Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning
Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and concepts, lifelong learning in decision-making (LLDM) also necessitates the transfer of procedural knowledge, such as actions and behaviors. To advance research in LLDM, we introduce LIBERO, a novel benchmark of lifelong learning for robot manipulation. Specifically, LIBERO highlights five key research topics in LLDM: 1) how to efficiently transfer declarative knowledge, procedural knowledge, or the mixture of both; 2) how to design effective policy architectures and 3) effective algorithms for LLDM; 4) the robustness of a lifelong learner with respect to task ordering; and 5) the effect of model pretraining for LLDM. We develop an extendible procedural generation pipeline that can in principle generate infinitely many tasks. For benchmarking purpose, we create four task suites (130 tasks in total) that we use to investigate the above-mentioned research topics. To support sample-efficient learning, we provide high-quality human-teleoperated demonstration data for all tasks. Our extensive experiments present several insightful or even unexpected discoveries: sequential finetuning outperforms existing lifelong learning methods in forward transfer, no single visual encoder architecture excels at all types of knowledge transfer, and naive supervised pretraining can hinder agents' performance in the subsequent LLDM. Check the website at https://libero-project.github.io for the code and the datasets.
Generating Shared Latent Variables for Robots to Imitate Human Movements and Understand their Physical Limitations
Assistive robotics and particularly robot coaches may be very helpful for rehabilitation healthcare. In this context, we propose a method based on Gaussian Process Latent Variable Model (GP-LVM) to transfer knowledge between a physiotherapist, a robot coach and a patient. Our model is able to map visual human body features to robot data in order to facilitate the robot learning and imitation. In addition , we propose to extend the model to adapt robots' understanding to patient's physical limitations during the assessment of rehabilitation exercises. Experimental evaluation demonstrates promising results for both robot imitation and model adaptation according to the patients' limitations.
Large-Scale Actionless Video Pre-Training via Discrete Diffusion for Efficient Policy Learning
Learning a generalist embodied agent capable of completing multiple tasks poses challenges, primarily stemming from the scarcity of action-labeled robotic datasets. In contrast, a vast amount of human videos exist, capturing intricate tasks and interactions with the physical world. Promising prospects arise for utilizing actionless human videos for pre-training and transferring the knowledge to facilitate robot policy learning through limited robot demonstrations. In this paper, we introduce a novel framework that leverages a unified discrete diffusion to combine generative pre-training on human videos and policy fine-tuning on a small number of action-labeled robot videos. We start by compressing both human and robot videos into unified video tokens. In the pre-training stage, we employ a discrete diffusion model with a mask-and-replace diffusion strategy to predict future video tokens in the latent space. In the fine-tuning stage, we harness the imagined future videos to guide low-level action learning trained on a limited set of robot data. Experiments demonstrate that our method generates high-fidelity future videos for planning and enhances the fine-tuned policies compared to previous state-of-the-art approaches with superior generalization ability. Our project website is available at https://video-diff.github.io/.
Aligning Robot Representations with Humans
As robots are increasingly deployed in real-world scenarios, a key question is how to best transfer knowledge learned in one environment to another, where shifting constraints and human preferences render adaptation challenging. A central challenge remains that often, it is difficult (perhaps even impossible) to capture the full complexity of the deployment environment, and therefore the desired tasks, at training time. Consequently, the representation, or abstraction, of the tasks the human hopes for the robot to perform in one environment may be misaligned with the representation of the tasks that the robot has learned in another. We postulate that because humans will be the ultimate evaluator of system success in the world, they are best suited to communicating the aspects of the tasks that matter to the robot. Our key insight is that effective learning from human input requires first explicitly learning good intermediate representations and then using those representations for solving downstream tasks. We highlight three areas where we can use this approach to build interactive systems and offer future directions of work to better create advanced collaborative robots.
TRANSIC: Sim-to-Real Policy Transfer by Learning from Online Correction
Learning in simulation and transferring the learned policy to the real world has the potential to enable generalist robots. The key challenge of this approach is to address simulation-to-reality (sim-to-real) gaps. Previous methods often require domain-specific knowledge a priori. We argue that a straightforward way to obtain such knowledge is by asking humans to observe and assist robot policy execution in the real world. The robots can then learn from humans to close various sim-to-real gaps. We propose TRANSIC, a data-driven approach to enable successful sim-to-real transfer based on a human-in-the-loop framework. TRANSIC allows humans to augment simulation policies to overcome various unmodeled sim-to-real gaps holistically through intervention and online correction. Residual policies can be learned from human corrections and integrated with simulation policies for autonomous execution. We show that our approach can achieve successful sim-to-real transfer in complex and contact-rich manipulation tasks such as furniture assembly. Through synergistic integration of policies learned in simulation and from humans, TRANSIC is effective as a holistic approach to addressing various, often coexisting sim-to-real gaps. It displays attractive properties such as scaling with human effort. Videos and code are available at https://transic-robot.github.io/
Moto: Latent Motion Token as the Bridging Language for Robot Manipulation
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration
Recent advancements in AI reasoning have driven substantial improvements across diverse tasks. A critical open question is whether these improvements also yields better knowledge transfer: the ability of models to communicate reasoning in ways humans can understand, apply, and learn from. To investigate this, we introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities and conduct the first large-scale human study (N=118) explicitly designed to measure it. In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding. Our findings reveal that although model benchmark performance correlates with collaborative outcomes, this relationship is notably inconsistent, featuring significant outliers, indicating that knowledge transfer requires dedicated optimization. Our analysis identifies behavioral and strategic factors mediating successful knowledge transfer. We release our code, dataset, and evaluation framework to support future work on communicatively aligned models.
InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions
In collaborative human-robot manipulation, a robot must predict human intents and adapt its actions accordingly to smoothly execute tasks. However, the human's intent in turn depends on actions the robot takes, creating a chicken-or-egg problem. Prior methods ignore such inter-dependency and instead train marginal intent prediction models independent of robot actions. This is because training conditional models is hard given a lack of paired human-robot interaction datasets. Can we instead leverage large-scale human-human interaction data that is more easily accessible? Our key insight is to exploit a correspondence between human and robot actions that enables transfer learning from human-human to human-robot data. We propose a novel architecture, InteRACT, that pre-trains a conditional intent prediction model on large human-human datasets and fine-tunes on a small human-robot dataset. We evaluate on a set of real-world collaborative human-robot manipulation tasks and show that our conditional model improves over various marginal baselines. We also introduce new techniques to tele-operate a 7-DoF robot arm and collect a diverse range of human-robot collaborative manipulation data, which we open-source.
π_{0.5}: a Vision-Language-Action Model with Open-World Generalization
In order for robots to be useful, they must perform practically relevant tasks in the real world, outside of the lab. While vision-language-action (VLA) models have demonstrated impressive results for end-to-end robot control, it remains an open question how far such models can generalize in the wild. We describe pi_{0.5}, a new model based on pi_{0} that uses co-training on heterogeneous tasks to enable broad generalization. pi_{0.5}\ uses data from multiple robots, high-level semantic prediction, web data, and other sources to enable broadly generalizable real-world robotic manipulation. Our system uses a combination of co-training and hybrid multi-modal examples that combine image observations, language commands, object detections, semantic subtask prediction, and low-level actions. Our experiments show that this kind of knowledge transfer is essential for effective generalization, and we demonstrate for the first time that an end-to-end learning-enabled robotic system can perform long-horizon and dexterous manipulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.
Human2Robot: Learning Robot Actions from Paired Human-Robot Videos
Distilling knowledge from human demonstrations is a promising way for robots to learn and act. Existing work often overlooks the differences between humans and robots, producing unsatisfactory results. In this paper, we study how perfectly aligned human-robot pairs benefit robot learning. Capitalizing on VR-based teleportation, we introduce H\&R, a third-person dataset with 2,600 episodes, each of which captures the fine-grained correspondence between human hand and robot gripper. Inspired by the recent success of diffusion models, we introduce Human2Robot, an end-to-end diffusion framework that formulates learning from human demonstration as a generative task. Human2Robot fully explores temporal dynamics in human videos to generate robot videos and predict actions at the same time. Through comprehensive evaluations of 4 carefully selected tasks in real-world settings, we demonstrate that Human2Robot can not only generate high-quality robot videos but also excels in seen tasks and generalizing to different positions, unseen appearances, novel instances, and even new backgrounds and task types.
Robots Learn Increasingly Complex Tasks with Intrinsic Motivation and Automatic Curriculum Learning
Multi-task learning by robots poses the challenge of the domain knowledge: complexity of tasks, complexity of the actions required, relationship between tasks for transfer learning. We demonstrate that this domain knowledge can be learned to address the challenges in life-long learning. Specifically, the hierarchy between tasks of various complexities is key to infer a curriculum from simple to composite tasks. We propose a framework for robots to learn sequences of actions of unbounded complexity in order to achieve multiple control tasks of various complexity. Our hierarchical reinforcement learning framework, named SGIM-SAHT, offers a new direction of research, and tries to unify partial implementations on robot arms and mobile robots. We outline our contributions to enable robots to map multiple control tasks to sequences of actions: representations of task dependencies, an intrinsically motivated exploration to learn task hierarchies, and active imitation learning. While learning the hierarchy of tasks, it infers its curriculum by deciding which tasks to explore first, how to transfer knowledge, and when, how and whom to imitate.
MotionTrans: Human VR Data Enable Motion-Level Learning for Robotic Manipulation Policies
Scaling real robot data is a key bottleneck in imitation learning, leading to the use of auxiliary data for policy training. While other aspects of robotic manipulation such as image or language understanding may be learned from internet-based datasets, acquiring motion knowledge remains challenging. Human data, with its rich diversity of manipulation behaviors, offers a valuable resource for this purpose. While previous works show that using human data can bring benefits, such as improving robustness and training efficiency, it remains unclear whether it can realize its greatest advantage: enabling robot policies to directly learn new motions for task completion. In this paper, we systematically explore this potential through multi-task human-robot cotraining. We introduce MotionTrans, a framework that includes a data collection system, a human data transformation pipeline, and a weighted cotraining strategy. By cotraining 30 human-robot tasks simultaneously, we direcly transfer motions of 13 tasks from human data to deployable end-to-end robot policies. Notably, 9 tasks achieve non-trivial success rates in zero-shot manner. MotionTrans also significantly enhances pretraining-finetuning performance (+40% success rate). Through ablation study, we also identify key factors for successful motion learning: cotraining with robot data and broad task-related motion coverage. These findings unlock the potential of motion-level learning from human data, offering insights into its effective use for training robotic manipulation policies. All data, code, and model weights are open-sourced https://motiontrans.github.io/.
HRT1: One-Shot Human-to-Robot Trajectory Transfer for Mobile Manipulation
We introduce a novel system for human-to-robot trajectory transfer that enables robots to manipulate objects by learning from human demonstration videos. The system consists of four modules. The first module is a data collection module that is designed to collect human demonstration videos from the point of view of a robot using an AR headset. The second module is a video understanding module that detects objects and extracts 3D human-hand trajectories from demonstration videos. The third module transfers a human-hand trajectory into a reference trajectory of a robot end-effector in 3D space. The last module utilizes a trajectory optimization algorithm to solve a trajectory in the robot configuration space that can follow the end-effector trajectory transferred from the human demonstration. Consequently, these modules enable a robot to watch a human demonstration video once and then repeat the same mobile manipulation task in different environments, even when objects are placed differently from the demonstrations. Experiments of different manipulation tasks are conducted on a mobile manipulator to verify the effectiveness of our system
Knowledge Transfer Across Modalities with Natural Language Supervision
We present a way to learn novel concepts by only using their textual description. We call this method Knowledge Transfer. Similarly to human perception, we leverage cross-modal interaction to introduce new concepts. We hypothesize that in a pre-trained visual encoder there are enough low-level features already learned (e.g. shape, appearance, color) that can be used to describe previously unknown high-level concepts. Provided with a textual description of the novel concept, our method works by aligning the known low-level features of the visual encoder to its high-level textual description. We show that Knowledge Transfer can successfully introduce novel concepts in multimodal models, in a very efficient manner, by only requiring a single description of the target concept. Our approach is compatible with both separate textual and visual encoders (e.g. CLIP) and shared parameters across modalities. We also show that, following the same principle, Knowledge Transfer can improve concepts already known by the model. Leveraging Knowledge Transfer we improve zero-shot performance across different tasks such as classification, segmentation, image-text retrieval, and captioning.
RT-1: Robotics Transformer for Real-World Control at Scale
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer1.github.io
Diff-Transfer: Model-based Robotic Manipulation Skill Transfer via Differentiable Physics Simulation
The capability to transfer mastered skills to accomplish a range of similar yet novel tasks is crucial for intelligent robots. In this work, we introduce Diff-Transfer, a novel framework leveraging differentiable physics simulation to efficiently transfer robotic skills. Specifically, Diff-Transfer discovers a feasible path within the task space that brings the source task to the target task. At each pair of adjacent points along this task path, which is two sub-tasks, Diff-Transfer adapts known actions from one sub-task to tackle the other sub-task successfully. The adaptation is guided by the gradient information from differentiable physics simulations. We propose a novel path-planning method to generate sub-tasks, leveraging Q-learning with a task-level state and reward. We implement our framework in simulation experiments and execute four challenging transfer tasks on robotic manipulation, demonstrating the efficacy of Diff-Transfer through comprehensive experiments. Supplementary and Videos are on the website https://sites.google.com/view/difftransfer
Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer Learning to Discover Task Hierarchy
In open-ended continuous environments, robots need to learn multiple parameterised control tasks in hierarchical reinforcement learning. We hypothesise that the most complex tasks can be learned more easily by transferring knowledge from simpler tasks, and faster by adapting the complexity of the actions to the task. We propose a task-oriented representation of complex actions, called procedures, to learn online task relationships and unbounded sequences of action primitives to control the different observables of the environment. Combining both goal-babbling with imitation learning, and active learning with transfer of knowledge based on intrinsic motivation, our algorithm self-organises its learning process. It chooses at any given time a task to focus on; and what, how, when and from whom to transfer knowledge. We show with a simulation and a real industrial robot arm, in cross-task and cross-learner transfer settings, that task composition is key to tackle highly complex tasks. Task decomposition is also efficiently transferred across different embodied learners and by active imitation, where the robot requests just a small amount of demonstrations and the adequate type of information. The robot learns and exploits task dependencies so as to learn tasks of every complexity.
Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs
Safety limitations in service robotics across various industries have raised significant concerns about the need for robust mechanisms ensuring that robots adhere to safe practices, thereby preventing actions that might harm humans or cause property damage. Despite advances, including the integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), challenges in ensuring consistent safety in autonomous robot actions persist. In this paper, we propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs) to enhance the safety framework for service robots. ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses. These responses are subsequently validated by EKGs, which provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols, thereby promoting safer operational practices in varied contexts. Our experimental setup involved diverse real-world tasks, where robots equipped with our framework demonstrated significantly higher compliance with safety standards compared to traditional methods. This integration fosters secure human-robot interactions and positions our methodology at the forefront of AI-driven safety innovations in service robotics.
Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment
With the rapid growth of computing powers and recent advances in deep learning, we have witnessed impressive demonstrations of novel robot capabilities in research settings. Nonetheless, these learning systems exhibit brittle generalization and require excessive training data for practical tasks. To harness the capabilities of state-of-the-art robot learning models while embracing their imperfections, we present Sirius, a principled framework for humans and robots to collaborate through a division of work. In this framework, partially autonomous robots are tasked with handling a major portion of decision-making where they work reliably; meanwhile, human operators monitor the process and intervene in challenging situations. Such a human-robot team ensures safe deployments in complex tasks. Further, we introduce a new learning algorithm to improve the policy's performance on the data collected from the task executions. The core idea is re-weighing training samples with approximated human trust and optimizing the policies with weighted behavioral cloning. We evaluate Sirius in simulation and on real hardware, showing that Sirius consistently outperforms baselines over a collection of contact-rich manipulation tasks, achieving an 8% boost in simulation and 27% on real hardware than the state-of-the-art methods in policy success rate, with twice faster convergence and 85% memory size reduction. Videos and more details are available at https://ut-austin-rpl.github.io/sirius/
Language-Conditioned Imitation Learning for Robot Manipulation Tasks
Imitation learning is a popular approach for teaching motor skills to robots. However, most approaches focus on extracting policy parameters from execution traces alone (i.e., motion trajectories and perceptual data). No adequate communication channel exists between the human expert and the robot to describe critical aspects of the task, such as the properties of the target object or the intended shape of the motion. Motivated by insights into the human teaching process, we introduce a method for incorporating unstructured natural language into imitation learning. At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent (e.g., "go to the large green bowl"). The training process then interrelates these two modalities to encode the correlations between language, perception, and motion. The resulting language-conditioned visuomotor policies can be conditioned at runtime on new human commands and instructions, which allows for more fine-grained control over the trained policies while also reducing situational ambiguity. We demonstrate in a set of simulation experiments how our approach can learn language-conditioned manipulation policies for a seven-degree-of-freedom robot arm and compare the results to a variety of alternative methods.
Towards Generalist Robots: A Promising Paradigm via Generative Simulation
This document serves as a position paper that outlines the authors' vision for a potential pathway towards generalist robots. The purpose of this document is to share the excitement of the authors with the community and highlight a promising research direction in robotics and AI. The authors believe the proposed paradigm is a feasible path towards accomplishing the long-standing goal of robotics research: deploying robots, or embodied AI agents more broadly, in various non-factory real-world settings to perform diverse tasks. This document presents a specific idea for mining knowledge in the latest large-scale foundation models for robotics research. Instead of directly using or adapting these models to produce low-level policies and actions, it advocates for a fully automated generative pipeline (termed as generative simulation), which uses these models to generate diversified tasks, scenes and training supervisions at scale, thereby scaling up low-level skill learning and ultimately leading to a foundation model for robotics that empowers generalist robots. The authors are actively pursuing this direction, but in the meantime, they recognize that the ambitious goal of building generalist robots with large-scale policy training demands significant resources such as computing power and hardware, and research groups in academia alone may face severe resource constraints in implementing the entire vision. Therefore, the authors believe sharing their thoughts at this early stage could foster discussions, attract interest towards the proposed pathway and related topics from industry groups, and potentially spur significant technical advancements in the field.
RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation
We present RoboGen, a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation. RoboGen leverages the latest advancements in foundation and generative models. Instead of directly using or adapting these models to produce policies or low-level actions, we advocate for a generative scheme, which uses these models to automatically generate diversified tasks, scenes, and training supervisions, thereby scaling up robotic skill learning with minimal human supervision. Our approach equips a robotic agent with a self-guided propose-generate-learn cycle: the agent first proposes interesting tasks and skills to develop, and then generates corresponding simulation environments by populating pertinent objects and assets with proper spatial configurations. Afterwards, the agent decomposes the proposed high-level task into sub-tasks, selects the optimal learning approach (reinforcement learning, motion planning, or trajectory optimization), generates required training supervision, and then learns policies to acquire the proposed skill. Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics. Our fully generative pipeline can be queried repeatedly, producing an endless stream of skill demonstrations associated with diverse tasks and environments.
Learning Generalizable Robot Policy with Human Demonstration Video as a Prompt
Recent robot learning methods commonly rely on imitation learning from massive robotic dataset collected with teleoperation. When facing a new task, such methods generally require collecting a set of new teleoperation data and finetuning the policy. Furthermore, the teleoperation data collection pipeline is also tedious and expensive. Instead, human is able to efficiently learn new tasks by just watching others do. In this paper, we introduce a novel two-stage framework that utilizes human demonstrations to learn a generalizable robot policy. Such policy can directly take human demonstration video as a prompt and perform new tasks without any new teleoperation data and model finetuning at all. In the first stage, we train video generation model that captures a joint representation for both the human and robot demonstration video data using cross-prediction. In the second stage, we fuse the learned representation with a shared action space between human and robot using a novel prototypical contrastive loss. Empirical evaluations on real-world dexterous manipulation tasks show the effectiveness and generalization capabilities of our proposed method.
Crossing the Human-Robot Embodiment Gap with Sim-to-Real RL using One Human Demonstration
Teaching robots dexterous manipulation skills often requires collecting hundreds of demonstrations using wearables or teleoperation, a process that is challenging to scale. Videos of human-object interactions are easier to collect and scale, but leveraging them directly for robot learning is difficult due to the lack of explicit action labels from videos and morphological differences between robot and human hands. We propose Human2Sim2Robot, a novel real-to-sim-to-real framework for training dexterous manipulation policies using only one RGB-D video of a human demonstrating a task. Our method utilizes reinforcement learning (RL) in simulation to cross the human-robot embodiment gap without relying on wearables, teleoperation, or large-scale data collection typically necessary for imitation learning methods. From the demonstration, we extract two task-specific components: (1) the object pose trajectory to define an object-centric, embodiment-agnostic reward function, and (2) the pre-manipulation hand pose to initialize and guide exploration during RL training. We found that these two components are highly effective for learning the desired task, eliminating the need for task-specific reward shaping and tuning. We demonstrate that Human2Sim2Robot outperforms object-aware open-loop trajectory replay by 55% and imitation learning with data augmentation by 68% across grasping, non-prehensile manipulation, and multi-step tasks. Project Site: https://human2sim2robot.github.io
Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale
LLMs can now act as autonomous agents that interact with digital environments and complete specific objectives (e.g., arranging an online meeting). However, accuracy is still far from satisfactory, partly due to a lack of large-scale, direct demonstrations for digital tasks. Obtaining supervised data from humans is costly, and automatic data collection through exploration or reinforcement learning relies on complex environmental and content setup, resulting in datasets that lack comprehensive coverage of various scenarios. On the other hand, there is abundant knowledge that may indirectly assist task completion, such as online tutorials that were created for human consumption. In this work, we present Synatra, an approach that effectively transforms this indirect knowledge into direct supervision at scale. We define different types of indirect knowledge, and carefully study the available sources to obtain it, methods to encode the structure of direct demonstrations, and finally methods to transform indirect knowledge into direct demonstrations. We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web. In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.
H-RDT: Human Manipulation Enhanced Bimanual Robotic Manipulation
Imitation learning for robotic manipulation faces a fundamental challenge: the scarcity of large-scale, high-quality robot demonstration data. Recent robotic foundation models often pre-train on cross-embodiment robot datasets to increase data scale, while they face significant limitations as the diverse morphologies and action spaces across different robot embodiments make unified training challenging. In this paper, we present H-RDT (Human to Robotics Diffusion Transformer), a novel approach that leverages human manipulation data to enhance robot manipulation capabilities. Our key insight is that large-scale egocentric human manipulation videos with paired 3D hand pose annotations provide rich behavioral priors that capture natural manipulation strategies and can benefit robotic policy learning. We introduce a two-stage training paradigm: (1) pre-training on large-scale egocentric human manipulation data, and (2) cross-embodiment fine-tuning on robot-specific data with modular action encoders and decoders. Built on a diffusion transformer architecture with 2B parameters, H-RDT uses flow matching to model complex action distributions. Extensive evaluations encompassing both simulation and real-world experiments, single-task and multitask scenarios, as well as few-shot learning and robustness assessments, demonstrate that H-RDT outperforms training from scratch and existing state-of-the-art methods, including Pi0 and RDT, achieving significant improvements of 13.9% and 40.5% over training from scratch in simulation and real-world experiments, respectively. The results validate our core hypothesis that human manipulation data can serve as a powerful foundation for learning bimanual robotic manipulation policies.
Diffusion Model as Representation Learner
Diffusion Probabilistic Models (DPMs) have recently demonstrated impressive results on various generative tasks.Despite its promises, the learned representations of pre-trained DPMs, however, have not been fully understood. In this paper, we conduct an in-depth investigation of the representation power of DPMs, and propose a novel knowledge transfer method that leverages the knowledge acquired by generative DPMs for recognition tasks. Our study begins by examining the feature space of DPMs, revealing that DPMs are inherently denoising autoencoders that balance the representation learning with regularizing model capacity. To this end, we introduce a novel knowledge transfer paradigm named RepFusion. Our paradigm extracts representations at different time steps from off-the-shelf DPMs and dynamically employs them as supervision for student networks, in which the optimal time is determined through reinforcement learning. We evaluate our approach on several image classification, semantic segmentation, and landmark detection benchmarks, and demonstrate that it outperforms state-of-the-art methods. Our results uncover the potential of DPMs as a powerful tool for representation learning and provide insights into the usefulness of generative models beyond sample generation. The code is available at https://github.com/Adamdad/Repfusion.
When Prolog meets generative models: a new approach for managing knowledge and planning in robotic applications
In this paper, we propose a robot oriented knowledge management system based on the use of the Prolog language. Our framework hinges on a special organisation of knowledge base that enables: 1. its efficient population from natural language texts using semi-automated procedures based on Large Language Models, 2. the bumpless generation of temporal parallel plans for multi-robot systems through a sequence of transformations, 3. the automated translation of the plan into an executable formalism (the behaviour trees). The framework is supported by a set of open source tools and is shown on a realistic application.
LLM-Neo: Parameter Efficient Knowledge Distillation for Large Language Models
In this paper, we propose a novel LLM-Neo framework that efficiently transfers knowledge from a large language model (LLM) teacher to a compact student. Initially, we revisit the knowledge distillation (KD) and low-rank adaption (LoRA), and argue that they share the same paradigm. Inspired by this observation, we explore the strategy that combines LoRA and KD to enhance the efficiency of knowledge transfer. We first summarize some guidelines for this design and further develop the LLM-Neo. Experimental results on compressing Llama 2 and Llama 3 show that LLM-Neo outperforms various baselines. Further analysis demonstrates the robustness of the proposed LLM-Neo on variants of LoRA. The trained models have been available at https://huggingface.co/collections/yang31210999/llm-neo-66e3c882f5579b829ff57eba{this repository}.
Large Language Models as Zero-Shot Human Models for Human-Robot Interaction
Human models play a crucial role in human-robot interaction (HRI), enabling robots to consider the impact of their actions on people and plan their behavior accordingly. However, crafting good human models is challenging; capturing context-dependent human behavior requires significant prior knowledge and/or large amounts of interaction data, both of which are difficult to obtain. In this work, we explore the potential of large-language models (LLMs) -- which have consumed vast amounts of human-generated text data -- to act as zero-shot human models for HRI. Our experiments on three social datasets yield promising results; the LLMs are able to achieve performance comparable to purpose-built models. That said, we also discuss current limitations, such as sensitivity to prompts and spatial/numerical reasoning mishaps. Based on our findings, we demonstrate how LLM-based human models can be integrated into a social robot's planning process and applied in HRI scenarios. Specifically, we present one case study on a simulated trust-based table-clearing task and replicate past results that relied on custom models. Next, we conduct a new robot utensil-passing experiment (n = 65) where preliminary results show that planning with a LLM-based human model can achieve gains over a basic myopic plan. In summary, our results show that LLMs offer a promising (but incomplete) approach to human modeling for HRI.
Distilling and Retrieving Generalizable Knowledge for Robot Manipulation via Language Corrections
Today's robot policies exhibit subpar performance when faced with the challenge of generalizing to novel environments. Human corrective feedback is a crucial form of guidance to enable such generalization. However, adapting to and learning from online human corrections is a non-trivial endeavor: not only do robots need to remember human feedback over time to retrieve the right information in new settings and reduce the intervention rate, but also they would need to be able to respond to feedback that can be arbitrary corrections about high-level human preferences to low-level adjustments to skill parameters. In this work, we present Distillation and Retrieval of Online Corrections (DROC), a large language model (LLM)-based system that can respond to arbitrary forms of language feedback, distill generalizable knowledge from corrections, and retrieve relevant past experiences based on textual and visual similarity for improving performance in novel settings. DROC is able to respond to a sequence of online language corrections that address failures in both high-level task plans and low-level skill primitives. We demonstrate that DROC effectively distills the relevant information from the sequence of online corrections in a knowledge base and retrieves that knowledge in settings with new task or object instances. DROC outperforms other techniques that directly generate robot code via LLMs by using only half of the total number of corrections needed in the first round and requires little to no corrections after two iterations. We show further results, videos, prompts and code on https://sites.google.com/stanford.edu/droc .
Is Diversity All You Need for Scalable Robotic Manipulation?
Data scaling has driven remarkable success in foundation models for Natural Language Processing (NLP) and Computer Vision (CV), yet the principles of effective data scaling in robotic manipulation remain insufficiently understood. In this work, we investigate the nuanced role of data diversity in robot learning by examining three critical dimensions-task (what to do), embodiment (which robot to use), and expert (who demonstrates)-challenging the conventional intuition of "more diverse is better". Throughout extensive experiments on various robot platforms, we reveal that (1) task diversity proves more critical than per-task demonstration quantity, benefiting transfer from diverse pre-training tasks to novel downstream scenarios; (2) multi-embodiment pre-training data is optional for cross-embodiment transfer-models trained on high-quality single-embodiment data can efficiently transfer to different platforms, showing more desirable scaling property during fine-tuning than multi-embodiment pre-trained models; and (3) expert diversity, arising from individual operational preferences and stochastic variations in human demonstrations, can be confounding to policy learning, with velocity multimodality emerging as a key contributing factor. Based on this insight, we propose a distribution debiasing method to mitigate velocity ambiguity, the yielding GO-1-Pro achieves substantial performance gains of 15%, equivalent to using 2.5 times pre-training data. Collectively, these findings provide new perspectives and offer practical guidance on how to scale robotic manipulation datasets effectively.
