicit Discourse Relation Recognition
Due to the absence of explicit connectives, implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis. The critical step for IDRR is to learn high-quality discourse relation representations between two arguments. Recent methods tend to integrate the whole hierarchical information of senses into discourse relation representations for multi-level sense recognition. Nevertheless, they insufficiently incorporate the static hierarchical structure containing all senses (defined as global hierarchy), and ignore the hierarchical sense label sequence corresponding to each instance (defined as local hierarchy). For the purpose of sufficiently exploiting global and local hierarchies of senses to learn better discourse relation representations, we propose a novel GlObal and Local Hierarchy-aware Contrastive Framework (GOLF), to model two kinds of hierarchies with the aid of multi-task learning and contrastive learning. Experimental results on PDTB 2.0 and PDTB 3.0 datasets demonstrate that our method remarkably outperforms current state-of-the-art models at all hierarchical levels. Our code is publicly available at https://github.com/YJiangcm/GOLF_for_IDRR
Word class representations spontaneously emerge in a deep neural network trained on next word prediction
How do humans learn language, and can the first language be learned at all? These fundamental questions are still hotly debated. In contemporary linguistics, there are two major schools of thought that give completely opposite answers. According to Chomsky's theory of universal grammar, language cannot be learned because children are not exposed to sufficient data in their linguistic environment. In contrast, usage-based models of language assume a profound relationship between language structure and language use. In particular, contextual mental processing and mental representations are assumed to have the cognitive capacity to capture the complexity of actual language use at all levels. The prime example is syntax, i.e., the rules by which words are assembled into larger units such as sentences. Typically, syntactic rules are expressed as sequences of word classes. However, it remains unclear whether word classes are innate, as implied by universal grammar, or whether they emerge during language acquisition, as suggested by usage-based approaches. Here, we address this issue from a machine learning and natural language processing perspective. In particular, we trained an artificial deep neural network on predicting the next word, provided sequences of consecutive words as input. Subsequently, we analyzed the emerging activation patterns in the hidden layers of the neural network. Strikingly, we find that the internal representations of nine-word input sequences cluster according to the word class of the tenth word to be predicted as output, even though the neural network did not receive any explicit information about syntactic rules or word classes during training. This surprising result suggests, that also in the human brain, abstract representational categories such as word classes may naturally emerge as a consequence of predictive coding and processing during language acquisition.
A Probabilistic Generative Grammar for Semantic Parsing
Domain-general semantic parsing is a long-standing goal in natural language processing, where the semantic parser is capable of robustly parsing sentences from domains outside of which it was trained. Current approaches largely rely on additional supervision from new domains in order to generalize to those domains. We present a generative model of natural language utterances and logical forms and demonstrate its application to semantic parsing. Our approach relies on domain-independent supervision to generalize to new domains. We derive and implement efficient algorithms for training, parsing, and sentence generation. The work relies on a novel application of hierarchical Dirichlet processes (HDPs) for structured prediction, which we also present in this manuscript. This manuscript is an excerpt of chapter 4 from the Ph.D. thesis of Saparov (2022), where the model plays a central role in a larger natural language understanding system. This manuscript provides a new simplified and more complete presentation of the work first introduced in Saparov, Saraswat, and Mitchell (2017). The description and proofs of correctness of the training algorithm, parsing algorithm, and sentence generation algorithm are much simplified in this new presentation. We also describe the novel application of hierarchical Dirichlet processes for structured prediction. In addition, we extend the earlier work with a new model of word morphology, which utilizes the comprehensive morphological data from Wiktionary.
CHIME: LLM-Assisted Hierarchical Organization of Scientific Studies for Literature Review Support
Literature review requires researchers to synthesize a large amount of information and is increasingly challenging as the scientific literature expands. In this work, we investigate the potential of LLMs for producing hierarchical organizations of scientific studies to assist researchers with literature review. We define hierarchical organizations as tree structures where nodes refer to topical categories and every node is linked to the studies assigned to that category. Our naive LLM-based pipeline for hierarchy generation from a set of studies produces promising yet imperfect hierarchies, motivating us to collect CHIME, an expert-curated dataset for this task focused on biomedicine. Given the challenging and time-consuming nature of building hierarchies from scratch, we use a human-in-the-loop process in which experts correct errors (both links between categories and study assignment) in LLM-generated hierarchies. CHIME contains 2,174 LLM-generated hierarchies covering 472 topics, and expert-corrected hierarchies for a subset of 100 topics. Expert corrections allow us to quantify LLM performance, and we find that while they are quite good at generating and organizing categories, their assignment of studies to categories could be improved. We attempt to train a corrector model with human feedback which improves study assignment by 12.6 F1 points. We release our dataset and models to encourage research on developing better assistive tools for literature review.
Mapping 'when'-clauses in Latin American and Caribbean languages: an experiment in subtoken-based typology
Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character n-grams and English when. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination.
Revisiting Hierarchical Text Classification: Inference and Metrics
Hierarchical text classification (HTC) is the task of assigning labels to a text within a structured space organized as a hierarchy. Recent works treat HTC as a conventional multilabel classification problem, therefore evaluating it as such. We instead propose to evaluate models based on specifically designed hierarchical metrics and we demonstrate the intricacy of metric choice and prediction inference method. We introduce a new challenging dataset and we evaluate fairly, recent sophisticated models, comparing them with a range of simple but strong baselines, including a new theoretically motivated loss. Finally, we show that those baselines are very often competitive with the latest models. This highlights the importance of carefully considering the evaluation methodology when proposing new methods for HTC. Code implementation and dataset are available at https://github.com/RomanPlaud/revisitingHTC.
UniMorph 4.0: Universal Morphology
The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.
Do Language Models Understand Honorific Systems in Javanese?
The Javanese language features a complex system of honorifics that vary according to the social status of the speaker, listener, and referent. Despite its cultural and linguistic significance, there has been limited progress in developing a comprehensive corpus to capture these variations for natural language processing (NLP) tasks. In this paper, we present Unggah-Ungguh, a carefully curated dataset designed to encapsulate the nuances of Unggah-Ungguh Basa, the Javanese speech etiquette framework that dictates the choice of words and phrases based on social hierarchy and context. Using Unggah-Ungguh, we assess the ability of language models (LMs) to process various levels of Javanese honorifics through classification and machine translation tasks. To further evaluate cross-lingual LMs, we conduct machine translation experiments between Javanese (at specific honorific levels) and Indonesian. Additionally, we explore whether LMs can generate contextually appropriate Javanese honorifics in conversation tasks, where the honorific usage should align with the social role and contextual cues. Our findings indicate that current LMs struggle with most honorific levels, exhibitinga bias toward certain honorific tiers.
Read, Highlight and Summarize: A Hierarchical Neural Semantic Encoder-based Approach
Traditional sequence-to-sequence (seq2seq) models and other variations of the attention-mechanism such as hierarchical attention have been applied to the text summarization problem. Though there is a hierarchy in the way humans use language by forming paragraphs from sentences and sentences from words, hierarchical models have usually not worked that much better than their traditional seq2seq counterparts. This effect is mainly because either the hierarchical attention mechanisms are too sparse using hard attention or noisy using soft attention. In this paper, we propose a method based on extracting the highlights of a document; a key concept that is conveyed in a few sentences. In a typical text summarization dataset consisting of documents that are 800 tokens in length (average), capturing long-term dependencies is very important, e.g., the last sentence can be grouped with the first sentence of a document to form a summary. LSTMs (Long Short-Term Memory) proved useful for machine translation. However, they often fail to capture long-term dependencies while modeling long sequences. To address these issues, we have adapted Neural Semantic Encoders (NSE) to text summarization, a class of memory-augmented neural networks by improving its functionalities and proposed a novel hierarchical NSE that outperforms similar previous models significantly. The quality of summarization was improved by augmenting linguistic factors, namely lemma, and Part-of-Speech (PoS) tags, to each word in the dataset for improved vocabulary coverage and generalization. The hierarchical NSE model on factored dataset outperformed the state-of-the-art by nearly 4 ROUGE points. We further designed and used the first GPU-based self-critical Reinforcement Learning model.
Sometimes I am a Tree: Data Drives Unstable Hierarchical Generalization
Language models (LMs), like other neural networks, often favor shortcut heuristics based on surface-level patterns. Although LMs behave like n-gram models early in training, they must eventually learn hierarchical syntactic representations to correctly apply grammatical rules out-of-distribution (OOD). In this work, we use case studies of English grammar to explore how complex, diverse training data drives models to generalize OOD. We construct a framework that unifies our understanding of random variation with training dynamics, rule selection with memorization, and data diversity with complexity. We show that these factors are nuanced, and that intermediate levels of diversity and complexity lead to inconsistent behavior across random seeds and to unstable training dynamics. Our findings emphasize the critical role of training data in shaping generalization patterns and illuminate how competing model strategies lead to inconsistent generalization outcomes across random seeds. Code is available at https://github.com/sunnytqin/concept_comp.git.
Hierarchical Text Classification Using Black Box Large Language Models
Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost.
Augmenting Knowledge Graph Hierarchies Using Neural Transformers
Knowledge graphs are useful tools to organize, recommend and sort data. Hierarchies in knowledge graphs provide significant benefit in improving understanding and compartmentalization of the data within a knowledge graph. This work leverages large language models to generate and augment hierarchies in an existing knowledge graph. For small (<100,000 node) domain-specific KGs, we find that a combination of few-shot prompting with one-shot generation works well, while larger KG may require cyclical generation. We present techniques for augmenting hierarchies, which led to coverage increase by 98% for intents and 99% for colors in our knowledge graph.
Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
Assessing the effectiveness of large language models (LLMs) in addressing diverse tasks is essential for comprehending their strengths and weaknesses. Conventional evaluation techniques typically apply a single prompting strategy uniformly across datasets, not considering the varying degrees of task complexity. We introduce the Hierarchical Prompting Taxonomy (HPT), a taxonomy that employs a Hierarchical Prompt Framework (HPF) composed of five unique prompting strategies, arranged from the simplest to the most complex, to assess LLMs more precisely and to offer a clearer perspective. This taxonomy assigns a score, called the Hierarchical Prompting Score (HP-Score), to datasets as well as LLMs based on the rules of the taxonomy, providing a nuanced understanding of their ability to solve diverse tasks and offering a universal measure of task complexity. Additionally, we introduce the Adaptive Hierarchical Prompt framework, which automates the selection of appropriate prompting strategies for each task. This study compares manual and adaptive hierarchical prompt frameworks using four instruction-tuned LLMs, namely Llama 3 8B, Phi 3 3.8B, Mistral 7B, and Gemma 7B, across four datasets: BoolQ, CommonSenseQA (CSQA), IWSLT-2017 en-fr (IWSLT), and SamSum. Experiments demonstrate the effectiveness of HPT, providing a reliable way to compare different tasks and LLM capabilities. This paper leads to the development of a universal evaluation metric that can be used to evaluate both the complexity of the datasets and the capabilities of LLMs. The implementation of both manual HPF and adaptive HPF is publicly available.