Transferring Knowledge from Vision to Language: How to Achieve it and how to Measure it?
Large language models are known to suffer from the hallucination problem in that they are prone to output statements that are false or inconsistent, indicating a lack of knowledge. A proposed solution to this is to provide the model with additional data modalities that complements the knowledge obtained through text. We investigate the use of visual data to complement the knowledge of large language models by proposing a method for evaluating visual knowledge transfer to text for uni- or multimodal language models. The method is based on two steps, 1) a novel task querying for knowledge of memory colors, i.e. typical colors of well-known objects, and 2) filtering of model training data to clearly separate knowledge contributions. Additionally, we introduce a model architecture that involves a visual imagination step and evaluate it with our proposed method. We find that our method can successfully be used to measure visual knowledge transfer capabilities in models and that our novel model architecture shows promising results for leveraging multimodal knowledge in a unimodal setting.
RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)
Effective collaboration of dual-arm robots and their tool use capabilities are increasingly important areas in the advancement of robotics. These skills play a significant role in expanding robots' ability to operate in diverse real-world environments. However, progress is impeded by the scarcity of specialized training data. This paper introduces RoboTwin, a novel benchmark dataset combining real-world teleoperated data with synthetic data from digital twins, designed for dual-arm robotic scenarios. Using the COBOT Magic platform, we have collected diverse data on tool usage and human-robot interaction. We present a innovative approach to creating digital twins using AI-generated content, transforming 2D images into detailed 3D models. Furthermore, we utilize large language models to generate expert-level training data and task-specific pose sequences oriented toward functionality. Our key contributions are: 1) the RoboTwin benchmark dataset, 2) an efficient real-to-simulation pipeline, and 3) the use of language models for automatic expert-level data generation. These advancements are designed to address the shortage of robotic training data, potentially accelerating the development of more capable and versatile robotic systems for a wide range of real-world applications. The project page is available at https://robotwin-benchmark.github.io/early-version/
Learning a Thousand Tasks in a Day
Humans are remarkably efficient at learning tasks from demonstrations, but today's imitation learning methods for robot manipulation often require hundreds or thousands of demonstrations per task. We investigate two fundamental priors for improving learning efficiency: decomposing manipulation trajectories into sequential alignment and interaction phases, and retrieval-based generalisation. Through 3,450 real-world rollouts, we systematically study this decomposition. We compare different design choices for the alignment and interaction phases, and examine generalisation and scaling trends relative to today's dominant paradigm of behavioural cloning with a single-phase monolithic policy. In the few-demonstrations-per-task regime (<10 demonstrations), decomposition achieves an order of magnitude improvement in data efficiency over single-phase learning, with retrieval consistently outperforming behavioural cloning for both alignment and interaction. Building on these insights, we develop Multi-Task Trajectory Transfer (MT3), an imitation learning method based on decomposition and retrieval. MT3 learns everyday manipulation tasks from as little as a single demonstration each, whilst also generalising to novel object instances. This efficiency enables us to teach a robot 1,000 distinct everyday tasks in under 24 hours of human demonstrator time. Through 2,200 additional real-world rollouts, we reveal MT3's capabilities and limitations across different task families. Videos of our experiments can be found on at https://www.robot-learning.uk/learning-1000-tasks.
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
Large language models can encode a wealth of semantic knowledge about the world. Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language. However, a significant weakness of language models is that they lack real-world experience, which makes it difficult to leverage them for decision making within a given embodiment. For example, asking a language model to describe how to clean a spill might result in a reasonable narrative, but it may not be applicable to a particular agent, such as a robot, that needs to perform this task in a particular environment. We propose to provide real-world grounding by means of pretrained skills, which are used to constrain the model to propose natural language actions that are both feasible and contextually appropriate. The robot can act as the language model's "hands and eyes," while the language model supplies high-level semantic knowledge about the task. We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions, while value functions associated with these skills provide the grounding necessary to connect this knowledge to a particular physical environment. We evaluate our method on a number of real-world robotic tasks, where we show the need for real-world grounding and that this approach is capable of completing long-horizon, abstract, natural language instructions on a mobile manipulator. The project's website and the video can be found at https://say-can.github.io/.
Visual IRL for Human-Like Robotic Manipulation
We present a novel method for collaborative robots (cobots) to learn manipulation tasks and perform them in a human-like manner. Our method falls under the learn-from-observation (LfO) paradigm, where robots learn to perform tasks by observing human actions, which facilitates quicker integration into industrial settings compared to programming from scratch. We introduce Visual IRL that uses the RGB-D keypoints in each frame of the observed human task performance directly as state features, which are input to inverse reinforcement learning (IRL). The inversely learned reward function, which maps keypoints to reward values, is transferred from the human to the cobot using a novel neuro-symbolic dynamics model, which maps human kinematics to the cobot arm. This model allows similar end-effector positioning while minimizing joint adjustments, aiming to preserve the natural dynamics of human motion in robotic manipulation. In contrast with previous techniques that focus on end-effector placement only, our method maps multiple joint angles of the human arm to the corresponding cobot joints. Moreover, it uses an inverse kinematics model to then minimally adjust the joint angles, for accurate end-effector positioning. We evaluate the performance of this approach on two different realistic manipulation tasks. The first task is produce processing, which involves picking, inspecting, and placing onions based on whether they are blemished. The second task is liquid pouring, where the robot picks up bottles, pours the contents into designated containers, and disposes of the empty bottles. Our results demonstrate advances in human-like robotic manipulation, leading to more human-robot compatibility in manufacturing applications.
Learning and Retrieval from Prior Data for Skill-based Imitation Learning
Imitation learning offers a promising path for robots to learn general-purpose behaviors, but traditionally has exhibited limited scalability due to high data supervision requirements and brittle generalization. Inspired by recent advances in multi-task imitation learning, we investigate the use of prior data from previous tasks to facilitate learning novel tasks in a robust, data-efficient manner. To make effective use of the prior data, the robot must internalize knowledge from past experiences and contextualize this knowledge in novel tasks. To that end, we develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data and subsequently learns a policy for the target task that invokes these learned skills. We identify several key design choices that significantly improve performance on novel tasks, namely representation learning objectives to enable more predictable skill representations and a retrieval-based data augmentation mechanism to increase the scope of supervision for policy training. On a collection of simulated and real-world manipulation domains, we demonstrate that our method significantly outperforms existing imitation learning and offline reinforcement learning approaches. Videos and code are available at https://ut-austin-rpl.github.io/sailor
Robot Learning: A Tutorial
Robot learning is at an inflection point, driven by rapid advancements in machine learning and the growing availability of large-scale robotics data. This shift from classical, model-based methods to data-driven, learning-based paradigms is unlocking unprecedented capabilities in autonomous systems. This tutorial navigates the landscape of modern robot learning, charting a course from the foundational principles of Reinforcement Learning and Behavioral Cloning to generalist, language-conditioned models capable of operating across diverse tasks and even robot embodiments. This work is intended as a guide for researchers and practitioners, and our goal is to equip the reader with the conceptual understanding and practical tools necessary to contribute to developments in robot learning, with ready-to-use examples implemented in lerobot.
Relational Knowledge Distillation
Knowledge distillation aims at transferring knowledge acquired in one model (a teacher) to another model (a student) that is typically smaller. Previous approaches can be expressed as a form of training the student to mimic output activations of individual data examples represented by the teacher. We introduce a novel approach, dubbed relational knowledge distillation (RKD), that transfers mutual relations of data examples instead. For concrete realizations of RKD, we propose distance-wise and angle-wise distillation losses that penalize structural differences in relations. Experiments conducted on different tasks show that the proposed method improves educated student models with a significant margin. In particular for metric learning, it allows students to outperform their teachers' performance, achieving the state of the arts on standard benchmark datasets.
Knowledge Distillation via Token-level Relationship Graph
Knowledge distillation is a powerful technique for transferring knowledge from a pre-trained teacher model to a student model. However, the true potential of knowledge transfer has not been fully explored. Existing approaches primarily focus on distilling individual information or instance-level relationships, overlooking the valuable information embedded in token-level relationships, which may be particularly affected by the long-tail effects. To address the above limitations, we propose a novel method called Knowledge Distillation with Token-level Relationship Graph (TRG) that leverages the token-wise relational knowledge to enhance the performance of knowledge distillation. By employing TRG, the student model can effectively emulate higher-level semantic information from the teacher model, resulting in improved distillation results. To further enhance the learning process, we introduce a token-wise contextual loss called contextual loss, which encourages the student model to capture the inner-instance semantic contextual of the teacher model. We conduct experiments to evaluate the effectiveness of the proposed method against several state-of-the-art approaches. Empirical results demonstrate the superiority of TRG across various visual classification tasks, including those involving imbalanced data. Our method consistently outperforms the existing baselines, establishing a new state-of-the-art performance in the field of knowledge distillation.
CoinRobot: Generalized End-to-end Robotic Learning for Physical Intelligence
Physical intelligence holds immense promise for advancing embodied intelligence, enabling robots to acquire complex behaviors from demonstrations. However, achieving generalization and transfer across diverse robotic platforms and environments requires careful design of model architectures, training strategies, and data diversity. Meanwhile existing systems often struggle with scalability, adaptability to heterogeneous hardware, and objective evaluation in real-world settings. We present a generalized end-to-end robotic learning framework designed to bridge this gap. Our framework introduces a unified architecture that supports cross-platform adaptability, enabling seamless deployment across industrial-grade robots, collaborative arms, and novel embodiments without task-specific modifications. By integrating multi-task learning with streamlined network designs, it achieves more robust performance than conventional approaches, while maintaining compatibility with varying sensor configurations and action spaces. We validate our framework through extensive experiments on seven manipulation tasks. Notably, Diffusion-based models trained in our framework demonstrated superior performance and generalizability compared to the LeRobot framework, achieving performance improvements across diverse robotic platforms and environmental conditions.
Noise May Contain Transferable Knowledge: Understanding Semi-supervised Heterogeneous Domain Adaptation from an Empirical Perspective
Semi-supervised heterogeneous domain adaptation (SHDA) addresses learning across domains with distinct feature representations and distributions, where source samples are labeled while most target samples are unlabeled, with only a small fraction labeled. Moreover, there is no one-to-one correspondence between source and target samples. Although various SHDA methods have been developed to tackle this problem, the nature of the knowledge transferred across heterogeneous domains remains unclear. This paper delves into this question from an empirical perspective. We conduct extensive experiments on about 330 SHDA tasks, employing two supervised learning methods and seven representative SHDA methods. Surprisingly, our observations indicate that both the category and feature information of source samples do not significantly impact the performance of the target domain. Additionally, noise drawn from simple distributions, when used as source samples, may contain transferable knowledge. Based on this insight, we perform a series of experiments to uncover the underlying principles of transferable knowledge in SHDA. Specifically, we design a unified Knowledge Transfer Framework (KTF) for SHDA. Based on the KTF, we find that the transferable knowledge in SHDA primarily stems from the transferability and discriminability of the source domain. Consequently, ensuring those properties in source samples, regardless of their origin (e.g., image, text, noise), can enhance the effectiveness of knowledge transfer in SHDA tasks. The codes and datasets are available at https://github.com/yyyaoyuan/SHDA.
Building Knowledge from Interactions: An LLM-Based Architecture for Adaptive Tutoring and Social Reasoning
Integrating robotics into everyday scenarios like tutoring or physical training requires robots capable of adaptive, socially engaging, and goal-oriented interactions. While Large Language Models show promise in human-like communication, their standalone use is hindered by memory constraints and contextual incoherence. This work presents a multimodal, cognitively inspired framework that enhances LLM-based autonomous decision-making in social and task-oriented Human-Robot Interaction. Specifically, we develop an LLM-based agent for a robot trainer, balancing social conversation with task guidance and goal-driven motivation. To further enhance autonomy and personalization, we introduce a memory system for selecting, storing and retrieving experiences, facilitating generalized reasoning based on knowledge built across different interactions. A preliminary HRI user study and offline experiments with a synthetic dataset validate our approach, demonstrating the system's ability to manage complex interactions, autonomously drive training tasks, and build and retrieve contextual memories, advancing socially intelligent robotics.
Bridging the Sim-to-Real Gap from the Information Bottleneck Perspective
Reinforcement Learning (RL) has recently achieved remarkable success in robotic control. However, most works in RL operate in simulated environments where privileged knowledge (e.g., dynamics, surroundings, terrains) is readily available. Conversely, in real-world scenarios, robot agents usually rely solely on local states (e.g., proprioceptive feedback of robot joints) to select actions, leading to a significant sim-to-real gap. Existing methods address this gap by either gradually reducing the reliance on privileged knowledge or performing a two-stage policy imitation. However, we argue that these methods are limited in their ability to fully leverage the available privileged knowledge, resulting in suboptimal performance. In this paper, we formulate the sim-to-real gap as an information bottleneck problem and therefore propose a novel privileged knowledge distillation method called the Historical Information Bottleneck (HIB). In particular, HIB learns a privileged knowledge representation from historical trajectories by capturing the underlying changeable dynamic information. Theoretical analysis shows that the learned privileged knowledge representation helps reduce the value discrepancy between the oracle and learned policies. Empirical experiments on both simulated and real-world tasks demonstrate that HIB yields improved generalizability compared to previous methods. Videos of real-world experiments are available at https://sites.google.com/view/history-ib .
Towards a Unified Understanding of Robot Manipulation: A Comprehensive Survey
Embodied intelligence has witnessed remarkable progress in recent years, driven by advances in computer vision, natural language processing, and the rise of large-scale multimodal models. Among its core challenges, robot manipulation stands out as a fundamental yet intricate problem, requiring the seamless integration of perception, planning, and control to enable interaction within diverse and unstructured environments. This survey presents a comprehensive overview of robotic manipulation, encompassing foundational background, task-organized benchmarks and datasets, and a unified taxonomy of existing methods. We extend the classical division between high-level planning and low-level control by broadening high-level planning to include language, code, motion, affordance, and 3D representations, while introducing a new taxonomy of low-level learning-based control grounded in training paradigms such as input modeling, latent learning, and policy learning. Furthermore, we provide the first dedicated taxonomy of key bottlenecks, focusing on data collection, utilization, and generalization, and conclude with an extensive review of real-world applications. Compared with prior surveys, our work offers both a broader scope and deeper insight, serving as an accessible roadmap for newcomers and a structured reference for experienced researchers. All related resources, including research papers, open-source datasets, and projects, are curated for the community at https://github.com/BaiShuanghao/Awesome-Robotics-Manipulation.
Lion: Adversarial Distillation of Closed-Source Large Language Model
The practice of transferring knowledge from a sophisticated, closed-source large language model (LLM) to a compact, open-source LLM has garnered considerable attention. Previous works have focused on a unidirectional knowledge distillation way by aligning the responses of the student model with those of the teacher model to a set of instructions. Nevertheless, they overlooked the possibility of incorporating any reciprocal "feedback"--identifying challenging instructions where the student model's performance falls short--to boost the student model's proficiency iteratively. To this end, we propose a novel adversarial distillation framework for a more efficient knowledge transfer. Leveraging the versatile role adaptability of LLMs, we prompt the closed-source model to identify "hard" instructions and generate new "hard" instructions for the student model, creating a three-stage adversarial loop of imitation, discrimination, and generation. By applying this adversarial framework, we successfully transfer knowledge from ChatGPT to a 7B student model (named Lion), achieving nearly 95% capability approximation using a mere 70k training data. We aspire that this proposed model may serve as the baseline to reflect the performance of ChatGPT, especially the open-source instruction-following language model baseline for our community.
One to rule them all: natural language to bind communication, perception and action
In recent years, research in the area of human-robot interaction has focused on developing robots capable of understanding complex human instructions and performing tasks in dynamic and diverse environments. These systems have a wide range of applications, from personal assistance to industrial robotics, emphasizing the importance of robots interacting flexibly, naturally and safely with humans. This paper presents an advanced architecture for robotic action planning that integrates communication, perception, and planning with Large Language Models (LLMs). Our system is designed to translate commands expressed in natural language into executable robot actions, incorporating environmental information and dynamically updating plans based on real-time feedback. The Planner Module is the core of the system where LLMs embedded in a modified ReAct framework are employed to interpret and carry out user commands. By leveraging their extensive pre-trained knowledge, LLMs can effectively process user requests without the need to introduce new knowledge on the changing environment. The modified ReAct framework further enhances the execution space by providing real-time environmental perception and the outcomes of physical actions. By combining robust and dynamic semantic map representations as graphs with control components and failure explanations, this architecture enhances a robot adaptability, task execution, and seamless collaboration with human users in shared and dynamic environments. Through the integration of continuous feedback loops with the environment the system can dynamically adjusts the plan to accommodate unexpected changes, optimizing the robot ability to perform tasks. Using a dataset of previous experience is possible to provide detailed feedback about the failure. Updating the LLMs context of the next iteration with suggestion on how to overcame the issue.
TEACh: Task-driven Embodied Agents that Chat
Robots operating in human spaces must be able to engage in natural language interaction with people, both understanding and executing instructions, and using conversation to resolve ambiguity and recover from mistakes. To study this, we introduce TEACh, a dataset of over 3,000 human--human, interactive dialogues to complete household tasks in simulation. A Commander with access to oracle information about a task communicates in natural language with a Follower. The Follower navigates through and interacts with the environment to complete tasks varying in complexity from "Make Coffee" to "Prepare Breakfast", asking questions and getting additional information from the Commander. We propose three benchmarks using TEACh to study embodied intelligence challenges, and we evaluate initial models' abilities in dialogue understanding, language grounding, and task execution.
GLOVER++: Unleashing the Potential of Affordance Learning from Human Behaviors for Robotic Manipulation
Learning manipulation skills from human demonstration videos offers a promising path toward generalizable and interpretable robotic intelligence-particularly through the lens of actionable affordances. However, transferring such knowledge remains challenging due to: 1) a lack of large-scale datasets with precise affordance annotations, and 2) insufficient exploration of affordances in diverse manipulation contexts. To address these gaps, we introduce HOVA-500K, a large-scale, affordance-annotated dataset comprising 500,000 images across 1,726 object categories and 675 actions. We also release a standardized benchmarking suite for multi-modal affordance reasoning. Built upon HOVA-500K, we present GLOVER++, a global-to-local affordance training framework that effectively transfers actionable affordance knowledge from human demonstrations to downstream open-vocabulary reasoning tasks. GLOVER++ achieves state-of-the-art results on the HOVA-500K benchmark and demonstrates strong generalization across diverse downstream robotic manipulation tasks. By explicitly modeling actionable affordances, GLOVER++ facilitates robust transfer across scenes, modalities, and tasks. We hope that HOVA-500K and the GLOVER++ framework will serve as valuable resources for bridging the gap between human demonstrations and robotic manipulation capabilities.
Agent Planning with World Knowledge Model
Recent endeavors towards directly using large language models (LLMs) as agent models to execute interactive planning tasks have shown commendable results. Despite their achievements, however, they still struggle with brainless trial-and-error in global planning and generating hallucinatory actions in local planning due to their poor understanding of the ''real'' physical world. Imitating humans' mental world knowledge model which provides global prior knowledge before the task and maintains local dynamic knowledge during the task, in this paper, we introduce parametric World Knowledge Model (WKM) to facilitate agent planning. Concretely, we steer the agent model to self-synthesize knowledge from both expert and sampled trajectories. Then we develop WKM, providing prior task knowledge to guide the global planning and dynamic state knowledge to assist the local planning. Experimental results on three complex real-world simulated datasets with three state-of-the-art open-source LLMs, Mistral-7B, Gemma-7B, and Llama-3-8B, demonstrate that our method can achieve superior performance compared to various strong baselines. Besides, we analyze to illustrate that our WKM can effectively alleviate the blind trial-and-error and hallucinatory action issues, providing strong support for the agent's understanding of the world. Other interesting findings include: 1) our instance-level task knowledge can generalize better to unseen tasks, 2) weak WKM can guide strong agent model planning, and 3) unified WKM training has promising potential for further development. Code will be available at https://github.com/zjunlp/WKM.
UniSkill: Imitating Human Videos via Cross-Embodiment Skill Representations
Mimicry is a fundamental learning mechanism in humans, enabling individuals to learn new tasks by observing and imitating experts. However, applying this ability to robots presents significant challenges due to the inherent differences between human and robot embodiments in both their visual appearance and physical capabilities. While previous methods bridge this gap using cross-embodiment datasets with shared scenes and tasks, collecting such aligned data between humans and robots at scale is not trivial. In this paper, we propose UniSkill, a novel framework that learns embodiment-agnostic skill representations from large-scale cross-embodiment video data without any labels, enabling skills extracted from human video prompts to effectively transfer to robot policies trained only on robot data. Our experiments in both simulation and real-world environments show that our cross-embodiment skills successfully guide robots in selecting appropriate actions, even with unseen video prompts. The project website can be found at: https://kimhanjung.github.io/UniSkill.
Fantastic Gains and Where to Find Them: On the Existence and Prospect of General Knowledge Transfer between Any Pretrained Model
Training deep networks requires various design decisions regarding for instance their architecture, data augmentation, or optimization. In this work, we find these training variations to result in networks learning unique feature sets from the data. Using public model libraries comprising thousands of models trained on canonical datasets like ImageNet, we observe that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other -- independent of overall performance. Given any arbitrary pairing of pretrained models and no external rankings (such as separate test sets, e.g. due to data privacy), we investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation -- a task made particularly difficult as additional knowledge can be contained in stronger, equiperformant or weaker models. Yet facilitating robust transfer in scenarios agnostic to pretrained model pairings would unlock auxiliary gains and knowledge fusion from any model repository without restrictions on model and problem specifics - including from weaker, lower-performance models. This work therefore provides an initial, in-depth exploration on the viability of such general-purpose knowledge transfer. Across large-scale experiments, we first reveal the shortcomings of standard knowledge distillation techniques, and then propose a much more general extension through data partitioning for successful transfer between nearly all pretrained models, which we show can also be done unsupervised. Finally, we assess both the scalability and impact of fundamental model properties on successful model-agnostic knowledge transfer.
Dexterous Teleoperation of 20-DoF ByteDexter Hand via Human Motion Retargeting
Replicating human--level dexterity remains a fundamental robotics challenge, requiring integrated solutions from mechatronic design to the control of high degree--of--freedom (DoF) robotic hands. While imitation learning shows promise in transferring human dexterity to robots, the efficacy of trained policies relies on the quality of human demonstration data. We bridge this gap with a hand--arm teleoperation system featuring: (1) a 20--DoF linkage--driven anthropomorphic robotic hand for biomimetic dexterity, and (2) an optimization--based motion retargeting for real--time, high--fidelity reproduction of intricate human hand motions and seamless hand--arm coordination. We validate the system via extensive empirical evaluations, including dexterous in-hand manipulation tasks and a long--horizon task requiring the organization of a cluttered makeup table randomly populated with nine objects. Experimental results demonstrate its intuitive teleoperation interface with real--time control and the ability to generate high--quality demonstration data. Please refer to the accompanying video for further details.
RaC: Robot Learning for Long-Horizon Tasks by Scaling Recovery and Correction
Modern paradigms for robot imitation train expressive policy architectures on large amounts of human demonstration data. Yet performance on contact-rich, deformable-object, and long-horizon tasks plateau far below perfect execution, even with thousands of expert demonstrations. This is due to the inefficiency of existing ``expert'' data collection procedures based on human teleoperation. To address this issue, we introduce RaC, a new phase of training on human-in-the-loop rollouts after imitation learning pre-training. In RaC, we fine-tune a robotic policy on human intervention trajectories that illustrate recovery and correction behaviors. Specifically, during a policy rollout, human operators intervene when failure appears imminent, first rewinding the robot back to a familiar, in-distribution state and then providing a corrective segment that completes the current sub-task. Training on this data composition expands the robotic skill repertoire to include retry and adaptation behaviors, which we show are crucial for boosting both efficiency and robustness on long-horizon tasks. Across three real-world bimanual control tasks: shirt hanging, airtight container lid sealing, takeout box packing, and a simulated assembly task, RaC outperforms the prior state-of-the-art using 10times less data collection time and samples. We also show that RaC enables test-time scaling: the performance of the trained RaC policy scales linearly in the number of recovery maneuvers it exhibits. Videos of the learned policy are available at https://rac-scaling-robot.github.io/.
What Matters in Learning from Offline Human Demonstrations for Robot Manipulation
Imitating human demonstrations is a promising approach to endow robots with various manipulation capabilities. While recent advances have been made in imitation learning and batch (offline) reinforcement learning, a lack of open-source human datasets and reproducible learning methods make assessing the state of the field difficult. In this paper, we conduct an extensive study of six offline learning algorithms for robot manipulation on five simulated and three real-world multi-stage manipulation tasks of varying complexity, and with datasets of varying quality. Our study analyzes the most critical challenges when learning from offline human data for manipulation. Based on the study, we derive a series of lessons including the sensitivity to different algorithmic design choices, the dependence on the quality of the demonstrations, and the variability based on the stopping criteria due to the different objectives in training and evaluation. We also highlight opportunities for learning from human datasets, such as the ability to learn proficient policies on challenging, multi-stage tasks beyond the scope of current reinforcement learning methods, and the ability to easily scale to natural, real-world manipulation scenarios where only raw sensory signals are available. We have open-sourced our datasets and all algorithm implementations to facilitate future research and fair comparisons in learning from human demonstration data. Codebase, datasets, trained models, and more available at https://arise-initiative.github.io/robomimic-web/
KGValidator: A Framework for Automatic Validation of Knowledge Graph Construction
This study explores the use of Large Language Models (LLMs) for automatic evaluation of knowledge graph (KG) completion models. Historically, validating information in KGs has been a challenging task, requiring large-scale human annotation at prohibitive cost. With the emergence of general-purpose generative AI and LLMs, it is now plausible that human-in-the-loop validation could be replaced by a generative agent. We introduce a framework for consistency and validation when using generative models to validate knowledge graphs. Our framework is based upon recent open-source developments for structural and semantic validation of LLM outputs, and upon flexible approaches to fact checking and verification, supported by the capacity to reference external knowledge sources of any kind. The design is easy to adapt and extend, and can be used to verify any kind of graph-structured data through a combination of model-intrinsic knowledge, user-supplied context, and agents capable of external knowledge retrieval.
Bottom-Up Skill Discovery from Unsegmented Demonstrations for Long-Horizon Robot Manipulation
We tackle real-world long-horizon robot manipulation tasks through skill discovery. We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations and use these skills to synthesize prolonged robot behaviors. Our method starts with constructing a hierarchical task structure from each demonstration through agglomerative clustering. From the task structures of multi-task demonstrations, we identify skills based on the recurring patterns and train goal-conditioned sensorimotor policies with hierarchical imitation learning. Finally, we train a meta controller to compose these skills to solve long-horizon manipulation tasks. The entire model can be trained on a small set of human demonstrations collected within 30 minutes without further annotations, making it amendable to real-world deployment. We systematically evaluated our method in simulation environments and on a real robot. Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks. Furthermore, skills discovered from multi-task demonstrations boost the average task success by 8% compared to those discovered from individual tasks.
Beyond Not-Forgetting: Continual Learning with Backward Knowledge Transfer
By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly.
KORE: Enhancing Knowledge Injection for Large Multimodal Models via Knowledge-Oriented Augmentations and Constraints
Large Multimodal Models encode extensive factual knowledge in their pre-trained weights. However, its knowledge remains static and limited, unable to keep pace with real-world developments, which hinders continuous knowledge acquisition. Effective knowledge injection thus becomes critical, involving two goals: knowledge adaptation (injecting new knowledge) and knowledge retention (preserving old knowledge). Existing methods often struggle to learn new knowledge and suffer from catastrophic forgetting. To address this, we propose KORE, a synergistic method of KnOwledge-oRientEd augmentations and constraints for injecting new knowledge into large multimodal models while preserving old knowledge. Unlike general text or image data augmentation, KORE automatically converts individual knowledge items into structured and comprehensive knowledge to ensure that the model accurately learns new knowledge, enabling accurate adaptation. Meanwhile, KORE stores previous knowledge in the covariance matrix of LMM's linear layer activations and initializes the adapter by projecting the original weights into the matrix's null space, defining a fine-tuning direction that minimizes interference with previous knowledge, enabling powerful retention. Extensive experiments on various LMMs, including LLaVA-v1.5-7B, LLaVA-v1.5-13B, and Qwen2.5-VL-7B, show that KORE achieves superior new knowledge injection performance and effectively mitigates catastrophic forgetting.
Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations
Building socialbots that can have deep, engaging open-domain conversations with humans is one of the grand challenges of artificial intelligence (AI). To this end, bots need to be able to leverage world knowledge spanning several domains effectively when conversing with humans who have their own world knowledge. Existing knowledge-grounded conversation datasets are primarily stylized with explicit roles for conversation partners. These datasets also do not explore depth or breadth of topical coverage with transitions in conversations. We introduce Topical-Chat, a knowledge-grounded human-human conversation dataset where the underlying knowledge spans 8 broad topics and conversation partners don't have explicitly defined roles, to help further research in open-domain conversational AI. We also train several state-of-the-art encoder-decoder conversational models on Topical-Chat and perform automated and human evaluation for benchmarking.
Learning to Learn Faster from Human Feedback with Language Model Predictive Control
Large language models (LLMs) have been shown to exhibit a wide range of capabilities, such as writing robot code from language commands -- enabling non-experts to direct robot behaviors, modify them based on feedback, or compose them to perform new tasks. However, these capabilities (driven by in-context learning) are limited to short-term interactions, where users' feedback remains relevant for only as long as it fits within the context size of the LLM, and can be forgotten over longer interactions. In this work, we investigate fine-tuning the robot code-writing LLMs, to remember their in-context interactions and improve their teachability i.e., how efficiently they adapt to human inputs (measured by average number of corrections before the user considers the task successful). Our key observation is that when human-robot interactions are formulated as a partially observable Markov decision process (in which human language inputs are observations, and robot code outputs are actions), then training an LLM to complete previous interactions can be viewed as training a transition dynamics model -- that can be combined with classic robotics techniques such as model predictive control (MPC) to discover shorter paths to success. This gives rise to Language Model Predictive Control (LMPC), a framework that fine-tunes PaLM 2 to improve its teachability on 78 tasks across 5 robot embodiments -- improving non-expert teaching success rates of unseen tasks by 26.9% while reducing the average number of human corrections from 2.4 to 1.9. Experiments show that LMPC also produces strong meta-learners, improving the success rate of in-context learning new tasks on unseen robot embodiments and APIs by 31.5%. See videos, code, and demos at: https://robot-teaching.github.io/.
Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey
The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models. However, in real life applications these models often encounter scenarios that are inadequately represented in the data used for training. There are various reasons for the absence of sufficient data, ranging from time and cost constraints to ethical considerations. As a consequence, the reliable usage of these models, especially in safety-critical applications, is still a tremendous challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches. Knowledge augmented machine learning approaches offer the possibility of compensating for deficiencies, errors, or ambiguities in the data, thus increasing the generalization capability of the applied models. Even more, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-driven models with existing knowledge. The identified approaches are structured according to the categories knowledge integration, extraction and conformity. In particular, we address the application of the presented methods in the field of autonomous driving.
Hierarchical reinforcement learning with natural language subgoals
Hierarchical reinforcement learning has been a compelling approach for achieving goal directed behavior over long sequences of actions. However, it has been challenging to implement in realistic or open-ended environments. A main challenge has been to find the right space of sub-goals over which to instantiate a hierarchy. We present a novel approach where we use data from humans solving these tasks to softly supervise the goal space for a set of long range tasks in a 3D embodied environment. In particular, we use unconstrained natural language to parameterize this space. This has two advantages: first, it is easy to generate this data from naive human participants; second, it is flexible enough to represent a vast range of sub-goals in human-relevant tasks. Our approach outperforms agents that clone expert behavior on these tasks, as well as HRL from scratch without this supervised sub-goal space. Our work presents a novel approach to combining human expert supervision with the benefits and flexibility of reinforcement learning.
RT-H: Action Hierarchies Using Language
Language provides a way to break down complex concepts into digestible pieces. Recent works in robot imitation learning use language-conditioned policies that predict actions given visual observations and the high-level task specified in language. These methods leverage the structure of natural language to share data between semantically similar tasks (e.g., "pick coke can" and "pick an apple") in multi-task datasets. However, as tasks become more semantically diverse (e.g., "pick coke can" and "pour cup"), sharing data between tasks becomes harder, so learning to map high-level tasks to actions requires much more demonstration data. To bridge tasks and actions, our insight is to teach the robot the language of actions, describing low-level motions with more fine-grained phrases like "move arm forward". Predicting these language motions as an intermediate step between tasks and actions forces the policy to learn the shared structure of low-level motions across seemingly disparate tasks. Furthermore, a policy that is conditioned on language motions can easily be corrected during execution through human-specified language motions. This enables a new paradigm for flexible policies that can learn from human intervention in language. Our method RT-H builds an action hierarchy using language motions: it first learns to predict language motions, and conditioned on this and the high-level task, it predicts actions, using visual context at all stages. We show that RT-H leverages this language-action hierarchy to learn policies that are more robust and flexible by effectively tapping into multi-task datasets. We show that these policies not only allow for responding to language interventions, but can also learn from such interventions and outperform methods that learn from teleoperated interventions. Our website and videos are found at https://rt-hierarchy.github.io.
Prototype-guided Cross-task Knowledge Distillation for Large-scale Models
Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.
Exclusive Supermask Subnetwork Training for Continual Learning
Continual Learning (CL) methods focus on accumulating knowledge over time while avoiding catastrophic forgetting. Recently, Wortsman et al. (2020) proposed a CL method, SupSup, which uses a randomly initialized, fixed base network (model) and finds a supermask for each new task that selectively keeps or removes each weight to produce a subnetwork. They prevent forgetting as the network weights are not being updated. Although there is no forgetting, the performance of SupSup is sub-optimal because fixed weights restrict its representational power. Furthermore, there is no accumulation or transfer of knowledge inside the model when new tasks are learned. Hence, we propose ExSSNeT (Exclusive Supermask SubNEtwork Training), that performs exclusive and non-overlapping subnetwork weight training. This avoids conflicting updates to the shared weights by subsequent tasks to improve performance while still preventing forgetting. Furthermore, we propose a novel KNN-based Knowledge Transfer (KKT) module that utilizes previously acquired knowledge to learn new tasks better and faster. We demonstrate that ExSSNeT outperforms strong previous methods on both NLP and Vision domains while preventing forgetting. Moreover, ExSSNeT is particularly advantageous for sparse masks that activate 2-10% of the model parameters, resulting in an average improvement of 8.3% over SupSup. Furthermore, ExSSNeT scales to a large number of tasks (100). Our code is available at https://github.com/prateeky2806/exessnet.
Robot Learning in the Era of Foundation Models: A Survey
The proliferation of Large Language Models (LLMs) has s fueled a shift in robot learning from automation towards general embodied Artificial Intelligence (AI). Adopting foundation models together with traditional learning methods to robot learning has increasingly gained recent interest research community and showed potential for real-life application. However, there are few literatures comprehensively reviewing the relatively new technologies combined with robotics. The purpose of this review is to systematically assess the state-of-the-art foundation model techniques in the robot learning and to identify future potential areas. Specifically, we first summarized the technical evolution of robot learning and identified the necessary preliminary preparations for foundation models including the simulators, datasets, foundation model framework. In addition, we focused on the following four mainstream areas of robot learning including manipulation, navigation, planning, and reasoning and demonstrated how the foundation model techniques can be adopted in the above scenarios. Furthermore, critical issues which are neglected in the current literatures including robot hardware and software decoupling, dynamic data, generalization performance with the presence of human, etc. were discussed. This review highlights the state-of-the-art progress of foundation models in robot learning and future research should focus on multimodal interaction especially dynamics data, exclusive foundation models for robots, and AI alignment, etc.
Open X-Embodiment: Robotic Learning Datasets and RT-X Models
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train generalist X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. More details can be found on the project website https://robotics-transformer-x.github.io{robotics-transformer-x.github.io}.
Towards Generalizable Zero-Shot Manipulation via Translating Human Interaction Plans
We pursue the goal of developing robots that can interact zero-shot with generic unseen objects via a diverse repertoire of manipulation skills and show how passive human videos can serve as a rich source of data for learning such generalist robots. Unlike typical robot learning approaches which directly learn how a robot should act from interaction data, we adopt a factorized approach that can leverage large-scale human videos to learn how a human would accomplish a desired task (a human plan), followed by translating this plan to the robots embodiment. Specifically, we learn a human plan predictor that, given a current image of a scene and a goal image, predicts the future hand and object configurations. We combine this with a translation module that learns a plan-conditioned robot manipulation policy, and allows following humans plans for generic manipulation tasks in a zero-shot manner with no deployment-time training. Importantly, while the plan predictor can leverage large-scale human videos for learning, the translation module only requires a small amount of in-domain data, and can generalize to tasks not seen during training. We show that our learned system can perform over 16 manipulation skills that generalize to 40 objects, encompassing 100 real-world tasks for table-top manipulation and diverse in-the-wild manipulation. https://homangab.github.io/hopman/
Investigating the role of model-based learning in exploration and transfer
State of the art reinforcement learning has enabled training agents on tasks of ever increasing complexity. However, the current paradigm tends to favor training agents from scratch on every new task or on collections of tasks with a view towards generalizing to novel task configurations. The former suffers from poor data efficiency while the latter is difficult when test tasks are out-of-distribution. Agents that can effectively transfer their knowledge about the world pose a potential solution to these issues. In this paper, we investigate transfer learning in the context of model-based agents. Specifically, we aim to understand when exactly environment models have an advantage and why. We find that a model-based approach outperforms controlled model-free baselines for transfer learning. Through ablations, we show that both the policy and dynamics model learnt through exploration matter for successful transfer. We demonstrate our results across three domains which vary in their requirements for transfer: in-distribution procedural (Crafter), in-distribution identical (RoboDesk), and out-of-distribution (Meta-World). Our results show that intrinsic exploration combined with environment models present a viable direction towards agents that are self-supervised and able to generalize to novel reward functions.
π_0: A Vision-Language-Action Flow Model for General Robot Control
Robot learning holds tremendous promise to unlock the full potential of flexible, general, and dexterous robot systems, as well as to address some of the deepest questions in artificial intelligence. However, bringing robot learning to the level of generality required for effective real-world systems faces major obstacles in terms of data, generalization, and robustness. In this paper, we discuss how generalist robot policies (i.e., robot foundation models) can address these challenges, and how we can design effective generalist robot policies for complex and highly dexterous tasks. We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge. We then discuss how this model can be trained on a large and diverse dataset from multiple dexterous robot platforms, including single-arm robots, dual-arm robots, and mobile manipulators. We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people and from a high-level VLM policy, and its ability to acquire new skills via fine-tuning. Our results cover a wide variety of tasks, such as laundry folding, table cleaning, and assembling boxes.
RoboCat: A Self-Improving Foundation Agent for Robotic Manipulation
The ability to leverage heterogeneous robotic experience from different robots and tasks to quickly master novel skills and embodiments has the potential to transform robot learning. Inspired by recent advances in foundation models for vision and language, we propose a foundation agent for robotic manipulation. This agent, named RoboCat, is a visual goal-conditioned decision transformer capable of consuming multi-embodiment action-labelled visual experience. This data spans a large repertoire of motor control skills from simulated and real robotic arms with varying sets of observations and actions. With RoboCat, we demonstrate the ability to generalise to new tasks and robots, both zero-shot as well as through adaptation using only 100--1000 examples for the target task. We also show how a trained model itself can be used to generate data for subsequent training iterations, thus providing a basic building block for an autonomous improvement loop. We investigate the agent's capabilities, with large-scale evaluations both in simulation and on three different real robot embodiments. We find that as we grow and diversify its training data, RoboCat not only shows signs of cross-task transfer, but also becomes more efficient at adapting to new tasks.
Towards Collaborative Plan Acquisition through Theory of Mind Modeling in Situated Dialogue
Collaborative tasks often begin with partial task knowledge and incomplete initial plans from each partner. To complete these tasks, agents need to engage in situated communication with their partners and coordinate their partial plans towards a complete plan to achieve a joint task goal. While such collaboration seems effortless in a human-human team, it is highly challenging for human-AI collaboration. To address this limitation, this paper takes a step towards collaborative plan acquisition, where humans and agents strive to learn and communicate with each other to acquire a complete plan for joint tasks. Specifically, we formulate a novel problem for agents to predict the missing task knowledge for themselves and for their partners based on rich perceptual and dialogue history. We extend a situated dialogue benchmark for symmetric collaborative tasks in a 3D blocks world and investigate computational strategies for plan acquisition. Our empirical results suggest that predicting the partner's missing knowledge is a more viable approach than predicting one's own. We show that explicit modeling of the partner's dialogue moves and mental states produces improved and more stable results than without. These results provide insight for future AI agents that can predict what knowledge their partner is missing and, therefore, can proactively communicate such information to help their partner acquire such missing knowledge toward a common understanding of joint tasks.
Modular Deep Learning
Transfer learning has recently become the dominant paradigm of machine learning. Pre-trained models fine-tuned for downstream tasks achieve better performance with fewer labelled examples. Nonetheless, it remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference and that generalise systematically to non-identically distributed tasks. Modular deep learning has emerged as a promising solution to these challenges. In this framework, units of computation are often implemented as autonomous parameter-efficient modules. Information is conditionally routed to a subset of modules and subsequently aggregated. These properties enable positive transfer and systematic generalisation by separating computation from routing and updating modules locally. We offer a survey of modular architectures, providing a unified view over several threads of research that evolved independently in the scientific literature. Moreover, we explore various additional purposes of modularity, including scaling language models, causal inference, programme induction, and planning in reinforcement learning. Finally, we report various concrete applications where modularity has been successfully deployed such as cross-lingual and cross-modal knowledge transfer. Related talks and projects to this survey, are available at https://www.modulardeeplearning.com/.
Agent KB: Leveraging Cross-Domain Experience for Agentic Problem Solving
As language agents tackle increasingly complex tasks, they struggle with effective error correction and experience reuse across domains. We introduce Agent KB, a hierarchical experience framework that enables complex agentic problem solving via a novel Reason-Retrieve-Refine pipeline. Agent KB addresses a core limitation: agents traditionally cannot learn from each other's experiences. By capturing both high-level strategies and detailed execution logs, Agent KB creates a shared knowledge base that enables cross-agent knowledge transfer. Evaluated on the GAIA benchmark, Agent KB improves success rates by up to 16.28 percentage points. On the most challenging tasks, Claude-3 improves from 38.46% to 57.69%, while GPT-4 improves from 53.49% to 73.26% on intermediate tasks. On SWE-bench code repair, Agent KB enables Claude-3 to improve from 41.33% to 53.33%. Our results suggest that Agent KB provides a modular, framework-agnostic infrastructure for enabling agents to learn from past experiences and generalize successful strategies to new tasks.