Introducing Three New Benchmark Datasets for Hierarchical Text Classification
Hierarchical Text Classification (HTC) is a natural language processing task with the objective to classify text documents into a set of classes from a structured class hierarchy. Many HTC approaches have been proposed which attempt to leverage the class hierarchy information in various ways to improve classification performance. Machine learning-based classification approaches require large amounts of training data and are most-commonly compared through three established benchmark datasets, which include the Web Of Science (WOS), Reuters Corpus Volume 1 Version 2 (RCV1-V2) and New York Times (NYT) datasets. However, apart from the RCV1-V2 dataset which is well-documented, these datasets are not accompanied with detailed description methodologies. In this paper, we introduce three new HTC benchmark datasets in the domain of research publications which comprise the titles and abstracts of papers from the Web of Science publication database. We first create two baseline datasets which use existing journal-and citation-based classification schemas. Due to the respective shortcomings of these two existing schemas, we propose an approach which combines their classifications to improve the reliability and robustness of the dataset. We evaluate the three created datasets with a clustering-based analysis and show that our proposed approach results in a higher quality dataset where documents that belong to the same class are semantically more similar compared to the other datasets. Finally, we provide the classification performance of four state-of-the-art HTC approaches on these three new datasets to provide baselines for future studies on machine learning-based techniques for scientific publication classification.
Show Me More Details: Discovering Hierarchies of Procedures from Semi-structured Web Data
Procedures are inherently hierarchical. To "make videos", one may need to "purchase a camera", which in turn may require one to "set a budget". While such hierarchical knowledge is critical for reasoning about complex procedures, most existing work has treated procedures as shallow structures without modeling the parent-child relation. In this work, we attempt to construct an open-domain hierarchical knowledge-base (KB) of procedures based on wikiHow, a website containing more than 110k instructional articles, each documenting the steps to carry out a complex procedure. To this end, we develop a simple and efficient method that links steps (e.g., "purchase a camera") in an article to other articles with similar goals (e.g., "how to choose a camera"), recursively constructing the KB. Our method significantly outperforms several strong baselines according to automatic evaluation, human judgment, and application to downstream tasks such as instructional video retrieval. A demo with partial data can be found at https://wikihow-hierarchy.github.io. The code and the data are at https://github.com/shuyanzhou/wikihow_hierarchy.
From Bytes to Ideas: Language Modeling with Autoregressive U-Nets
Tokenization imposes a fixed granularity on the input text, freezing how a language model operates on data and how far in the future it predicts. Byte Pair Encoding (BPE) and similar schemes split text once, build a static vocabulary, and leave the model stuck with that choice. We relax this rigidity by introducing an autoregressive U-Net that learns to embed its own tokens as it trains. The network reads raw bytes, pools them into words, then pairs of words, then up to 4 words, giving it a multi-scale view of the sequence. At deeper stages, the model must predict further into the future -- anticipating the next few words rather than the next byte -- so deeper stages focus on broader semantic patterns while earlier stages handle fine details. When carefully tuning and controlling pretraining compute, shallow hierarchies tie strong BPE baselines, and deeper hierarchies have a promising trend. Because tokenization now lives inside the model, the same system can handle character-level tasks and carry knowledge across low-resource languages.
Hierarchical Sketch Induction for Paraphrase Generation
We propose a generative model of paraphrase generation, that encourages syntactic diversity by conditioning on an explicit syntactic sketch. We introduce Hierarchical Refinement Quantized Variational Autoencoders (HRQ-VAE), a method for learning decompositions of dense encodings as a sequence of discrete latent variables that make iterative refinements of increasing granularity. This hierarchy of codes is learned through end-to-end training, and represents fine-to-coarse grained information about the input. We use HRQ-VAE to encode the syntactic form of an input sentence as a path through the hierarchy, allowing us to more easily predict syntactic sketches at test time. Extensive experiments, including a human evaluation, confirm that HRQ-VAE learns a hierarchical representation of the input space, and generates paraphrases of higher quality than previous systems.
Accurately and Efficiently Interpreting Human-Robot Instructions of Varying Granularities
Humans can ground natural language commands to tasks at both abstract and fine-grained levels of specificity. For instance, a human forklift operator can be instructed to perform a high-level action, like "grab a pallet" or a low-level action like "tilt back a little bit." While robots are also capable of grounding language commands to tasks, previous methods implicitly assume that all commands and tasks reside at a single, fixed level of abstraction. Additionally, methods that do not use multiple levels of abstraction encounter inefficient planning and execution times as they solve tasks at a single level of abstraction with large, intractable state-action spaces closely resembling real world complexity. In this work, by grounding commands to all the tasks or subtasks available in a hierarchical planning framework, we arrive at a model capable of interpreting language at multiple levels of specificity ranging from coarse to more granular. We show that the accuracy of the grounding procedure is improved when simultaneously inferring the degree of abstraction in language used to communicate the task. Leveraging hierarchy also improves efficiency: our proposed approach enables a robot to respond to a command within one second on 90% of our tasks, while baselines take over twenty seconds on half the tasks. Finally, we demonstrate that a real, physical robot can ground commands at multiple levels of abstraction allowing it to efficiently plan different subtasks within the same planning hierarchy.
Strongly Incremental Constituency Parsing with Graph Neural Networks
Parsing sentences into syntax trees can benefit downstream applications in NLP. Transition-based parsers build trees by executing actions in a state transition system. They are computationally efficient, and can leverage machine learning to predict actions based on partial trees. However, existing transition-based parsers are predominantly based on the shift-reduce transition system, which does not align with how humans are known to parse sentences. Psycholinguistic research suggests that human parsing is strongly incremental: humans grow a single parse tree by adding exactly one token at each step. In this paper, we propose a novel transition system called attach-juxtapose. It is strongly incremental; it represents a partial sentence using a single tree; each action adds exactly one token into the partial tree. Based on our transition system, we develop a strongly incremental parser. At each step, it encodes the partial tree using a graph neural network and predicts an action. We evaluate our parser on Penn Treebank (PTB) and Chinese Treebank (CTB). On PTB, it outperforms existing parsers trained with only constituency trees; and it performs on par with state-of-the-art parsers that use dependency trees as additional training data. On CTB, our parser establishes a new state of the art. Code is available at https://github.com/princeton-vl/attach-juxtapose-parser.
Fine-tuning a Subtle Parsing Distinction Using a Probabilistic Decision Tree: the Case of Postnominal "that" in Noun Complement Clauses vs. Relative Clauses
In this paper we investigated two different methods to parse relative and noun complement clauses in English and resorted to distinct tags for their corresponding that as a relative pronoun and as a complementizer. We used an algorithm to relabel a corpus parsed with the GUM Treebank using Universal Dependency. Our second experiment consisted in using TreeTagger, a Probabilistic Decision Tree, to learn the distinction between the two complement and relative uses of postnominal "that". We investigated the effect of the training set size on TreeTagger accuracy and how representative the GUM Treebank files are for the two structures under scrutiny. We discussed some of the linguistic and structural tenets of the learnability of this distinction.
The Same But Different: Structural Similarities and Differences in Multilingual Language Modeling
We employ new tools from mechanistic interpretability in order to ask whether the internal structure of large language models (LLMs) shows correspondence to the linguistic structures which underlie the languages on which they are trained. In particular, we ask (1) when two languages employ the same morphosyntactic processes, do LLMs handle them using shared internal circuitry? and (2) when two languages require different morphosyntactic processes, do LLMs handle them using different internal circuitry? Using English and Chinese multilingual and monolingual models, we analyze the internal circuitry involved in two tasks. We find evidence that models employ the same circuit to handle the same syntactic process independently of the language in which it occurs, and that this is the case even for monolingual models trained completely independently. Moreover, we show that multilingual models employ language-specific components (attention heads and feed-forward networks) when needed to handle linguistic processes (e.g., morphological marking) that only exist in some languages. Together, our results provide new insights into how LLMs trade off between exploiting common structures and preserving linguistic differences when tasked with modeling multiple languages simultaneously.
Hierarchical Modular Network for Video Captioning
Video captioning aims to generate natural language descriptions according to the content, where representation learning plays a crucial role. Existing methods are mainly developed within the supervised learning framework via word-by-word comparison of the generated caption against the ground-truth text without fully exploiting linguistic semantics. In this work, we propose a hierarchical modular network to bridge video representations and linguistic semantics from three levels before generating captions. In particular, the hierarchy is composed of: (I) Entity level, which highlights objects that are most likely to be mentioned in captions. (II) Predicate level, which learns the actions conditioned on highlighted objects and is supervised by the predicate in captions. (III) Sentence level, which learns the global semantic representation and is supervised by the whole caption. Each level is implemented by one module. Extensive experimental results show that the proposed method performs favorably against the state-of-the-art models on the two widely-used benchmarks: MSVD 104.0% and MSR-VTT 51.5% in CIDEr score.
The Geometry of Categorical and Hierarchical Concepts in Large Language Models
Understanding how semantic meaning is encoded in the representation spaces of large language models is a fundamental problem in interpretability. In this paper, we study the two foundational questions in this area. First, how are categorical concepts, such as {'mammal', 'bird', 'reptile', 'fish'}, represented? Second, how are hierarchical relations between concepts encoded? For example, how is the fact that 'dog' is a kind of 'mammal' encoded? We show how to extend the linear representation hypothesis to answer these questions. We find a remarkably simple structure: simple categorical concepts are represented as simplices, hierarchically related concepts are orthogonal in a sense we make precise, and (in consequence) complex concepts are represented as polytopes constructed from direct sums of simplices, reflecting the hierarchical structure. We validate these theoretical results on the Gemma large language model, estimating representations for 957 hierarchically related concepts using data from WordNet.
Unlocking Korean Verbs: A User-Friendly Exploration into the Verb Lexicon
The Sejong dictionary dataset offers a valuable resource, providing extensive coverage of morphology, syntax, and semantic representation. This dataset can be utilized to explore linguistic information in greater depth. The labeled linguistic structures within this dataset form the basis for uncovering relationships between words and phrases and their associations with target verbs. This paper introduces a user-friendly web interface designed for the collection and consolidation of verb-related information, with a particular focus on subcategorization frames. Additionally, it outlines our efforts in mapping this information by aligning subcategorization frames with corresponding illustrative sentence examples. Furthermore, we provide a Python library that would simplify syntactic parsing and semantic role labeling. These tools are intended to assist individuals interested in harnessing the Sejong dictionary dataset to develop applications for Korean language processing.