Learning by Watching: A Review of Video-based Learning Approaches for Robot Manipulation
Robot learning of manipulation skills is hindered by the scarcity of diverse, unbiased datasets. While curated datasets can help, challenges remain in generalizability and real-world transfer. Meanwhile, large-scale "in-the-wild" video datasets have driven progress in computer vision through self-supervised techniques. Translating this to robotics, recent works have explored learning manipulation skills by passively watching abundant videos sourced online. Showing promising results, such video-based learning paradigms provide scalable supervision while reducing dataset bias. This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources, as well as emerging techniques for acquiring robot manipulation skills from uncontrolled video demonstrations. We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation. The survey summarizes video-based learning approaches, analyses their benefits over standard datasets, survey metrics, and benchmarks, and discusses open challenges and future directions in this nascent domain at the intersection of computer vision, natural language processing, and robot learning.
Commonsense Knowledge Transfer for Pre-trained Language Models
Despite serving as the foundation models for a wide range of NLP benchmarks, pre-trained language models have shown limited capabilities of acquiring implicit commonsense knowledge from self-supervision alone, compared to learning linguistic and factual knowledge that appear more explicitly in the surface patterns in text. In this work, we introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model. It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model and then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction, which align human language with the underlying commonsense knowledge. Empirical results show that our approach consistently improves the model's performance on downstream tasks that require commonsense reasoning. Moreover, we find that the improvement is more significant in the few-shot setting. This suggests that our approach helps language models better transfer to downstream tasks without extensive supervision by injecting commonsense knowledge into their parameters.
SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation
Robot learning has proven to be a general and effective technique for programming manipulators. Imitation learning is able to teach robots solely from human demonstrations but is bottlenecked by the capabilities of the demonstrations. Reinforcement learning uses exploration to discover better behaviors; however, the space of possible improvements can be too large to start from scratch. And for both techniques, the learning difficulty increases proportional to the length of the manipulation task. Accounting for this, we propose SPIRE, a system that first uses Task and Motion Planning (TAMP) to decompose tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths. We develop novel strategies to train learning agents when deployed in the context of a planning system. We evaluate SPIRE on a suite of long-horizon and contact-rich robot manipulation problems. We find that SPIRE outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance, is 6 times more data efficient in the number of human demonstrations needed to train proficient agents, and learns to complete tasks nearly twice as efficiently. View https://sites.google.com/view/spire-corl-2024 for more details.
Injecting Domain Knowledge in Language Models for Task-Oriented Dialogue Systems
Pre-trained language models (PLM) have advanced the state-of-the-art across NLP applications, but lack domain-specific knowledge that does not naturally occur in pre-training data. Previous studies augmented PLMs with symbolic knowledge for different downstream NLP tasks. However, knowledge bases (KBs) utilized in these studies are usually large-scale and static, in contrast to small, domain-specific, and modifiable knowledge bases that are prominent in real-world task-oriented dialogue (TOD) systems. In this paper, we showcase the advantages of injecting domain-specific knowledge prior to fine-tuning on TOD tasks. To this end, we utilize light-weight adapters that can be easily integrated with PLMs and serve as a repository for facts learned from different KBs. To measure the efficacy of proposed knowledge injection methods, we introduce Knowledge Probing using Response Selection (KPRS) -- a probe designed specifically for TOD models. Experiments on KPRS and the response generation task show improvements of knowledge injection with adapters over strong baselines.
TransAgent: Transfer Vision-Language Foundation Models with Heterogeneous Agent Collaboration
Vision-language foundation models (such as CLIP) have recently shown their power in transfer learning, owing to large-scale image-text pre-training. However, target domain data in the downstream tasks can be highly different from the pre-training phase, which makes it hard for such a single model to generalize well. Alternatively, there exists a wide range of expert models that contain diversified vision and/or language knowledge pre-trained on different modalities, tasks, networks, and datasets. Unfortunately, these models are "isolated agents" with heterogeneous structures, and how to integrate their knowledge for generalizing CLIP-like models has not been fully explored. To bridge this gap, we propose a general and concise TransAgent framework, which transports the knowledge of the isolated agents in a unified manner, and effectively guides CLIP to generalize with multi-source knowledge distillation. With such a distinct framework, we flexibly collaborate with 11 heterogeneous agents to empower vision-language foundation models, without further cost in the inference phase. Finally, our TransAgent achieves state-of-the-art performance on 11 visual recognition datasets. Under the same low-shot setting, it outperforms the popular CoOp with around 10% on average, and 20% on EuroSAT which contains large domain shifts.
Giving Robots a Hand: Learning Generalizable Manipulation with Eye-in-Hand Human Video Demonstrations
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation. However, for robotic imitation, it is still expensive to have a human teleoperator collect large amounts of expert demonstrations with a real robot. Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation and can be quickly captured in a wide range of scenarios. Therefore, human video demonstrations are a promising data source for learning generalizable robotic manipulation policies at scale. In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies. Although a clear visual domain gap exists between human and robot data, our framework does not need to employ any explicit domain adaptation method, as we leverage the partial observability of eye-in-hand cameras as well as a simple fixed image masking scheme. On a suite of eight real-world tasks involving both 3-DoF and 6-DoF robot arm control, our method improves the success rates of eye-in-hand manipulation policies by 58% (absolute) on average, enabling robots to generalize to both new environment configurations and new tasks that are unseen in the robot demonstration data. See video results at https://giving-robots-a-hand.github.io/ .
Wizard of Wikipedia: Knowledge-Powered Conversational agents
In open-domain dialogue intelligent agents should exhibit the use of knowledge, however there are few convincing demonstrations of this to date. The most popular sequence to sequence models typically "generate and hope" generic utterances that can be memorized in the weights of the model when mapping from input utterance(s) to output, rather than employing recalled knowledge as context. Use of knowledge has so far proved difficult, in part because of the lack of a supervised learning benchmark task which exhibits knowledgeable open dialogue with clear grounding. To that end we collect and release a large dataset with conversations directly grounded with knowledge retrieved from Wikipedia. We then design architectures capable of retrieving knowledge, reading and conditioning on it, and finally generating natural responses. Our best performing dialogue models are able to conduct knowledgeable discussions on open-domain topics as evaluated by automatic metrics and human evaluations, while our new benchmark allows for measuring further improvements in this important research direction.
Kaiwu: A Multimodal Manipulation Dataset and Framework for Robot Learning and Human-Robot Interaction
Cutting-edge robot learning techniques including foundation models and imitation learning from humans all pose huge demands on large-scale and high-quality datasets which constitute one of the bottleneck in the general intelligent robot fields. This paper presents the Kaiwu multimodal dataset to address the missing real-world synchronized multimodal data problems in the sophisticated assembling scenario,especially with dynamics information and its fine-grained labelling. The dataset first provides an integration of human,environment and robot data collection framework with 20 subjects and 30 interaction objects resulting in totally 11,664 instances of integrated actions. For each of the demonstration,hand motions,operation pressures,sounds of the assembling process,multi-view videos, high-precision motion capture information,eye gaze with first-person videos,electromyography signals are all recorded. Fine-grained multi-level annotation based on absolute timestamp,and semantic segmentation labelling are performed. Kaiwu dataset aims to facilitate robot learning,dexterous manipulation,human intention investigation and human-robot collaboration research.
OK-Robot: What Really Matters in Integrating Open-Knowledge Models for Robotics
Remarkable progress has been made in recent years in the fields of vision, language, and robotics. We now have vision models capable of recognizing objects based on language queries, navigation systems that can effectively control mobile systems, and grasping models that can handle a wide range of objects. Despite these advancements, general-purpose applications of robotics still lag behind, even though they rely on these fundamental capabilities of recognition, navigation, and grasping. In this paper, we adopt a systems-first approach to develop a new Open Knowledge-based robotics framework called OK-Robot. By combining Vision-Language Models (VLMs) for object detection, navigation primitives for movement, and grasping primitives for object manipulation, OK-Robot offers a integrated solution for pick-and-drop operations without requiring any training. To evaluate its performance, we run OK-Robot in 10 real-world home environments. The results demonstrate that OK-Robot achieves a 58.5% success rate in open-ended pick-and-drop tasks, representing a new state-of-the-art in Open Vocabulary Mobile Manipulation (OVMM) with nearly 1.8x the performance of prior work. On cleaner, uncluttered environments, OK-Robot's performance increases to 82%. However, the most important insight gained from OK-Robot is the critical role of nuanced details when combining Open Knowledge systems like VLMs with robotic modules. Videos of our experiments are available on our website: https://ok-robot.github.io
Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective
Large Language Models (LLMs) inherently encode a wealth of knowledge within their parameters through pre-training on extensive corpora. While prior research has delved into operations on these parameters to manipulate the underlying implicit knowledge (encompassing detection, editing, and merging), there remains an ambiguous understanding regarding their transferability across models with varying scales. In this paper, we seek to empirically investigate knowledge transfer from larger to smaller models through a parametric perspective. To achieve this, we employ sensitivity-based techniques to extract and align knowledge-specific parameters between different LLMs. Moreover, the LoRA module is used as the intermediary mechanism for injecting the extracted knowledge into smaller models. Evaluations across four benchmarks validate the efficacy of our proposed method. Our findings highlight the critical factors contributing to the process of parametric knowledge transfer, underscoring the transferability of model parameters across LLMs of different scales. We release code and data at https://github.com/maszhongming/ParaKnowTransfer.
Multi-Task Multi-Agent Shared Layers are Universal Cognition of Multi-Agent Coordination
Multi-agent reinforcement learning shines as the pinnacle of multi-agent systems, conquering intricate real-world challenges, fostering collaboration and coordination among agents, and unleashing the potential for intelligent decision-making across domains. However, training a multi-agent reinforcement learning network is a formidable endeavor, demanding substantial computational resources to interact with diverse environmental variables, extract state representations, and acquire decision-making knowledge. The recent breakthroughs in large-scale pre-trained models ignite our curiosity: Can we uncover shared knowledge in multi-agent reinforcement learning and leverage pre-trained models to expedite training for future tasks? Addressing this issue, we present an innovative multi-task learning approach that aims to extract and harness common decision-making knowledge, like cooperation and competition, across different tasks. Our approach involves concurrent training of multiple multi-agent tasks, with each task employing independent front-end perception layers while sharing back-end decision-making layers. This effective decoupling of state representation extraction from decision-making allows for more efficient training and better transferability. To evaluate the efficacy of our proposed approach, we conduct comprehensive experiments in two distinct environments: the StarCraft Multi-agent Challenge (SMAC) and the Google Research Football (GRF) environments. The experimental results unequivocally demonstrate the smooth transferability of the shared decision-making network to other tasks, thereby significantly reducing training costs and improving final performance. Furthermore, visualizations authenticate the presence of general multi-agent decision-making knowledge within the shared network layers, further validating the effectiveness of our approach.
Large Language Model-based Human-Agent Collaboration for Complex Task Solving
In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. In addition, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC. This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We construct a human-agent collaboration dataset to train this policy model in an offline reinforcement learning environment. Our validation tests confirm the model's effectiveness. The results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: https://github.com/XueyangFeng/ReHAC.
Autonomous Improvement of Instruction Following Skills via Foundation Models
Intelligent instruction-following robots capable of improving from autonomously collected experience have the potential to transform robot learning: instead of collecting costly teleoperated demonstration data, large-scale deployment of fleets of robots can quickly collect larger quantities of autonomous data that can collectively improve their performance. However, autonomous improvement requires solving two key problems: (i) fully automating a scalable data collection procedure that can collect diverse and semantically meaningful robot data and (ii) learning from non-optimal, autonomous data with no human annotations. To this end, we propose a novel approach that addresses these challenges, allowing instruction-following policies to improve from autonomously collected data without human supervision. Our framework leverages vision-language models to collect and evaluate semantically meaningful experiences in new environments, and then utilizes a decomposition of instruction following tasks into (semantic) language-conditioned image generation and (non-semantic) goal reaching, which makes it significantly more practical to improve from this autonomously collected data without any human annotations. We carry out extensive experiments in the real world to demonstrate the effectiveness of our approach, and find that in a suite of unseen environments, the robot policy can be improved significantly with autonomously collected data. We open-source the code for our semantic autonomous improvement pipeline, as well as our autonomous dataset of 30.5K trajectories collected across five tabletop environments.
VideoWorld: Exploring Knowledge Learning from Unlabeled Videos
This work explores whether a deep generative model can learn complex knowledge solely from visual input, in contrast to the prevalent focus on text-based models like large language models (LLMs). We develop VideoWorld, an auto-regressive video generation model trained on unlabeled video data, and test its knowledge acquisition abilities in video-based Go and robotic control tasks. Our experiments reveal two key findings: (1) video-only training provides sufficient information for learning knowledge, including rules, reasoning and planning capabilities, and (2) the representation of visual change is crucial for knowledge acquisition. To improve both the efficiency and efficacy of this process, we introduce the Latent Dynamics Model (LDM) as a key component of VideoWorld. Remarkably, VideoWorld reaches a 5-dan professional level in the Video-GoBench with just a 300-million-parameter model, without relying on search algorithms or reward mechanisms typical in reinforcement learning. In robotic tasks, VideoWorld effectively learns diverse control operations and generalizes across environments, approaching the performance of oracle models in CALVIN and RLBench. This study opens new avenues for knowledge acquisition from visual data, with all code, data, and models open-sourced for further research.
RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete
Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.
CLIP-RT: Learning Language-Conditioned Robotic Policies from Natural Language Supervision
Teaching robots desired skills in real-world environments remains challenging, especially for non-experts. A key bottleneck is that collecting robotic data often requires expertise or specialized hardware, limiting accessibility and scalability. We posit that natural language offers an intuitive and accessible interface for robot learning. To this end, we study two aspects: (1) enabling non-experts to collect robotic data through natural language supervision (e.g., "move the arm to the right") and (2) training robot policies directly from this supervision. Specifically, we introduce a data collection framework that collects robot demonstrations based on natural language supervision and further augments these demonstrations. We then present CLIP-RT, a new vision-language-action (VLA) model that learns language-conditioned visuomotor policies from this supervision. CLIP-RT adapts the pretrained CLIP model and learns to predict language-based motion primitives via contrastive imitation learning. We train CLIP-RT on the Open X-Embodiment dataset and finetune it on in-domain data collected by our framework. In real-world evaluations, CLIP-RT demonstrates strong capabilities in learning novel manipulation skills, outperforming OpenVLA (7B parameters) by 24% in average success rates, while using 7x fewer parameters (1B). We further assess CLIP-RT's capabilities in few-shot generalization and collaborative scenarios involving large pretrained models or humans. In simulated environments, CLIP-RT also yields strong performance, achieving a 93.1% average success rate on the LIBERO benchmark with an inference throughput of 163 Hz.