How Humans and LLMs Organize Conceptual Knowledge: Exploring Subordinate Categories in Italian
People can categorize the same entity at multiple taxonomic levels, such as basic (bear), superordinate (animal), and subordinate (grizzly bear). While prior research has focused on basic-level categories, this study is the first attempt to examine the organization of categories by analyzing exemplars produced at the subordinate level. We present a new Italian psycholinguistic dataset of human-generated exemplars for 187 concrete words. We then use these data to evaluate whether textual and vision LLMs produce meaningful exemplars that align with human category organization across three key tasks: exemplar generation, category induction, and typicality judgment. Our findings show a low alignment between humans and LLMs, consistent with previous studies. However, their performance varies notably across different semantic domains. Ultimately, this study highlights both the promises and the constraints of using AI-generated exemplars to support psychological and linguistic research.
A Survey of Large Language Models
Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
Probing Structured Semantics Understanding and Generation of Language Models via Question Answering
Recent advancement in the capabilities of large language models (LLMs) has triggered a new surge in LLMs' evaluation. Most recent evaluation works tends to evaluate the comprehensive ability of LLMs over series of tasks. However, the deep structure understanding of natural language is rarely explored. In this work, we examine the ability of LLMs to deal with structured semantics on the tasks of question answering with the help of the human-constructed formal language. Specifically, we implement the inter-conversion of natural and formal language through in-context learning of LLMs to verify their ability to understand and generate the structured logical forms. Extensive experiments with models of different sizes and in different formal languages show that today's state-of-the-art LLMs' understanding of the logical forms can approach human level overall, but there still are plenty of room in generating correct logical forms, which suggest that it is more effective to use LLMs to generate more natural language training data to reinforce a small model than directly answering questions with LLMs. Moreover, our results also indicate that models exhibit considerable sensitivity to different formal languages. In general, the formal language with the lower the formalization level, i.e. the more similar it is to natural language, is more LLMs-friendly.
Stability of Syntactic Dialect Classification Over Space and Time
This paper analyses the degree to which dialect classifiers based on syntactic representations remain stable over space and time. While previous work has shown that the combination of grammar induction and geospatial text classification produces robust dialect models, we do not know what influence both changing grammars and changing populations have on dialect models. This paper constructs a test set for 12 dialects of English that spans three years at monthly intervals with a fixed spatial distribution across 1,120 cities. Syntactic representations are formulated within the usage-based Construction Grammar paradigm (CxG). The decay rate of classification performance for each dialect over time allows us to identify regions undergoing syntactic change. And the distribution of classification accuracy within dialect regions allows us to identify the degree to which the grammar of a dialect is internally heterogeneous. The main contribution of this paper is to show that a rigorous evaluation of dialect classification models can be used to find both variation over space and change over time.
AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models
The objective of pre-trained language models is to learn contextual representations of textual data. Pre-trained language models have become mainstream in natural language processing and code modeling. Using probes, a technique to study the linguistic properties of hidden vector spaces, previous works have shown that these pre-trained language models encode simple linguistic properties in their hidden representations. However, none of the previous work assessed whether these models encode the whole grammatical structure of a programming language. In this paper, we prove the existence of a syntactic subspace, lying in the hidden representations of pre-trained language models, which contain the syntactic information of the programming language. We show that this subspace can be extracted from the models' representations and define a novel probing method, the AST-Probe, that enables recovering the whole abstract syntax tree (AST) of an input code snippet. In our experimentations, we show that this syntactic subspace exists in five state-of-the-art pre-trained language models. In addition, we highlight that the middle layers of the models are the ones that encode most of the AST information. Finally, we estimate the optimal size of this syntactic subspace and show that its dimension is substantially lower than those of the models' representation spaces. This suggests that pre-trained language models use a small part of their representation spaces to encode syntactic information of the programming languages.
Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book?
Extremely low-resource (XLR) languages lack substantial corpora for training NLP models, motivating the use of all available resources such as dictionaries and grammar books. Machine Translation from One Book (Tanzer et al., 2024) suggests that prompting long-context LLMs with one grammar book enables English-Kalamang translation, an XLR language unseen by LLMs - a noteworthy case of linguistics helping an NLP task. We investigate the source of this translation ability, finding almost all improvements stem from the book's parallel examples rather than its grammatical explanations. We find similar results for Nepali and Guarani, seen low-resource languages, and we achieve performance comparable to an LLM with a grammar book by simply fine-tuning an encoder-decoder translation model. We then investigate where grammar books help by testing two linguistic tasks, grammaticality judgment and gloss prediction, and we explore what kind of grammatical knowledge helps by introducing a typological feature prompt that achieves leading results on these more relevant tasks. We thus emphasise the importance of task-appropriate data for XLR languages: parallel examples for translation, and grammatical data for linguistic tasks. As we find no evidence that long-context LLMs can make effective use of grammatical explanations for XLR translation, we conclude data collection for multilingual XLR tasks such as translation is best focused on parallel data over linguistic description.
Domain-Hierarchy Adaptation via Chain of Iterative Reasoning for Few-shot Hierarchical Text Classification
Recently, various pre-trained language models (PLMs) have been proposed to prove their impressive performances on a wide range of few-shot tasks. However, limited by the unstructured prior knowledge in PLMs, it is difficult to maintain consistent performance on complex structured scenarios, such as hierarchical text classification (HTC), especially when the downstream data is extremely scarce. The main challenge is how to transfer the unstructured semantic space in PLMs to the downstream domain hierarchy. Unlike previous work on HTC which directly performs multi-label classification or uses graph neural network (GNN) to inject label hierarchy, in this work, we study the HTC problem under a few-shot setting to adapt knowledge in PLMs from an unstructured manner to the downstream hierarchy. Technically, we design a simple yet effective method named Hierarchical Iterative Conditional Random Field (HierICRF) to search the most domain-challenging directions and exquisitely crafts domain-hierarchy adaptation as a hierarchical iterative language modeling problem, and then it encourages the model to make hierarchical consistency self-correction during the inference, thereby achieving knowledge transfer with hierarchical consistency preservation. We perform HierICRF on various architectures, and extensive experiments on two popular HTC datasets demonstrate that prompt with HierICRF significantly boosts the few-shot HTC performance with an average Micro-F1 by 28.80% to 1.50% and Macro-F1 by 36.29% to 1.5% over the previous state-of-the-art (SOTA) baselines under few-shot settings, while remaining SOTA hierarchical consistency performance.
Cooperative Learning of Disjoint Syntax and Semantics
There has been considerable attention devoted to models that learn to jointly infer an expression's syntactic structure and its semantics. Yet, NangiaB18 has recently shown that the current best systems fail to learn the correct parsing strategy on mathematical expressions generated from a simple context-free grammar. In this work, we present a recursive model inspired by ChoiYL18 that reaches near perfect accuracy on this task. Our model is composed of two separated modules for syntax and semantics. They are cooperatively trained with standard continuous and discrete optimization schemes. Our model does not require any linguistic structure for supervision and its recursive nature allows for out-of-domain generalization with little loss in performance. Additionally, our approach performs competitively on several natural language tasks, such as Natural Language Inference or Sentiment Analysis.
Benchmarking Complex Instruction-Following with Multiple Constraints Composition
Instruction following is one of the fundamental capabilities of large language models (LLMs). As the ability of LLMs is constantly improving, they have been increasingly applied to deal with complex human instructions in real-world scenarios. Therefore, how to evaluate the ability of complex instruction-following of LLMs has become a critical research problem. Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints, which is an indispensable constituent in complex instructions. To this end, we propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints. We propose a hierarchical taxonomy for complex instructions, including 4 constraint types, 19 constraint dimensions, and 4 composition types, and manually collect a high-quality dataset accordingly. To make the evaluation reliable, we augment LLM-based evaluators with rules to effectively verify whether generated texts can satisfy each constraint and composition. Furthermore, we obtain the final evaluation score based on the dependency structure determined by different composition types. ComplexBench identifies significant deficiencies in existing LLMs when dealing with complex instructions with multiple constraints composition.
Counting the Bugs in ChatGPT's Wugs: A Multilingual Investigation into the Morphological Capabilities of a Large Language Model
Large language models (LLMs) have recently reached an impressive level of linguistic capability, prompting comparisons with human language skills. However, there have been relatively few systematic inquiries into the linguistic capabilities of the latest generation of LLMs, and those studies that do exist (i) ignore the remarkable ability of humans to generalize, (ii) focus only on English, and (iii) investigate syntax or semantics and overlook other capabilities that lie at the heart of human language, like morphology. Here, we close these gaps by conducting the first rigorous analysis of the morphological capabilities of ChatGPT in four typologically varied languages (specifically, English, German, Tamil, and Turkish). We apply a version of Berko's (1958) wug test to ChatGPT, using novel, uncontaminated datasets for the four examined languages. We find that ChatGPT massively underperforms purpose-built systems, particularly in English. Overall, our results -- through the lens of morphology -- cast a new light on the linguistic capabilities of ChatGPT, suggesting that claims of human-like language skills are premature and misleading.
StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling
There are two major classes of natural language grammar -- the dependency grammar that models one-to-one correspondences between words and the constituency grammar that models the assembly of one or several corresponded words. While previous unsupervised parsing methods mostly focus on only inducing one class of grammars, we introduce a novel model, StructFormer, that can simultaneously induce dependency and constituency structure. To achieve this, we propose a new parsing framework that can jointly generate a constituency tree and dependency graph. Then we integrate the induced dependency relations into the transformer, in a differentiable manner, through a novel dependency-constrained self-attention mechanism. Experimental results show that our model can achieve strong results on unsupervised constituency parsing, unsupervised dependency parsing, and masked language modeling at the same time.
Prompting Frameworks for Large Language Models: A Survey
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at https://github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation
Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge existing methods by hierarchical indexing, as well as implicit relationships of calculation and semantics. This work presents HiTab, a free and open dataset to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports (analyses) and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) both target sentences for NLG and questions for QA are revised from original, meaningful, and diverse descriptive sentences authored by analysts and professions of reports. (3) to reveal complex numerical reasoning in statistical analyses, we provide fine-grained annotations of entity and quantity alignment. HiTab provides 10,686 QA pairs and descriptive sentences with well-annotated quantity and entity alignment on 3,597 tables with broad coverage of table hierarchies and numerical reasoning types. Targeting hierarchical structure, we devise a novel hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting complex numerical reasoning, we propose partially supervised training given annotations of entity and quantity alignment, which helps models to largely reduce spurious predictions in the QA task. In the NLG task, we find that entity and quantity alignment also helps NLG models to generate better results in a conditional generation setting. Experiment results of state-of-the-art baselines suggest that this dataset presents a strong challenge and a valuable benchmark for future research.
Stack Attention: Improving the Ability of Transformers to Model Hierarchical Patterns
Attention, specifically scaled dot-product attention, has proven effective for natural language, but it does not have a mechanism for handling hierarchical patterns of arbitrary nesting depth, which limits its ability to recognize certain syntactic structures. To address this shortcoming, we propose stack attention: an attention operator that incorporates stacks, inspired by their theoretical connections to context-free languages (CFLs). We show that stack attention is analogous to standard attention, but with a latent model of syntax that requires no syntactic supervision. We propose two variants: one related to deterministic pushdown automata (PDAs) and one based on nondeterministic PDAs, which allows transformers to recognize arbitrary CFLs. We show that transformers with stack attention are very effective at learning CFLs that standard transformers struggle on, achieving strong results on a CFL with theoretically maximal parsing difficulty. We also show that stack attention is more effective at natural language modeling under a constrained parameter budget, and we include results on machine translation.
Functorial String Diagrams for Reverse-Mode Automatic Differentiation
We enhance the calculus of string diagrams for monoidal categories with hierarchical features in order to capture closed monoidal (and cartesian closed) structure. Using this new syntax we formulate an automatic differentiation algorithm for (applied) simply typed lambda calculus in the style of [Pearlmutter and Siskind 2008] and we prove for the first time its soundness. To give an efficient yet principled implementation of the AD algorithm we define a sound and complete representation of hierarchical string diagrams as a class of hierarchical hypergraphs we call hypernets.
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.
Analyzing Syntactic Generalization Capacity of Pre-trained Language Models on Japanese Honorific Conversion
Using Japanese honorifics is challenging because it requires not only knowledge of the grammatical rules but also contextual information, such as social relationships. It remains unclear whether pre-trained large language models (LLMs) can flexibly handle Japanese honorifics like humans. To analyze this, we introduce an honorific conversion task that considers social relationships among people mentioned in a conversation. We construct a Japanese honorifics dataset from problem templates of various sentence structures to investigate the syntactic generalization capacity of GPT-3, one of the leading LLMs, on this task under two settings: fine-tuning and prompt learning. Our results showed that the fine-tuned GPT-3 performed better in a context-aware honorific conversion task than the prompt-based one. The fine-tuned model demonstrated overall syntactic generalizability towards compound honorific sentences, except when tested with the data involving direct speech.
Enquire One's Parent and Child Before Decision: Fully Exploit Hierarchical Structure for Self-Supervised Taxonomy Expansion
Taxonomy is a hierarchically structured knowledge graph that plays a crucial role in machine intelligence. The taxonomy expansion task aims to find a position for a new term in an existing taxonomy to capture the emerging knowledge in the world and keep the taxonomy dynamically updated. Previous taxonomy expansion solutions neglect valuable information brought by the hierarchical structure and evaluate the correctness of merely an added edge, which downgrade the problem to node-pair scoring or mini-path classification. In this paper, we propose the Hierarchy Expansion Framework (HEF), which fully exploits the hierarchical structure's properties to maximize the coherence of expanded taxonomy. HEF makes use of taxonomy's hierarchical structure in multiple aspects: i) HEF utilizes subtrees containing most relevant nodes as self-supervision data for a complete comparison of parental and sibling relations; ii) HEF adopts a coherence modeling module to evaluate the coherence of a taxonomy's subtree by integrating hypernymy relation detection and several tree-exclusive features; iii) HEF introduces the Fitting Score for position selection, which explicitly evaluates both path and level selections and takes full advantage of parental relations to interchange information for disambiguation and self-correction. Extensive experiments show that by better exploiting the hierarchical structure and optimizing taxonomy's coherence, HEF vastly surpasses the prior state-of-the-art on three benchmark datasets by an average improvement of 46.7% in accuracy and 32.3% in mean reciprocal rank.
Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture's grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings, the LSTM achieved very high overall accuracy (less than 1% errors), but errors increased when sequential and structural information conflicted. The frequency of such errors rose sharply in the language-modeling setting. We conclude that LSTMs can capture a non-trivial amount of grammatical structure given targeted supervision, but stronger architectures may be required to further reduce errors; furthermore, the language modeling signal is insufficient for capturing syntax-sensitive dependencies, and should be supplemented with more direct supervision if such dependencies need to be captured.
Language Models Model Language
Linguistic commentary on LLMs, heavily influenced by the theoretical frameworks of de Saussure and Chomsky, is often speculative and unproductive. Critics challenge whether LLMs can legitimately model language, citing the need for "deep structure" or "grounding" to achieve an idealized linguistic "competence." We argue for a radical shift in perspective towards the empiricist principles of Witold Ma\'nczak, a prominent general and historical linguist. He defines language not as a "system of signs" or a "computational system of the brain" but as the totality of all that is said and written. Above all, he identifies frequency of use of particular language elements as language's primary governing principle. Using his framework, we challenge prior critiques of LLMs and provide a constructive guide for designing, evaluating, and interpreting language models.
Do LLMs write like humans? Variation in grammatical and rhetorical styles
Large language models (LLMs) are capable of writing grammatical text that follows instructions, answers questions, and solves problems. As they have advanced, it has become difficult to distinguish their output from human-written text. While past research has found some differences in surface features such as word choice and punctuation, and developed classifiers to detect LLM output, none has studied the rhetorical styles of LLMs. Using several variants of Llama 3 and GPT-4o, we construct two parallel corpora of human- and LLM-written texts from common prompts. Using Douglas Biber's set of lexical, grammatical, and rhetorical features, we identify systematic differences between LLMs and humans and between different LLMs. These differences persist when moving from smaller models to larger ones, and are larger for instruction-tuned models than base models. This demonstrates that despite their advanced abilities, LLMs struggle to match human styles, and hence more advanced linguistic features can detect patterns in their behavior not previously recognized.
SurveyG: A Multi-Agent LLM Framework with Hierarchical Citation Graph for Automated Survey Generation
Large language models (LLMs) are increasingly adopted for automating survey paper generation wang2406autosurvey, liang2025surveyx, yan2025surveyforge,su2025benchmarking,wen2025interactivesurvey. Existing approaches typically extract content from a large collection of related papers and prompt LLMs to summarize them directly. However, such methods often overlook the structural relationships among papers, resulting in generated surveys that lack a coherent taxonomy and a deeper contextual understanding of research progress. To address these shortcomings, we propose SurveyG, an LLM-based agent framework that integrates hierarchical citation graph, where nodes denote research papers and edges capture both citation dependencies and semantic relatedness between their contents, thereby embedding structural and contextual knowledge into the survey generation process. The graph is organized into three layers: Foundation, Development, and Frontier, to capture the evolution of research from seminal works to incremental advances and emerging directions. By combining horizontal search within layers and vertical depth traversal across layers, the agent produces multi-level summaries, which are consolidated into a structured survey outline. A multi-agent validation stage then ensures consistency, coverage, and factual accuracy in generating the final survey. Experiments, including evaluations by human experts and LLM-as-a-judge, demonstrate that SurveyG outperforms state-of-the-art frameworks, producing surveys that are more comprehensive and better structured to the underlying knowledge taxonomy of a field.
RuBLiMP: Russian Benchmark of Linguistic Minimal Pairs
Minimal pairs are a well-established approach to evaluating the grammatical knowledge of language models. However, existing resources for minimal pairs address a limited number of languages and lack diversity of language-specific grammatical phenomena. This paper introduces the Russian Benchmark of Linguistic Minimal Pairs (RuBLiMP), which includes 45k pairs of sentences that differ in grammaticality and isolate a morphological, syntactic, or semantic phenomenon. In contrast to existing benchmarks of linguistic minimal pairs, RuBLiMP is created by applying linguistic perturbations to automatically annotated sentences from open text corpora and carefully curating test data. We describe the data collection protocol and present the results of evaluating 25 language models in various scenarios. We find that the widely used language models for Russian are sensitive to morphological and agreement-oriented contrasts but fall behind humans on phenomena requiring understanding of structural relations, negation, transitivity, and tense. RuBLiMP, the codebase, and other materials are publicly available.
Hi Robot: Open-Ended Instruction Following with Hierarchical Vision-Language-Action Models
Generalist robots that can perform a range of different tasks in open-world settings must be able to not only reason about the steps needed to accomplish their goals, but also process complex instructions, prompts, and even feedback during task execution. Intricate instructions (e.g., "Could you make me a vegetarian sandwich?" or "I don't like that one") require not just the ability to physically perform the individual steps, but the ability to situate complex commands and feedback in the physical world. In this work, we describe a system that uses vision-language models in a hierarchical structure, first reasoning over complex prompts and user feedback to deduce the most appropriate next step to fulfill the task, and then performing that step with low-level actions. In contrast to direct instruction following methods that can fulfill simple commands ("pick up the cup"), our system can reason through complex prompts and incorporate situated feedback during task execution ("that's not trash"). We evaluate our system across three robotic platforms, including single-arm, dual-arm, and dual-arm mobile robots, demonstrating its ability to handle tasks such as cleaning messy tables, making sandwiches, and grocery shopping. Videos are available at https://www.pi.website/research/hirobot
Analyzing The Language of Visual Tokens
With the introduction of transformer-based models for vision and language tasks, such as LLaVA and Chameleon, there has been renewed interest in the discrete tokenized representation of images. These models often treat image patches as discrete tokens, analogous to words in natural language, learning joint alignments between visual and human languages. However, little is known about the statistical behavior of these visual languages - whether they follow similar frequency distributions, grammatical structures, or topologies as natural languages. In this paper, we take a natural-language-centric approach to analyzing discrete visual languages and uncover striking similarities and fundamental differences. We demonstrate that, although visual languages adhere to Zipfian distributions, higher token innovation drives greater entropy and lower compression, with tokens predominantly representing object parts, indicating intermediate granularity. We also show that visual languages lack cohesive grammatical structures, leading to higher perplexity and weaker hierarchical organization compared to natural languages. Finally, we demonstrate that, while vision models align more closely with natural languages than other models, this alignment remains significantly weaker than the cohesion found within natural languages. Through these experiments, we demonstrate how understanding the statistical properties of discrete visual languages can inform the design of more effective computer vision models.
Concrete Sentence Spaces for Compositional Distributional Models of Meaning
Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors.
The AI Gap: How Socioeconomic Status Affects Language Technology Interactions
Socioeconomic status (SES) fundamentally influences how people interact with each other and more recently, with digital technologies like Large Language Models (LLMs). While previous research has highlighted the interaction between SES and language technology, it was limited by reliance on proxy metrics and synthetic data. We survey 1,000 individuals from diverse socioeconomic backgrounds about their use of language technologies and generative AI, and collect 6,482 prompts from their previous interactions with LLMs. We find systematic differences across SES groups in language technology usage (i.e., frequency, performed tasks), interaction styles, and topics. Higher SES entails a higher level of abstraction, convey requests more concisely, and topics like 'inclusivity' and 'travel'. Lower SES correlates with higher anthropomorphization of LLMs (using ''hello'' and ''thank you'') and more concrete language. Our findings suggest that while generative language technologies are becoming more accessible to everyone, socioeconomic linguistic differences still stratify their use to exacerbate the digital divide. These differences underscore the importance of considering SES in developing language technologies to accommodate varying linguistic needs rooted in socioeconomic factors and limit the AI Gap across SES groups.