Large Language Models for Multi-Robot Systems: A Survey
The rapid advancement of Large Language Models (LLMs) has opened new possibilities in Multi-Robot Systems (MRS), enabling enhanced communication, task planning, and human-robot interaction. Unlike traditional single-robot and multi-agent systems, MRS poses unique challenges, including coordination, scalability, and real-world adaptability. This survey provides the first comprehensive exploration of LLM integration into MRS. It systematically categorizes their applications across high-level task allocation, mid-level motion planning, low-level action generation, and human intervention. We highlight key applications in diverse domains, such as household robotics, construction, formation control, target tracking, and robot games, showcasing the versatility and transformative potential of LLMs in MRS. Furthermore, we examine the challenges that limit adapting LLMs in MRS, including mathematical reasoning limitations, hallucination, latency issues, and the need for robust benchmarking systems. Finally, we outline opportunities for future research, emphasizing advancements in fine-tuning, reasoning techniques, and task-specific models. This survey aims to guide researchers in the intelligence and real-world deployment of MRS powered by LLMs. Based on the fast-evolving nature of research in the field, we keep updating the papers in the open-source Github repository.
Talking Models: Distill Pre-trained Knowledge to Downstream Models via Interactive Communication
Many recent breakthroughs in machine learning have been enabled by the pre-trained foundation models. By scaling up model parameters, training data, and computation resources, foundation models have significantly advanced the state-of-the-art in many applications. However, it is still an open question of how to use these models to perform downstream tasks efficiently. Knowledge distillation (KD) has been explored to tackle this challenge. KD transfers knowledge from a large teacher model to a smaller student model. While KD has been successful in improving student model performance, recent research has discovered that a powerful teacher does not necessarily lead to a powerful student, due to their huge capacity gap. In addition, the potential distribution shifts between the pre-training data and downstream tasks can make knowledge transfer in KD sub-optimal for improving downstream task performance. In this paper, we extend KD with an interactive communication process to help students of downstream tasks learn effectively from pre-trained foundation models. Our design is inspired by the way humans learn from teachers who can explain knowledge in a way that meets the students' needs. Specifically, we let each model (i.e., student and teacher) train two components: (1) an encoder encoding the model's hidden states to a message and (2) a decoder decoding any messages to its own hidden states. With encoder and decoder, not only can the teacher transfer rich information by encoding its hidden states, but also the student can send messages with information of downstream tasks to the teacher. Therefore, knowledge passing from teacher to student can be tailored to the student's capacity and downstream tasks' distributions. We conducted experiments on benchmark datasets to show that our communication mechanism outperforms state-of-the-art distillation techniques.
Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability
Knowledge transferability, or transfer learning, has been widely adopted to allow a pre-trained model in the source domain to be effectively adapted to downstream tasks in the target domain. It is thus important to explore and understand the factors affecting knowledge transferability. In this paper, as the first work, we analyze and demonstrate the connections between knowledge transferability and another important phenomenon--adversarial transferability, i.e., adversarial examples generated against one model can be transferred to attack other models. Our theoretical studies show that adversarial transferability indicates knowledge transferability and vice versa. Moreover, based on the theoretical insights, we propose two practical adversarial transferability metrics to characterize this process, serving as bidirectional indicators between adversarial and knowledge transferability. We conduct extensive experiments for different scenarios on diverse datasets, showing a positive correlation between adversarial transferability and knowledge transferability. Our findings will shed light on future research about effective knowledge transfer learning and adversarial transferability analyses.
Unlock the Power: Competitive Distillation for Multi-Modal Large Language Models
Recently, multi-modal content generation has attracted lots of attention from researchers by investigating the utilization of visual instruction tuning based on large language models (LLMs). To enhance the performance and generalization ability of such LLMs, the practice of distilling knowledge from pretrained multi-modal models (a.k.a. teachers) to more compact multi-modal LLMs (students) has gained considerable interest. However, the prevailing paradigm of instructiontuning in multi-modal LLMs knowledge distillation is resource-intensive and unidirectional, neglecting the potential for mutual feedback between the student and teacher models. Thus, we propose an innovative Competitive Multi-modal Distillation framework (CoMD), which captures bidirectional feedback between teacher and student models and continually updates the multi-modal capabilities that the student model has learned. It comprises two stages: multi-modal pre-training and multi-modal competitive distillation. The first stage pre-trains the student model on a large number of filtered multi-modal datasets. The second stage facilitates a bidirectional knowledge transfer between the student and teacher models. Our experimental analysis of diverse datasets shows that our knowledge transfer method consistently improves the capabilities of the student model. Finally, the 7B-sized student model after four distillations surpassed the current state-of-the-art model LLaVA-13B on the ScienceQA and LLaVA Test dataset, also outperforms other strong baselines in the zero-shot setting.
Integrating Reinforcement Learning with Foundation Models for Autonomous Robotics: Methods and Perspectives
Foundation models (FMs), large deep learning models pre-trained on vast, unlabeled datasets, exhibit powerful capabilities in understanding complex patterns and generating sophisticated outputs. However, they often struggle to adapt to specific tasks. Reinforcement learning (RL), which allows agents to learn through interaction and feedback, offers a compelling solution. Integrating RL with FMs enables these models to achieve desired outcomes and excel at particular tasks. Additionally, RL can be enhanced by leveraging the reasoning and generalization capabilities of FMs. This synergy is revolutionizing various fields, including robotics. FMs, rich in knowledge and generalization, provide robots with valuable information, while RL facilitates learning and adaptation through real-world interactions. This survey paper comprehensively explores this exciting intersection, examining how these paradigms can be integrated to advance robotic intelligence. We analyze the use of foundation models as action planners, the development of robotics-specific foundation models, and the mutual benefits of combining FMs with RL. Furthermore, we present a taxonomy of integration approaches, including large language models, vision-language models, diffusion models, and transformer-based RL models. We also explore how RL can utilize world representations learned from FMs to enhance robotic task execution. Our survey aims to synthesize current research and highlight key challenges in robotic reasoning and control, particularly in the context of integrating FMs and RL--two rapidly evolving technologies. By doing so, we seek to spark future research and emphasize critical areas that require further investigation to enhance robotics. We provide an updated collection of papers based on our taxonomy, accessible on our open-source project website at: https://github.com/clmoro/Robotics-RL-FMs-Integration.
A Survey on Large Language Model based Autonomous Agents
Autonomous agents have long been a prominent research focus in both academic and industry communities. Previous research in this field often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and thus makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of web knowledge, large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence. This has sparked an upsurge in studies investigating LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of the field of LLM-based autonomous agents from a holistic perspective. More specifically, we first discuss the construction of LLM-based autonomous agents, for which we propose a unified framework that encompasses a majority of the previous work. Then, we present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field. To keep track of this field and continuously update our survey, we maintain a repository of relevant references at https://github.com/Paitesanshi/LLM-Agent-Survey.
Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis
Building general-purpose robots that can operate seamlessly, in any environment, with any object, and utilizing various skills to complete diverse tasks has been a long-standing goal in Artificial Intelligence. Unfortunately, however, most existing robotic systems have been constrained - having been designed for specific tasks, trained on specific datasets, and deployed within specific environments. These systems usually require extensively-labeled data, rely on task-specific models, have numerous generalization issues when deployed in real-world scenarios, and struggle to remain robust to distribution shifts. Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models (i.e., foundation models) in research fields such as Natural Language Processing (NLP) and Computer Vision (CV), we devote this survey to exploring (i) how these existing foundation models from NLP and CV can be applied to the field of robotics, and also exploring (ii) what a robotics-specific foundation model would look like. We begin by providing an overview of what constitutes a conventional robotic system and the fundamental barriers to making it universally applicable. Next, we establish a taxonomy to discuss current work exploring ways to leverage existing foundation models for robotics and develop ones catered to robotics. Finally, we discuss key challenges and promising future directions in using foundation models for enabling general-purpose robotic systems. We encourage readers to view our ``living`` GitHub repository of resources, including papers reviewed in this survey as well as related projects and repositories for developing foundation models for robotics.
Leveraging Open Knowledge for Advancing Task Expertise in Large Language Models
The cultivation of expertise for large language models (LLMs) to solve tasks of specific areas often requires special-purpose tuning with calibrated behaviors on the expected stable outputs. To avoid huge cost brought by manual preparation of instruction datasets and training resources up to hundreds of hours, the exploitation of open knowledge including a wealth of low rank adaptation (LoRA) models and instruction datasets serves as a good starting point. However, existing methods on model and data selection focus on the performance of general-purpose capabilities while neglecting the knowledge gap exposed in domain-specific deployment. In the present study, we propose to bridge such gap by introducing few human-annotated samples (i.e., K-shot) for advancing task expertise of LLMs with open knowledge. Specifically, we develop an efficient and scalable pipeline to cost-efficiently produce task experts where K-shot data intervene in selecting the most promising expert candidates and the task-relevant instructions. A mixture-of-expert (MoE) system is built to make the best use of individual-yet-complementary knowledge between multiple experts. We unveil the two keys to the success of a MoE system, 1) the abidance by K-shot, and 2) the insistence on diversity. For the former, we ensure that models that truly possess problem-solving abilities on K-shot are selected rather than those blind guessers. Besides, during data selection, instructions that share task-relevant contexts with K-shot are prioritized. For the latter, we highlight the diversity of constituting experts and that of the fine-tuning instructions throughout the model and data selection process. Extensive experimental results confirm the superiority of our approach over existing methods on utilization of open knowledge across various tasks. Codes and models will be released later.
Vid2Act: Activate Offline Videos for Visual RL
Pretraining RL models on offline video datasets is a promising way to improve their training efficiency in online tasks, but challenging due to the inherent mismatch in tasks, dynamics, and behaviors across domains. A recent model, APV, sidesteps the accompanied action records in offline datasets and instead focuses on pretraining a task-irrelevant, action-free world model within the source domains. We present Vid2Act, a model-based RL method that learns to transfer valuable action-conditioned dynamics and potentially useful action demonstrations from offline to online settings. The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the domain relevance for both dynamics representation transfer and policy transfer. Specifically, we train the world models to generate a set of time-varying task similarities using a domain-selective knowledge distillation loss. These similarities serve two purposes: (i) adaptively transferring the most useful source knowledge to facilitate dynamics learning, and (ii) learning to replay the most relevant source actions to guide the target policy. We demonstrate the advantages of Vid2Act over the action-free visual RL pretraining method in both Meta-World and DeepMind Control Suite.
Chain of Thought Imitation with Procedure Cloning
Imitation learning aims to extract high-performance policies from logged demonstrations of expert behavior. It is common to frame imitation learning as a supervised learning problem in which one fits a function approximator to the input-output mapping exhibited by the logged demonstrations (input observations to output actions). While the framing of imitation learning as a supervised input-output learning problem allows for applicability in a wide variety of settings, it is also an overly simplistic view of the problem in situations where the expert demonstrations provide much richer insight into expert behavior. For example, applications such as path navigation, robot manipulation, and strategy games acquire expert demonstrations via planning, search, or some other multi-step algorithm, revealing not just the output action to be imitated but also the procedure for how to determine this action. While these intermediate computations may use tools not available to the agent during inference (e.g., environment simulators), they are nevertheless informative as a way to explain an expert's mapping of state to actions. To properly leverage expert procedure information without relying on the privileged tools the expert may have used to perform the procedure, we propose procedure cloning, which applies supervised sequence prediction to imitate the series of expert computations. This way, procedure cloning learns not only what to do (i.e., the output action), but how and why to do it (i.e., the procedure). Through empirical analysis on navigation, simulated robotic manipulation, and game-playing environments, we show that imitating the intermediate computations of an expert's behavior enables procedure cloning to learn policies exhibiting significant generalization to unseen environment configurations, including those configurations for which running the expert's procedure directly is infeasible.
The Path to Autonomous Learners
In this paper, we present a new theoretical approach for enabling domain knowledge acquisition by intelligent systems. We introduce a hybrid model that starts with minimal input knowledge in the form of an upper ontology of concepts, stores and reasons over this knowledge through a knowledge graph database and learns new information through a Logic Neural Network. We study the behavior of this architecture when handling new data and show that the final system is capable of enriching its current knowledge as well as extending it to new domains.
Do We Really Need a Complex Agent System? Distill Embodied Agent into a Single Model
With the power of large language models (LLMs), open-ended embodied agents can flexibly understand human instructions, generate interpretable guidance strategies, and output executable actions. Nowadays, Multi-modal Language Models~(MLMs) integrate multi-modal signals into LLMs, further bringing richer perception to entity agents and allowing embodied agents to perceive world-understanding tasks more delicately. However, existing works: 1) operate independently by agents, each containing multiple LLMs, from perception to action, resulting in gaps between complex tasks and execution; 2) train MLMs on static data, struggling with dynamics in open-ended scenarios; 3) input prior knowledge directly as prompts, suppressing application flexibility. We propose STEVE-2, a hierarchical knowledge distillation framework for open-ended embodied tasks, characterized by 1) a hierarchical system for multi-granular task division, 2) a mirrored distillation method for parallel simulation data, and 3) an extra expert model for bringing additional knowledge into parallel simulation. After distillation, embodied agents can complete complex, open-ended tasks without additional expert guidance, utilizing the performance and knowledge of a versatile MLM. Extensive evaluations on navigation and creation tasks highlight the superior performance of STEVE-2 in open-ended tasks, with 1.4 times - 7.3 times in performance.
RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots
Recent advancements in Artificial Intelligence (AI) have largely been propelled by scaling. In Robotics, scaling is hindered by the lack of access to massive robot datasets. We advocate using realistic physical simulation as a means to scale environments, tasks, and datasets for robot learning methods. We present RoboCasa, a large-scale simulation framework for training generalist robots in everyday environments. RoboCasa features realistic and diverse scenes focusing on kitchen environments. We provide thousands of 3D assets across over 150 object categories and dozens of interactable furniture and appliances. We enrich the realism and diversity of our simulation with generative AI tools, such as object assets from text-to-3D models and environment textures from text-to-image models. We design a set of 100 tasks for systematic evaluation, including composite tasks generated by the guidance of large language models. To facilitate learning, we provide high-quality human demonstrations and integrate automated trajectory generation methods to substantially enlarge our datasets with minimal human burden. Our experiments show a clear scaling trend in using synthetically generated robot data for large-scale imitation learning and show great promise in harnessing simulation data in real-world tasks. Videos and open-source code are available at https://robocasa.ai/
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions.