Wave to Syntax: Probing spoken language models for syntax
Understanding which information is encoded in deep models of spoken and written language has been the focus of much research in recent years, as it is crucial for debugging and improving these architectures. Most previous work has focused on probing for speaker characteristics, acoustic and phonological information in models of spoken language, and for syntactic information in models of written language. Here we focus on the encoding of syntax in several self-supervised and visually grounded models of spoken language. We employ two complementary probing methods, combined with baselines and reference representations to quantify the degree to which syntactic structure is encoded in the activations of the target models. We show that syntax is captured most prominently in the middle layers of the networks, and more explicitly within models with more parameters.
Shaking Syntactic Trees on the Sesame Street: Multilingual Probing with Controllable Perturbations
Recent research has adopted a new experimental field centered around the concept of text perturbations which has revealed that shuffled word order has little to no impact on the downstream performance of Transformer-based language models across many NLP tasks. These findings contradict the common understanding of how the models encode hierarchical and structural information and even question if the word order is modeled with position embeddings. To this end, this paper proposes nine probing datasets organized by the type of controllable text perturbation for three Indo-European languages with a varying degree of word order flexibility: English, Swedish and Russian. Based on the probing analysis of the M-BERT and M-BART models, we report that the syntactic sensitivity depends on the language and model pre-training objectives. We also find that the sensitivity grows across layers together with the increase of the perturbation granularity. Last but not least, we show that the models barely use the positional information to induce syntactic trees from their intermediate self-attention and contextualized representations.
Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection
Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. The annotation consists in a linguistically motivated word segmentation; a morphological layer comprising lemmas, universal part-of-speech tags, and standardized morphological features; and a syntactic layer focusing on syntactic relations between predicates, arguments and modifiers. In this paper, we describe version 2 of the guidelines (UD v2), discuss the major changes from UD v1 to UD v2, and give an overview of the currently available treebanks for 90 languages.
What makes a language easy to deep-learn? Deep neural networks and humans similarly benefit from compositional structure
Deep neural networks drive the success of natural language processing. A fundamental property of language is its compositional structure, allowing humans to systematically produce forms for new meanings. For humans, languages with more compositional and transparent structures are typically easier to learn than those with opaque and irregular structures. However, this learnability advantage has not yet been shown for deep neural networks, limiting their use as models for human language learning. Here, we directly test how neural networks compare to humans in learning and generalizing different languages that vary in their degree of compositional structure. We evaluate the memorization and generalization capabilities of a large language model and recurrent neural networks, and show that both deep neural networks exhibit a learnability advantage for more structured linguistic input: neural networks exposed to more compositional languages show more systematic generalization, greater agreement between different agents, and greater similarity to human learners.
Category Theory for Quantum Natural Language Processing
This thesis introduces quantum natural language processing (QNLP) models based on a simple yet powerful analogy between computational linguistics and quantum mechanics: grammar as entanglement. The grammatical structure of text and sentences connects the meaning of words in the same way that entanglement structure connects the states of quantum systems. Category theory allows to make this language-to-qubit analogy formal: it is a monoidal functor from grammar to vector spaces. We turn this abstract analogy into a concrete algorithm that translates the grammatical structure onto the architecture of parameterised quantum circuits. We then use a hybrid classical-quantum algorithm to train the model so that evaluating the circuits computes the meaning of sentences in data-driven tasks. The implementation of QNLP models motivated the development of DisCoPy (Distributional Compositional Python), the toolkit for applied category theory of which the first chapter gives a comprehensive overview. String diagrams are the core data structure of DisCoPy, they allow to reason about computation at a high level of abstraction. We show how they can encode both grammatical structures and quantum circuits, but also logical formulae, neural networks or arbitrary Python code. Monoidal functors allow to translate these abstract diagrams into concrete computation, interfacing with optimised task-specific libraries. The second chapter uses DisCopy to implement QNLP models as parameterised functors from grammar to quantum circuits. It gives a first proof-of-concept for the more general concept of functorial learning: generalising machine learning from functions to functors by learning from diagram-like data. In order to learn optimal functor parameters via gradient descent, we introduce the notion of diagrammatic differentiation: a graphical calculus for computing the gradients of parameterised diagrams.
Natural Language Decomposition and Interpretation of Complex Utterances
Natural language interfaces often require supervised data to translate user requests into programs, database queries, or other structured intent representations. During data collection, it can be difficult to anticipate and formalize the full range of user needs -- for example, in a system designed to handle simple requests (like find my meetings tomorrow or move my meeting with my manager to noon), users may also express more elaborate requests (like swap all my calls on Monday and Tuesday). We introduce an approach for equipping a simple language-to-code model to handle complex utterances via a process of hierarchical natural language decomposition. Our approach uses a pre-trained language model to decompose a complex utterance into a sequence of smaller natural language steps, then interprets each step using the language-to-code model. To test our approach, we collect and release DeCU -- a new NL-to-program benchmark to evaluate Decomposition of Complex Utterances. Experiments show that the proposed approach enables the interpretation of complex utterances with almost no complex training data, while outperforming standard few-shot prompting approaches.
Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs
Large language models (LLMs) have shown remarkable performance in various natural language processing tasks. However, a primary constraint they face is the context limit, i.e., the maximum number of tokens they can process. Previous works have explored architectural changes and modifications in positional encoding to relax the constraint, but they often require expensive training or do not address the computational demands of self-attention. In this paper, we present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations. HOMER uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks. Each chunk is then processed collectively, employing a hierarchical strategy that merges adjacent chunks at progressive transformer layers. A token reduction technique precedes each merging, ensuring memory usage efficiency. We also propose an optimized computational order reducing the memory requirement to logarithmically scale with respect to input length, making it especially favorable for environments with tight memory restrictions. Our experiments demonstrate the proposed method's superior performance and memory efficiency, enabling the broader use of LLMs in contexts requiring extended context. Code is available at https://github.com/alinlab/HOMER.
MaiBaam: A Multi-Dialectal Bavarian Universal Dependency Treebank
Despite the success of the Universal Dependencies (UD) project exemplified by its impressive language breadth, there is still a lack in `within-language breadth': most treebanks focus on standard languages. Even for German, the language with the most annotations in UD, so far no treebank exists for one of its language varieties spoken by over 10M people: Bavarian. To contribute to closing this gap, we present the first multi-dialect Bavarian treebank (MaiBaam) manually annotated with part-of-speech and syntactic dependency information in UD, covering multiple text genres (wiki, fiction, grammar examples, social, non-fiction). We highlight the morphosyntactic differences between the closely-related Bavarian and German and showcase the rich variability of speakers' orthographies. Our corpus includes 15k tokens, covering dialects from all Bavarian-speaking areas spanning three countries. We provide baseline parsing and POS tagging results, which are lower than results obtained on German and vary substantially between different graph-based parsers. To support further research on Bavarian syntax, we make our dataset, language-specific guidelines and code publicly available.
Assessment of Pre-Trained Models Across Languages and Grammars
We present an approach for assessing how multilingual large language models (LLMs) learn syntax in terms of multi-formalism syntactic structures. We aim to recover constituent and dependency structures by casting parsing as sequence labeling. To do so, we select a few LLMs and study them on 13 diverse UD treebanks for dependency parsing and 10 treebanks for constituent parsing. Our results show that: (i) the framework is consistent across encodings, (ii) pre-trained word vectors do not favor constituency representations of syntax over dependencies, (iii) sub-word tokenization is needed to represent syntax, in contrast to character-based models, and (iv) occurrence of a language in the pretraining data is more important than the amount of task data when recovering syntax from the word vectors.
BabyLM's First Constructions: Causal interventions provide a signal of learning
Construction grammar posits that children acquire constructions (form-meaning pairings) from the statistics of their environment. Recent work supports this hypothesis by showing sensitivity to constructions in pretrained language models (PLMs), including one recent study (Rozner et al., 2025) demonstrating that constructions shape the PLM's output distribution. However, models under study have generally been trained on developmentally implausible amounts of data, casting doubt on their relevance to human language learning. Here we use Rozner et al.'s methods to evaluate constructional learning in models from the 2024 BabyLM challenge. Our results show that even when trained on developmentally plausible quantities of data, models represent diverse constructions, even hard cases that are superficially indistinguishable. We further find correlational evidence that constructional performance may be functionally relevant: models that better represent constructions perform better on the BabyLM benchmarks.
Derivational Morphology Reveals Analogical Generalization in Large Language Models
What mechanisms underlie linguistic generalization in large language models (LLMs)? This question has attracted considerable attention, with most studies analyzing the extent to which the language skills of LLMs resemble rules. As of yet, it is not known whether linguistic generalization in LLMs could equally well be explained as the result of analogical processes, which can be formalized as similarity operations on stored exemplars. A key shortcoming of prior research is its focus on linguistic phenomena with a high degree of regularity, for which rule-based and analogical approaches make the same predictions. Here, we instead examine derivational morphology, specifically English adjective nominalization, which displays notable variability. We introduce a new method for investigating linguistic generalization in LLMs: focusing on GPT-J, we fit cognitive models that instantiate rule-based and analogical learning to the LLM training data and compare their predictions on a set of nonce adjectives with those of the LLM, allowing us to draw direct conclusions regarding underlying mechanisms. As expected, rule-based and analogical models explain the predictions of GPT-J equally well for adjectives with regular nominalization patterns. However, for adjectives with variable nominalization patterns, the analogical model provides a much better match. Furthermore, GPT-J's behavior is sensitive to the individual word frequencies, even for regular forms, a behavior that is consistent with an analogical account of regular forms but not a rule-based one. These findings refute the hypothesis that GPT-J's linguistic generalization on adjective nominalization involves rules, suggesting similarity operations on stored exemplars as the underlying mechanism. Overall, our study suggests that analogical processes play a bigger role in the linguistic generalization of LLMs than previously thought.
RT-H: Action Hierarchies Using Language
Language provides a way to break down complex concepts into digestible pieces. Recent works in robot imitation learning use language-conditioned policies that predict actions given visual observations and the high-level task specified in language. These methods leverage the structure of natural language to share data between semantically similar tasks (e.g., "pick coke can" and "pick an apple") in multi-task datasets. However, as tasks become more semantically diverse (e.g., "pick coke can" and "pour cup"), sharing data between tasks becomes harder, so learning to map high-level tasks to actions requires much more demonstration data. To bridge tasks and actions, our insight is to teach the robot the language of actions, describing low-level motions with more fine-grained phrases like "move arm forward". Predicting these language motions as an intermediate step between tasks and actions forces the policy to learn the shared structure of low-level motions across seemingly disparate tasks. Furthermore, a policy that is conditioned on language motions can easily be corrected during execution through human-specified language motions. This enables a new paradigm for flexible policies that can learn from human intervention in language. Our method RT-H builds an action hierarchy using language motions: it first learns to predict language motions, and conditioned on this and the high-level task, it predicts actions, using visual context at all stages. We show that RT-H leverages this language-action hierarchy to learn policies that are more robust and flexible by effectively tapping into multi-task datasets. We show that these policies not only allow for responding to language interventions, but can also learn from such interventions and outperform methods that learn from teleoperated interventions. Our website and videos are found at https://rt-hierarchy.github.io.
Drivel-ology: Challenging LLMs with Interpreting Nonsense with Depth
We introduce Drivelology, a unique linguistic phenomenon characterised as "nonsense with depth", utterances that are syntactically coherent yet pragmatically paradoxical, emotionally loaded, or rhetorically subversive. While such expressions may resemble surface-level nonsense, they encode implicit meaning requiring contextual inference, moral reasoning, or emotional interpretation. We find that current large language models (LLMs), despite excelling at many natural language processing (NLP) tasks, consistently fail to grasp the layered semantics of Drivelological text. To investigate this, we construct a small but diverse benchmark dataset of over 1,200 meticulously curated examples, with select instances in English, Mandarin, Spanish, French, Japanese, and Korean. Annotation was especially challenging: each of the examples required careful expert review to verify that it truly reflected Drivelological characteristics. The process involved multiple rounds of discussion and adjudication to address disagreements, highlighting the subtle and subjective nature of the Drivelology. We evaluate a range of LLMs on classification, generation, and reasoning tasks. Our results reveal clear limitations of LLMs: models often confuse Drivelology with shallow nonsense, produce incoherent justifications, or miss the implied rhetorical function altogether. These findings highlight a deeper representational gap in LLMs' pragmatic understanding and challenge the assumption that statistical fluency implies cognitive comprehension. We release our dataset and code to facilitate further research in modelling linguistic depth beyond surface-level coherence.
Position of Uncertainty: A Cross-Linguistic Study of Positional Bias in Large Language Models
Large language models exhibit positional bias -- systematic neglect of information at specific context positions -- yet its interplay with linguistic diversity remains poorly understood. We present a cross-linguistic study across five typologically distinct languages (English, Russian, German, Hindi, Vietnamese), examining how positional bias interacts with model uncertainty, syntax, and prompting. Key findings: (1) Positional bias is model-driven, with language-specific variations -- Qwen2.5-7B favors late positions, challenging assumptions of early-token bias; (2) Explicit positional guidance (e.g., correct context is at position X) reduces accuracy across languages, undermining prompt-engineering practices; (3) Aligning context with positional bias increases entropy, yet minimal entropy does not predict accuracy. (4) We further uncover that LLMs differently impose dominant word order in free-word-order languages like Hindi.
A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks
Much effort has been devoted to evaluate whether multi-task learning can be leveraged to learn rich representations that can be used in various Natural Language Processing (NLP) down-stream applications. However, there is still a lack of understanding of the settings in which multi-task learning has a significant effect. In this work, we introduce a hierarchical model trained in a multi-task learning setup on a set of carefully selected semantic tasks. The model is trained in a hierarchical fashion to introduce an inductive bias by supervising a set of low level tasks at the bottom layers of the model and more complex tasks at the top layers of the model. This model achieves state-of-the-art results on a number of tasks, namely Named Entity Recognition, Entity Mention Detection and Relation Extraction without hand-engineered features or external NLP tools like syntactic parsers. The hierarchical training supervision induces a set of shared semantic representations at lower layers of the model. We show that as we move from the bottom to the top layers of the model, the hidden states of the layers tend to represent more complex semantic information.
Unsupervised Parsing by Searching for Frequent Word Sequences among Sentences with Equivalent Predicate-Argument Structures
Unsupervised constituency parsing focuses on identifying word sequences that form a syntactic unit (i.e., constituents) in target sentences. Linguists identify the constituent by evaluating a set of Predicate-Argument Structure (PAS) equivalent sentences where we find the constituent appears more frequently than non-constituents (i.e., the constituent corresponds to a frequent word sequence within the sentence set). However, such frequency information is unavailable in previous parsing methods that identify the constituent by observing sentences with diverse PAS. In this study, we empirically show that constituents correspond to frequent word sequences in the PAS-equivalent sentence set. We propose a frequency-based parser span-overlap that (1) computes the span-overlap score as the word sequence's frequency in the PAS-equivalent sentence set and (2) identifies the constituent structure by finding a constituent tree with the maximum span-overlap score. The parser achieves state-of-the-art level parsing accuracy, outperforming existing unsupervised parsers in eight out of ten languages. Additionally, we discover a multilingual phenomenon: participant-denoting constituents tend to have higher span-overlap scores than equal-length event-denoting constituents, meaning that the former tend to appear more frequently in the PAS-equivalent sentence set than the latter. The phenomenon indicates a statistical difference between the two constituent types, laying the foundation for future labeled unsupervised parsing research.
Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models
Recent studies show that Large Language Models (LLMs) achieve strong reasoning capabilities through supervised fine-tuning or reinforcement learning. However, a key approach, the Process Reward Model (PRM), suffers from reward hacking, making it unreliable in identifying the best intermediate steps. In this paper, we propose a novel reward model approach, Hierarchical Reward Model (HRM), which evaluates both individual and consecutive reasoning steps from fine-grained and coarse-grained level. HRM performs better in assessing reasoning coherence and self-reflection, particularly when the previous reasoning step is incorrect. Furthermore, to address the inefficiency of autonomous generating PRM training data via Monte Carlo Tree Search (MCTS), we introduce a lightweight and effective data augmentation strategy called Hierarchical Node Compression (HNC) based on node merging (combining two consecutive reasoning steps into one step) in the tree structure. This approach diversifies MCTS results for HRM with negligible computational overhead, enhancing label robustness by introducing noise. Empirical results on the PRM800K dataset demonstrate that HRM, in conjunction with HNC, achieves superior stability and reliability in evaluation compared to PRM. Furthermore, cross-domain evaluations on MATH500 and GSM8K confirm HRM's superior generalization and robustness across diverse reasoning tasks. The code for all experiments will be released at https: //github.com/tengwang0318/hierarchial_reward_model.
Cross-lingual Transfer Learning for Javanese Dependency Parsing
While structure learning achieves remarkable performance in high-resource languages, the situation differs for under-represented languages due to the scarcity of annotated data. This study focuses on assessing the efficacy of transfer learning in enhancing dependency parsing for Javanese, a language spoken by 80 million individuals but characterized by limited representation in natural language processing. We utilized the Universal Dependencies dataset consisting of dependency treebanks from more than 100 languages, including Javanese. We propose two learning strategies to train the model: transfer learning (TL) and hierarchical transfer learning (HTL). While TL only uses a source language to pre-train the model, the HTL method uses a source language and an intermediate language in the learning process. The results show that our best model uses the HTL method, which improves performance with an increase of 10% for both UAS and LAS evaluations compared to the baseline model.
Grammar Prompting for Domain-Specific Language Generation with Large Language Models
Large language models (LLMs) can learn to perform a wide range of natural language tasks from just a handful of in-context examples. However, for generating strings from highly structured languages (e.g., semantic parsing to complex domain-specific languages), it is challenging for the LLM to generalize from just a few exemplars. We explore grammar prompting as a simple approach for enabling LLMs to use external knowledge and domain-specific constraints, expressed through a grammar expressed in Backus--Naur Form (BNF), during in-context learning. Grammar prompting augments each demonstration example with a specialized grammar that is minimally sufficient for generating the particular output example, where the specialized grammar is a subset of the full DSL grammar. For inference, the LLM first predicts a BNF grammar given a test input, and then generates the output according to the rules of the grammar. Experiments demonstrate that grammar prompting can enable LLMs to perform competitively on a diverse set of DSL generation tasks, including semantic parsing (SMCalFlow, Overnight, GeoQuery), PDDL planning, and even molecule generation (SMILES).
Emergent Hierarchical Reasoning in LLMs through Reinforcement Learning
Reinforcement Learning (RL) has proven highly effective at enhancing the complex reasoning abilities of Large Language Models (LLMs), yet underlying mechanisms driving this success remain largely opaque. Our analysis reveals that puzzling phenomena like ``aha moments", ``length-scaling'' and entropy dynamics are not disparate occurrences but hallmarks of an emergent reasoning hierarchy, akin to the separation of high-level strategic planning from low-level procedural execution in human cognition. We uncover a compelling two-phase dynamic: initially, a model is constrained by procedural correctness and must improve its low-level skills. The learning bottleneck then decisively shifts, with performance gains being driven by the exploration and mastery of high-level strategic planning. This insight exposes a core inefficiency in prevailing RL algorithms like GRPO, which apply optimization pressure agnostically and dilute the learning signal across all tokens. To address this, we propose HIerarchy-Aware Credit Assignment (HICRA), an algorithm that concentrates optimization efforts on high-impact planning tokens. HICRA significantly outperforms strong baselines, demonstrating that focusing on this strategic bottleneck is key to unlocking advanced reasoning. Furthermore, we validate semantic entropy as a superior compass for measuring strategic exploration over misleading metrics such as token-level entropy.
Improving Unsupervised Constituency Parsing via Maximizing Semantic Information
Unsupervised constituency parsers organize phrases within a sentence into a tree-shaped syntactic constituent structure that reflects the organization of sentence semantics. However, the traditional objective of maximizing sentence log-likelihood (LL) does not explicitly account for the close relationship between the constituent structure and the semantics, resulting in a weak correlation between LL values and parsing accuracy. In this paper, we introduce a novel objective for training unsupervised parsers: maximizing the information between constituent structures and sentence semantics (SemInfo). We introduce a bag-of-substrings model to represent the semantics and apply the probability-weighted information metric to estimate the SemInfo. Additionally, we develop a Tree Conditional Random Field (TreeCRF)-based model to apply the SemInfo maximization objective to Probabilistic Context-Free Grammar (PCFG) induction, the state-of-the-art method for unsupervised constituency parsing. Experiments demonstrate that SemInfo correlates more strongly with parsing accuracy than LL. Our algorithm significantly enhances parsing accuracy by an average of 7.85 points across five PCFG variants and in four languages, achieving new state-of-the-art results in three of the four languages.
Heaps' law and Heaps functions in tagged texts: Evidences of their linguistic relevance
We study the relationship between vocabulary size and text length in a corpus of 75 literary works in English, authored by six writers, distinguishing between the contributions of three grammatical classes (or ``tags,'' namely, {\it nouns}, {\it verbs}, and {\it others}), and analyze the progressive appearance of new words of each tag along each individual text. While the power-law relation prescribed by Heaps' law is satisfactorily fulfilled by total vocabulary sizes and text lengths, the appearance of new words in each text is on the whole well described by the average of random shufflings of the text, which does not obey a power law. Deviations from this average, however, are statistically significant and show a systematic trend across the corpus. Specifically, they reveal that the appearance of new words along each text is predominantly retarded with respect to the average of random shufflings. Moreover, different tags are shown to add systematically distinct contributions to this tendency, with {\it verbs} and {\it others} being respectively more and less retarded than the mean trend, and {\it nouns} following instead this overall mean. These statistical systematicities are likely to point to the existence of linguistically relevant information stored in the different variants of Heaps' law, a feature that is still in need of extensive assessment.
A Survey of Corpora for Germanic Low-Resource Languages and Dialects
Despite much progress in recent years, the vast majority of work in natural language processing (NLP) is on standard languages with many speakers. In this work, we instead focus on low-resource languages and in particular non-standardized low-resource languages. Even within branches of major language families, often considered well-researched, little is known about the extent and type of available resources and what the major NLP challenges are for these language varieties. The first step to address this situation is a systematic survey of available corpora (most importantly, annotated corpora, which are particularly valuable for NLP research). Focusing on Germanic low-resource language varieties, we provide such a survey in this paper. Except for geolocation (origin of speaker or document), we find that manually annotated linguistic resources are sparse and, if they exist, mostly cover morphosyntax. Despite this lack of resources, we observe that interest in this area is increasing: there is active development and a growing research community. To facilitate research, we make our overview of over 80 corpora publicly available. We share a companion website of this overview at https://github.com/mainlp/germanic-lrl-corpora .
Dissociating language and thought in large language models: a cognitive perspective
Today's large language models (LLMs) routinely generate coherent, grammatical and seemingly meaningful paragraphs of text. This achievement has led to speculation that these networks are -- or will soon become -- "thinking machines", capable of performing tasks that require abstract knowledge and reasoning. Here, we review the capabilities of LLMs by considering their performance on two different aspects of language use: 'formal linguistic competence', which includes knowledge of rules and patterns of a given language, and 'functional linguistic competence', a host of cognitive abilities required for language understanding and use in the real world. Drawing on evidence from cognitive neuroscience, we show that formal competence in humans relies on specialized language processing mechanisms, whereas functional competence recruits multiple extralinguistic capacities that comprise human thought, such as formal reasoning, world knowledge, situation modeling, and social cognition. In line with this distinction, LLMs show impressive (although imperfect) performance on tasks requiring formal linguistic competence, but fail on many tests requiring functional competence. Based on this evidence, we argue that (1) contemporary LLMs should be taken seriously as models of formal linguistic skills; (2) models that master real-life language use would need to incorporate or develop not only a core language module, but also multiple non-language-specific cognitive capacities required for modeling thought. Overall, a distinction between formal and functional linguistic competence helps clarify the discourse surrounding LLMs' potential and provides a path toward building models that understand and use language in human-like ways.
Foundations of Large Language Models
This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into four main chapters, each exploring a key area: pre-training, generative models, prompting techniques, and alignment methods. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models.
Analyzing Sentence Fusion in Abstractive Summarization
While recent work in abstractive summarization has resulted in higher scores in automatic metrics, there is little understanding on how these systems combine information taken from multiple document sentences. In this paper, we analyze the outputs of five state-of-the-art abstractive summarizers, focusing on summary sentences that are formed by sentence fusion. We ask assessors to judge the grammaticality, faithfulness, and method of fusion for summary sentences. Our analysis reveals that system sentences are mostly grammatical, but often fail to remain faithful to the original article.
Generating novel experimental hypotheses from language models: A case study on cross-dative generalization
Neural network language models (LMs) have been shown to successfully capture complex linguistic knowledge. However, their utility for understanding language acquisition is still debated. We contribute to this debate by presenting a case study where we use LMs as simulated learners to derive novel experimental hypotheses to be tested with humans. We apply this paradigm to study cross-dative generalization (CDG): productive generalization of novel verbs across dative constructions (she pilked me the ball/she pilked the ball to me) -- acquisition of which is known to involve a large space of contextual features -- using LMs trained on child-directed speech. We specifically ask: "what properties of the training exposure facilitate a novel verb's generalization to the (unmodeled) alternate construction?" To answer this, we systematically vary the exposure context in which a novel dative verb occurs in terms of the properties of the theme and recipient, and then analyze the LMs' usage of the novel verb in the unmodeled dative construction. We find LMs to replicate known patterns of children's CDG, as a precondition to exploring novel hypotheses. Subsequent simulations reveal a nuanced role of the features of the novel verbs' exposure context on the LMs' CDG. We find CDG to be facilitated when the first postverbal argument of the exposure context is pronominal, definite, short, and conforms to the prototypical animacy expectations of the exposure dative. These patterns are characteristic of harmonic alignment in datives, where the argument with features ranking higher on the discourse prominence scale tends to precede the other. This gives rise to a novel hypothesis that CDG is facilitated insofar as the features of the exposure context -- in particular, its first postverbal argument -- are harmonically aligned. We conclude by proposing future experiments that can test this hypothesis in children.
On Eliciting Syntax from Language Models via Hashing
Unsupervised parsing, also known as grammar induction, aims to infer syntactic structure from raw text. Recently, binary representation has exhibited remarkable information-preserving capabilities at both lexicon and syntax levels. In this paper, we explore the possibility of leveraging this capability to deduce parsing trees from raw text, relying solely on the implicitly induced grammars within models. To achieve this, we upgrade the bit-level CKY from zero-order to first-order to encode the lexicon and syntax in a unified binary representation space, switch training from supervised to unsupervised under the contrastive hashing framework, and introduce a novel loss function to impose stronger yet balanced alignment signals. Our model shows competitive performance on various datasets, therefore, we claim that our method is effective and efficient enough to acquire high-quality parsing trees from pre-trained language models at a low cost.
Training-free LLM Merging for Multi-task Learning
Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse natural language processing (NLP) tasks. The release of open-source LLMs like LLaMA and Qwen has triggered the development of numerous fine-tuned models tailored for various tasks and languages. In this paper, we explore an important question: is it possible to combine these specialized models to create a unified model with multi-task capabilities. We introduces Hierarchical Iterative Merging (Hi-Merging), a training-free method for unifying different specialized LLMs into a single model. Specifically, Hi-Merging employs model-wise and layer-wise pruning and scaling, guided by contribution analysis, to mitigate parameter conflicts. Extensive experiments on multiple-choice and question-answering tasks in both Chinese and English validate Hi-Merging's ability for multi-task learning. The results demonstrate that Hi-Merging consistently outperforms existing merging techniques and surpasses the performance of models fine-tuned on combined datasets in most scenarios. Code is available at: https://github.com/Applied-Machine-Learning-Lab/Hi-Merging.
Convolutional Neural Network Architectures for Matching Natural Language Sentences
Semantic matching is of central importance to many natural language tasks bordes2014semantic,RetrievalQA. A successful matching algorithm needs to adequately model the internal structures of language objects and the interaction between them. As a step toward this goal, we propose convolutional neural network models for matching two sentences, by adapting the convolutional strategy in vision and speech. The proposed models not only nicely represent the hierarchical structures of sentences with their layer-by-layer composition and pooling, but also capture the rich matching patterns at different levels. Our models are rather generic, requiring no prior knowledge on language, and can hence be applied to matching tasks of different nature and in different languages. The empirical study on a variety of matching tasks demonstrates the efficacy of the proposed model on a variety of matching tasks and its superiority to competitor models.
On the Acquisition of Shared Grammatical Representations in Bilingual Language Models
While crosslingual transfer is crucial to contemporary language models' multilingual capabilities, how it occurs is not well understood. In this paper, we ask what happens to a monolingual language model when it begins to be trained on a second language. Specifically, we train small bilingual models for which we control the amount of data for each language and the order of language exposure. To find evidence of shared multilingual representations, we turn to structural priming, a method used to study grammatical representations in humans. We first replicate previous crosslingual structural priming results and find that after controlling for training data quantity and language exposure, there are asymmetrical effects across language pairs and directions. We argue that this asymmetry may shape hypotheses about human structural priming effects. We also find that structural priming effects are less robust for less similar language pairs, highlighting potential limitations of crosslingual transfer learning and shared representations for typologically diverse languages.
Towards Human Cognition: Visual Context Guides Syntactic Priming in Fusion-Encoded Models
Structural priming is a cognitive phenomenon where exposure to a particular syntactic structure increases the likelihood of producing the same structure in subsequent utterances. While humans consistently demonstrate structural priming effects across various linguistic contexts, it remains unclear whether multimodal large language models (MLLMs) exhibit similar syntactic preservation behaviors. We introduce PRISMATIC, the first multimodal structural priming dataset, which advances computational linguistics by providing a standardized benchmark for investigating syntax-vision interactions. We propose the Syntactic Preservation Index (SPI), a novel reference-free evaluation metric designed specifically to assess structural priming effects in sentence level. Using this metric, we constructed and tested models with two different multimodal encoding architectures to investigate their structural preservation capabilities. Our experimental results demonstrate that models with both encoding methods show comparable syntactic priming effects. However, only fusion-encoded models exhibit robust positive correlations between priming effects and visual similarity, suggesting a cognitive process more aligned with human psycholinguistic patterns. This work provides new insights into evaluating and understanding how syntactic information is processed in multimodal language models.
MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search
Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the novel task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent chemistry literature show that our method consistently outperforms strong baselines.
Compositional Evaluation on Japanese Textual Entailment and Similarity
Natural Language Inference (NLI) and Semantic Textual Similarity (STS) are widely used benchmark tasks for compositional evaluation of pre-trained language models. Despite growing interest in linguistic universals, most NLI/STS studies have focused almost exclusively on English. In particular, there are no available multilingual NLI/STS datasets in Japanese, which is typologically different from English and can shed light on the currently controversial behavior of language models in matters such as sensitivity to word order and case particles. Against this background, we introduce JSICK, a Japanese NLI/STS dataset that was manually translated from the English dataset SICK. We also present a stress-test dataset for compositional inference, created by transforming syntactic structures of sentences in JSICK to investigate whether language models are sensitive to word order and case particles. We conduct baseline experiments on different pre-trained language models and compare the performance of multilingual models when applied to Japanese and other languages. The results of the stress-test experiments suggest that the current pre-trained language models are insensitive to word order and case marking.
DHP Benchmark: Are LLMs Good NLG Evaluators?
Large Language Models (LLMs) are increasingly serving as evaluators in Natural Language Generation (NLG) tasks. However, the capabilities of LLMs in scoring NLG quality remain inadequately explored. Current studies depend on human assessments and simple metrics that fail to capture the discernment of LLMs across diverse NLG tasks. To address this gap, we propose the Discernment of Hierarchical Perturbation (DHP) benchmarking framework, which provides quantitative discernment scores for LLMs utilizing hierarchically perturbed text data and statistical tests to measure the NLG evaluation capabilities of LLMs systematically. We have re-established six evaluation datasets for this benchmark, covering four NLG tasks: Summarization, Story Completion, Question Answering, and Translation. Our comprehensive benchmarking of five major LLM series provides critical insight into their strengths and limitations as NLG evaluators.
Morphological Typology in BPE Subword Productivity and Language Modeling
This study investigates the impact of morphological typology on tokenization and language modeling performance. We focus on languages with synthetic and analytical morphological structures and examine their productivity when tokenized using the byte-pair encoding (BPE) algorithm. We compare the performance of models trained with similar amounts of data in different languages. Our experiments reveal that languages with synthetic features exhibit greater subword regularity and productivity with BPE tokenization and achieve better results in language modeling tasks. We also observe that the typological continuum from linguistic theory is reflected in several experiments. These findings suggest a correlation between morphological typology and BPE tokenization efficiency.
Hierarchical Indexing for Retrieval-Augmented Opinion Summarization
We propose a method for unsupervised abstractive opinion summarization, that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs). Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy. At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews. Then, we use a pretrained LLM to generate a readable summary that is grounded in these extracted evidential clusters. The modularity of our approach allows us to evaluate its efficacy at each stage. We show that HIRO learns an encoding space that is more semantically structured than prior work, and generates summaries that are more representative of the opinions in the input reviews. Human evaluation confirms that HIRO generates more coherent, detailed and accurate summaries that are significantly preferred by annotators compared to prior work.
Global and Local Entailment Learning for Natural World Imagery
Learning the hierarchical structure of data in vision-language models is a significant challenge. Previous works have attempted to address this challenge by employing entailment learning. However, these approaches fail to model the transitive nature of entailment explicitly, which establishes the relationship between order and semantics within a representation space. In this work, we introduce Radial Cross-Modal Embeddings (RCME), a framework that enables the explicit modeling of transitivity-enforced entailment. Our proposed framework optimizes for the partial order of concepts within vision-language models. By leveraging our framework, we develop a hierarchical vision-language foundation model capable of representing the hierarchy in the Tree of Life. Our experiments on hierarchical species classification and hierarchical retrieval tasks demonstrate the enhanced performance of our models compared to the existing state-of-the-art models. Our code and models are open-sourced at https://vishu26.github.io/RCME/index.html.
Superlatives in Context: Explicit and Implicit Domain Restrictions for Superlative Frames
Superlatives are used to single out elements with a maximal/minimal property. Semantically, superlatives perform a set comparison: something (or some things) has the min/max property out of a set. As such, superlatives provide an ideal phenomenon for studying implicit phenomena and discourse restrictions. While this comparison set is often not explicitly defined, its (implicit) restrictions can be inferred from the discourse context the expression appears in. In this work we provide an extensive computational study on the semantics of superlatives. We propose a unified account of superlative semantics which allows us to derive a broad-coverage annotation schema. Using this unified schema we annotated a multi-domain dataset of superlatives and their semantic interpretations. We specifically focus on interpreting implicit or ambiguous superlative expressions, by analyzing how the discourse context restricts the set of interpretations. In a set of experiments we then analyze how well models perform at variations of predicting superlative semantics, with and without context. We show that the fine-grained semantics of superlatives in context can be challenging for contemporary models, including GPT-4.
Grammar-Constrained Decoding for Structured NLP Tasks without Finetuning
Despite their impressive performance, large language models (LMs) still struggle with reliably generating complex output structures when not finetuned to follow the required output format exactly. To address this issue, grammar-constrained decoding (GCD) can be used to control the generation of LMs, guaranteeing that the output follows a given structure. Most existing GCD methods are, however, limited to specific tasks, such as parsing or code generation. In this work, we demonstrate that formal grammars can describe the output space for a much wider range of tasks and argue that GCD can serve as a unified framework for structured NLP tasks in general. For increased flexibility, we introduce input-dependent grammars, which allow the grammar to depend on the input and thus enable the generation of different output structures for different inputs. We then empirically demonstrate the power and flexibility of GCD-enhanced LMs on (1) information extraction, (2) entity disambiguation, and (3) constituency parsing. Our results indicate that grammar-constrained LMs substantially outperform unconstrained LMs or even beat task-specific finetuned models. Grammar constraints thus hold great promise for harnessing off-the-shelf LMs for a wide range of structured NLP tasks, especially where training data is scarce or finetuning is expensive. Code and data: https://github.com/epfl-dlab/GCD.
HiRoPE: Length Extrapolation for Code Models
Addressing the limitation of context length in large language models for code-related tasks is the primary focus of this paper. Existing LLMs are constrained by their pre-trained context lengths, leading to performance issues in handling long complex code sequences. Inspired by how human programmers navigate code, we introduce Hierarchical Rotary Position Embedding (HiRoPE), a novel approach that enhances the traditional rotary position embedding into a hierarchical format based on the hierarchical structure of source code. HiRoPE offers easy integration into existing LLMs without extra training costs. Our method is extensively evaluated with various LLMs, demonstrating stable performance in tasks such as language modeling and long code completion. We also introduce a new long code understanding task with real-world code projects, in hopes of promoting further development in this code-related field. Theoretically and experimentally, we find that HiRoPE also addresses the out-of-distribution issue in position encoding. Our HiRoPE significantly expands the context length capabilities of LLMs, enabling inference at lengths exponentially greater than the training length.
Mark My Words: A Robust Multilingual Model for Punctuation in Text and Speech Transcripts
Punctuation plays a vital role in structuring meaning, yet current models often struggle to restore it accurately in transcripts of spontaneous speech, especially in the presence of disfluencies such as false starts and backtracking. These limitations hinder the performance of downstream tasks like translation, text to speech, summarization, etc. where sentence boundaries are critical for preserving quality. In this work, we introduce Cadence, a generalist punctuation restoration model adapted from a pretrained large language model. Cadence is designed to handle both clean written text and highly spontaneous spoken transcripts. It surpasses the previous state of the art in performance while expanding support from 14 to all 22 Indian languages and English. We conduct a comprehensive analysis of model behavior across punctuation types and language families, identifying persistent challenges under domain shift and with rare punctuation marks. Our findings demonstrate the efficacy of utilizing pretrained language models for multilingual punctuation restoration and highlight Cadence practical value for low resource NLP pipelines at scale.
Evaluating Neural Language Models as Cognitive Models of Language Acquisition
The success of neural language models (LMs) on many technological tasks has brought about their potential relevance as scientific theories of language despite some clear differences between LM training and child language acquisition. In this paper we argue that some of the most prominent benchmarks for evaluating the syntactic capacities of LMs may not be sufficiently rigorous. In particular, we show that the template-based benchmarks lack the structural diversity commonly found in the theoretical and psychological studies of language. When trained on small-scale data modeling child language acquisition, the LMs can be readily matched by simple baseline models. We advocate for the use of the readily available, carefully curated datasets that have been evaluated for gradient acceptability by large pools of native speakers and are designed to probe the structural basis of grammar specifically. On one such dataset, the LI-Adger dataset, LMs evaluate sentences in a way inconsistent with human language users. We conclude with suggestions for better connecting LMs with the empirical study of child language acquisition.
Can Humans Identify Domains?
Textual domain is a crucial property within the Natural Language Processing (NLP) community due to its effects on downstream model performance. The concept itself is, however, loosely defined and, in practice, refers to any non-typological property, such as genre, topic, medium or style of a document. We investigate the core notion of domains via human proficiency in identifying related intrinsic textual properties, specifically the concepts of genre (communicative purpose) and topic (subject matter). We publish our annotations in *TGeGUM*: A collection of 9.1k sentences from the GUM dataset (Zeldes, 2017) with single sentence and larger context (i.e., prose) annotations for one of 11 genres (source type), and its topic/subtopic as per the Dewey Decimal library classification system (Dewey, 1979), consisting of 10/100 hierarchical topics of increased granularity. Each instance is annotated by three annotators, for a total of 32.7k annotations, allowing us to examine the level of human disagreement and the relative difficulty of each annotation task. With a Fleiss' kappa of at most 0.53 on the sentence level and 0.66 at the prose level, it is evident that despite the ubiquity of domains in NLP, there is little human consensus on how to define them. By training classifiers to perform the same task, we find that this uncertainty also extends to NLP models.
Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It)
In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability.
Neural Network Acceptability Judgments
This paper investigates the ability of artificial neural networks to judge the grammatical acceptability of a sentence, with the goal of testing their linguistic competence. We introduce the Corpus of Linguistic Acceptability (CoLA), a set of 10,657 English sentences labeled as grammatical or ungrammatical from published linguistics literature. As baselines, we train several recurrent neural network models on acceptability classification, and find that our models outperform unsupervised models by Lau et al (2016) on CoLA. Error-analysis on specific grammatical phenomena reveals that both Lau et al.'s models and ours learn systematic generalizations like subject-verb-object order. However, all models we test perform far below human level on a wide range of grammatical constructions.
Assessing the potential of AI-assisted pragmatic annotation: The case of apologies
Certain forms of linguistic annotation, like part of speech and semantic tagging, can be automated with high accuracy. However, manual annotation is still necessary for complex pragmatic and discursive features that lack a direct mapping to lexical forms. This manual process is time-consuming and error-prone, limiting the scalability of function-to-form approaches in corpus linguistics. To address this, our study explores automating pragma-discursive corpus annotation using large language models (LLMs). We compare ChatGPT, the Bing chatbot, and a human coder in annotating apology components in English based on the local grammar framework. We find that the Bing chatbot outperformed ChatGPT, with accuracy approaching that of a human coder. These results suggest that AI can be successfully deployed to aid pragma-discursive corpus annotation, making the process more efficient and scalable. Keywords: linguistic annotation, function-to-form approaches, large language models, local grammar analysis, Bing chatbot, ChatGPT
Ensemble Distillation for Unsupervised Constituency Parsing
We investigate the unsupervised constituency parsing task, which organizes words and phrases of a sentence into a hierarchical structure without using linguistically annotated data. We observe that existing unsupervised parsers capture differing aspects of parsing structures, which can be leveraged to enhance unsupervised parsing performance. To this end, we propose a notion of "tree averaging," based on which we further propose a novel ensemble method for unsupervised parsing. To improve inference efficiency, we further distill the ensemble knowledge into a student model; such an ensemble-then-distill process is an effective approach to mitigate the over-smoothing problem existing in common multi-teacher distilling methods. Experiments show that our method surpasses all previous approaches, consistently demonstrating its effectiveness and robustness across various runs, with different ensemble components, and under domain-shift conditions.
Continuous Learning in a Hierarchical Multiscale Neural Network
We reformulate the problem of encoding a multi-scale representation of a sequence in a language model by casting it in a continuous learning framework. We propose a hierarchical multi-scale language model in which short time-scale dependencies are encoded in the hidden state of a lower-level recurrent neural network while longer time-scale dependencies are encoded in the dynamic of the lower-level network by having a meta-learner update the weights of the lower-level neural network in an online meta-learning fashion. We use elastic weights consolidation as a higher-level to prevent catastrophic forgetting in our continuous learning framework.