Language-conditioned Learning for Robotic Manipulation: A Survey
Language-conditioned robotic manipulation represents a cutting-edge area of research, enabling seamless communication and cooperation between humans and robotic agents. This field focuses on teaching robotic systems to comprehend and execute instructions conveyed in natural language. To achieve this, the development of robust language understanding models capable of extracting actionable insights from textual input is essential. In this comprehensive survey, we systematically explore recent advancements in language-conditioned approaches within the context of robotic manipulation. We analyze these approaches based on their learning paradigms, which encompass reinforcement learning, imitation learning, and the integration of foundational models, such as large language models and vision-language models. Furthermore, we conduct an in-depth comparative analysis, considering aspects like semantic information extraction, environment & evaluation, auxiliary tasks, and task representation. Finally, we outline potential future research directions in the realm of language-conditioned learning for robotic manipulation, with the topic of generalization capabilities and safety issues. The GitHub repository of this paper can be found at https://github.com/hk-zh/language-conditioned-robot-manipulation-models
Classroom-Inspired Multi-Mentor Distillation with Adaptive Learning Strategies
We propose ClassroomKD, a novel multi-mentor knowledge distillation framework inspired by classroom environments to enhance knowledge transfer between the student and multiple mentors with different knowledge levels. Unlike traditional methods that rely on fixed mentor-student relationships, our framework dynamically selects and adapts the teaching strategies of diverse mentors based on their effectiveness for each data sample. ClassroomKD comprises two main modules: the Knowledge Filtering (KF) module and the Mentoring module. The KF Module dynamically ranks mentors based on their performance for each input, activating only high-quality mentors to minimize error accumulation and prevent information loss. The Mentoring Module adjusts the distillation strategy by tuning each mentor's influence according to the dynamic performance gap between the student and mentors, effectively modulating the learning pace. Extensive experiments on image classification (CIFAR-100 and ImageNet) and 2D human pose estimation (COCO Keypoints and MPII Human Pose) demonstrate that ClassroomKD outperforms existing knowledge distillation methods for different network architectures. Our results highlight that a dynamic and adaptive approach to mentor selection and guidance leads to more effective knowledge transfer, paving the way for enhanced model performance through distillation.
The Life Cycle of Knowledge in Big Language Models: A Survey
Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.
Large Language Models for Robotics: A Survey
The human ability to learn, generalize, and control complex manipulation tasks through multi-modality feedback suggests a unique capability, which we refer to as dexterity intelligence. Understanding and assessing this intelligence is a complex task. Amidst the swift progress and extensive proliferation of large language models (LLMs), their applications in the field of robotics have garnered increasing attention. LLMs possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots. Researchers and engineers in the field of robotics have recognized the immense potential of LLMs in enhancing robot intelligence, human-robot interaction, and autonomy. Therefore, this comprehensive review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning. We first provide an overview of the background and development of LLMs for robotics, followed by a description of the benefits of LLMs for robotics and recent advancements in robotics models based on LLMs. We then delve into the various techniques used in the model, including those employed in perception, decision-making, control, and interaction. Finally, we explore the applications of LLMs in robotics and some potential challenges they may face in the near future. Embodied intelligence is the future of intelligent science, and LLMs-based robotics is one of the promising but challenging paths to achieve this.
One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, translating these demonstrations into robot-executable actions presents significant challenges due to execution mismatches in movement styles and physical capabilities. Existing methods either depend on human-robot paired data, which is infeasible to scale, or rely heavily on frame-level visual similarities that often break down in practice. To address these challenges, we propose RHyME, a novel framework that automatically aligns human and robot task executions using optimal transport costs. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human videos by retrieving and composing short-horizon human clips. This approach facilitates effective policy training without the need for paired data. RHyME successfully imitates a range of cross-embodiment demonstrators, both in simulation and with a real human hand, achieving over 50\% increase in task success compared to previous methods. We release our code and datasets at https://portal-cornell.github.io/rhyme/.
MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities
For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.
Breaking the Data Barrier -- Building GUI Agents Through Task Generalization
Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.
Aligning Machine and Human Visual Representations across Abstraction Levels
Deep neural networks have achieved success across a wide range of applications, including as models of human behavior in vision tasks. However, neural network training and human learning differ in fundamental ways, and neural networks often fail to generalize as robustly as humans do, raising questions regarding the similarity of their underlying representations. What is missing for modern learning systems to exhibit more human-like behavior? We highlight a key misalignment between vision models and humans: whereas human conceptual knowledge is hierarchically organized from fine- to coarse-scale distinctions, model representations do not accurately capture all these levels of abstraction. To address this misalignment, we first train a teacher model to imitate human judgments, then transfer human-like structure from its representations into pretrained state-of-the-art vision foundation models. These human-aligned models more accurately approximate human behavior and uncertainty across a wide range of similarity tasks, including a new dataset of human judgments spanning multiple levels of semantic abstractions. They also perform better on a diverse set of machine learning tasks, increasing generalization and out-of-distribution robustness. Thus, infusing neural networks with additional human knowledge yields a best-of-both-worlds representation that is both more consistent with human cognition and more practically useful, thus paving the way toward more robust, interpretable, and human-like artificial intelligence systems.
What Questions Should Robots Be Able to Answer? A Dataset of User Questions for Explainable Robotics
With the growing use of large language models and conversational interfaces in human-robot interaction, robots' ability to answer user questions is more important than ever. We therefore introduce a dataset of 1,893 user questions for household robots, collected from 100 participants and organized into 12 categories and 70 subcategories. Most work in explainable robotics focuses on why-questions. In contrast, our dataset provides a wide variety of questions, from questions about simple execution details to questions about how the robot would act in hypothetical scenarios -- thus giving roboticists valuable insights into what questions their robot needs to be able to answer. To collect the dataset, we created 15 video stimuli and 7 text stimuli, depicting robots performing varied household tasks. We then asked participants on Prolific what questions they would want to ask the robot in each portrayed situation. In the final dataset, the most frequent categories are questions about task execution details (22.5%), the robot's capabilities (12.7%), and performance assessments (11.3%). Although questions about how robots would handle potentially difficult scenarios and ensure correct behavior are less frequent, users rank them as the most important for robots to be able to answer. Moreover, we find that users who identify as novices in robotics ask different questions than more experienced users. Novices are more likely to inquire about simple facts, such as what the robot did or the current state of the environment. As robots enter environments shared with humans and language becomes central to giving instructions and interaction, this dataset provides a valuable foundation for (i) identifying the information robots need to log and expose to conversational interfaces, (ii) benchmarking question-answering modules, and (iii) designing explanation strategies that align with user expectations.
HERMES: Human-to-Robot Embodied Learning from Multi-Source Motion Data for Mobile Dexterous Manipulation
Leveraging human motion data to impart robots with versatile manipulation skills has emerged as a promising paradigm in robotic manipulation. Nevertheless, translating multi-source human hand motions into feasible robot behaviors remains challenging, particularly for robots equipped with multi-fingered dexterous hands characterized by complex, high-dimensional action spaces. Moreover, existing approaches often struggle to produce policies capable of adapting to diverse environmental conditions. In this paper, we introduce HERMES, a human-to-robot learning framework for mobile bimanual dexterous manipulation. First, HERMES formulates a unified reinforcement learning approach capable of seamlessly transforming heterogeneous human hand motions from multiple sources into physically plausible robotic behaviors. Subsequently, to mitigate the sim2real gap, we devise an end-to-end, depth image-based sim2real transfer method for improved generalization to real-world scenarios. Furthermore, to enable autonomous operation in varied and unstructured environments, we augment the navigation foundation model with a closed-loop Perspective-n-Point (PnP) localization mechanism, ensuring precise alignment of visual goals and effectively bridging autonomous navigation and dexterous manipulation. Extensive experimental results demonstrate that HERMES consistently exhibits generalizable behaviors across diverse, in-the-wild scenarios, successfully performing numerous complex mobile bimanual dexterous manipulation tasks. Project Page:https://gemcollector.github.io/HERMES/.
Gen2Sim: Scaling up Robot Learning in Simulation with Generative Models
Generalist robot manipulators need to learn a wide variety of manipulation skills across diverse environments. Current robot training pipelines rely on humans to provide kinesthetic demonstrations or to program simulation environments and to code up reward functions for reinforcement learning. Such human involvement is an important bottleneck towards scaling up robot learning across diverse tasks and environments. We propose Generation to Simulation (Gen2Sim), a method for scaling up robot skill learning in simulation by automating generation of 3D assets, task descriptions, task decompositions and reward functions using large pre-trained generative models of language and vision. We generate 3D assets for simulation by lifting open-world 2D object-centric images to 3D using image diffusion models and querying LLMs to determine plausible physics parameters. Given URDF files of generated and human-developed assets, we chain-of-thought prompt LLMs to map these to relevant task descriptions, temporal decompositions, and corresponding python reward functions for reinforcement learning. We show Gen2Sim succeeds in learning policies for diverse long horizon tasks, where reinforcement learning with non temporally decomposed reward functions fails. Gen2Sim provides a viable path for scaling up reinforcement learning for robot manipulators in simulation, both by diversifying and expanding task and environment development, and by facilitating the discovery of reinforcement-learned behaviors through temporal task decomposition in RL. Our work contributes hundreds of simulated assets, tasks and demonstrations, taking a step towards fully autonomous robotic manipulation skill acquisition in simulation.
Imitating Human Search Strategies for Assembly
We present a Learning from Demonstration method for teaching robots to perform search strategies imitated from humans in scenarios where alignment tasks fail due to position uncertainty. The method utilizes human demonstrations to learn both a state invariant dynamics model and an exploration distribution that captures the search area covered by the demonstrator. We present two alternative algorithms for computing a search trajectory from the exploration distribution, one based on sampling and another based on deterministic ergodic control. We augment the search trajectory with forces learnt through the dynamics model to enable searching both in force and position domains. An impedance controller with superposed forces is used for reproducing the learnt strategy. We experimentally evaluate the method on a KUKA LWR4+ performing a 2D peg-in-hole and a 3D electricity socket task. Results show that the proposed method can, with only few human demonstrations, learn to complete the search task.
Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
RDT-1B: a Diffusion Foundation Model for Bimanual Manipulation
Bimanual manipulation is essential in robotics, yet developing foundation models is extremely challenging due to the inherent complexity of coordinating two robot arms (leading to multi-modal action distributions) and the scarcity of training data. In this paper, we present the Robotics Diffusion Transformer (RDT), a pioneering diffusion foundation model for bimanual manipulation. RDT builds on diffusion models to effectively represent multi-modality, with innovative designs of a scalable Transformer to deal with the heterogeneity of multi-modal inputs and to capture the nonlinearity and high frequency of robotic data. To address data scarcity, we further introduce a Physically Interpretable Unified Action Space, which can unify the action representations of various robots while preserving the physical meanings of original actions, facilitating learning transferrable physical knowledge. With these designs, we managed to pre-train RDT on the largest collection of multi-robot datasets to date and scaled it up to 1.2B parameters, which is the largest diffusion-based foundation model for robotic manipulation. We finally fine-tuned RDT on a self-created multi-task bimanual dataset with over 6K+ episodes to refine its manipulation capabilities. Experiments on real robots demonstrate that RDT significantly outperforms existing methods. It exhibits zero-shot generalization to unseen objects and scenes, understands and follows language instructions, learns new skills with just 1~5 demonstrations, and effectively handles complex, dexterous tasks. We refer to https://rdt-robotics.github.io/rdt-robotics/ for the code and videos.
Any-point Trajectory Modeling for Policy Learning
Learning from demonstration is a powerful method for teaching robots new skills, and having more demonstration data often improves policy learning. However, the high cost of collecting demonstration data is a significant bottleneck. Videos, as a rich data source, contain knowledge of behaviors, physics, and semantics, but extracting control-specific information from them is challenging due to the lack of action labels. In this work, we introduce a novel framework, Any-point Trajectory Modeling (ATM), that utilizes video demonstrations by pre-training a trajectory model to predict future trajectories of arbitrary points within a video frame. Once trained, these trajectories provide detailed control guidance, enabling the learning of robust visuomotor policies with minimal action-labeled data. Across over 130 language-conditioned tasks we evaluated in both simulation and the real world, ATM outperforms strong video pre-training baselines by 80% on average. Furthermore, we show effective transfer learning of manipulation skills from human videos and videos from a different robot morphology. Visualizations and code are available at: https://xingyu-lin.github.io/atm.
HumanPlus: Humanoid Shadowing and Imitation from Humans
One of the key arguments for building robots that have similar form factors to human beings is that we can leverage the massive human data for training. Yet, doing so has remained challenging in practice due to the complexities in humanoid perception and control, lingering physical gaps between humanoids and humans in morphologies and actuation, and lack of a data pipeline for humanoids to learn autonomous skills from egocentric vision. In this paper, we introduce a full-stack system for humanoids to learn motion and autonomous skills from human data. We first train a low-level policy in simulation via reinforcement learning using existing 40-hour human motion datasets. This policy transfers to the real world and allows humanoid robots to follow human body and hand motion in real time using only a RGB camera, i.e. shadowing. Through shadowing, human operators can teleoperate humanoids to collect whole-body data for learning different tasks in the real world. Using the data collected, we then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously by imitating human skills. We demonstrate the system on our customized 33-DoF 180cm humanoid, autonomously completing tasks such as wearing a shoe to stand up and walk, unloading objects from warehouse racks, folding a sweatshirt, rearranging objects, typing, and greeting another robot with 60-100% success rates using up to 40 demonstrations. Project website: https://humanoid-ai.github.io/
There Are a Thousand Hamlets in a Thousand People's Eyes: Enhancing Knowledge-grounded Dialogue with Personal Memory
Knowledge-grounded conversation (KGC) shows great potential in building an engaging and knowledgeable chatbot, and knowledge selection is a key ingredient in it. However, previous methods for knowledge selection only concentrate on the relevance between knowledge and dialogue context, ignoring the fact that age, hobby, education and life experience of an interlocutor have a major effect on his or her personal preference over external knowledge. Without taking the personalization issue into account, it is difficult to select the proper knowledge and generate persona-consistent responses. In this work, we introduce personal memory into knowledge selection in KGC to address the personalization issue. We propose a variational method to model the underlying relationship between one's personal memory and his or her selection of knowledge, and devise a learning scheme in which the forward mapping from personal memory to knowledge and its inverse mapping is included in a closed loop so that they could teach each other. Experiment results show that our method outperforms existing KGC methods significantly on both automatic evaluation and human evaluation.
Symbiotic Child Emotional Support with Social Robots and Temporal Knowledge Graphs
In current youth-care programs, children with needs (mental health, family issues, learning disabilities, and autism) receive support from youth and family experts as one-to-one assistance at schools or hospitals. Occasionally, social robots have featured in such settings as support roles in a one-to-one interaction with the child. In this paper, we suggest the development of a symbiotic framework for real-time Emotional Support (ES) with social robots Knowledge Graphs (KG). By augmenting a domain-specific corpus from the literature on ES for children (between the age of 8 and 12) and providing scenario-driven context including the history of events, we suggest developing an experimental knowledge-aware ES framework. The framework both guides the social robot in providing ES statements to the child and assists the expert in tracking and interpreting the child's emotional state and related events over time.
AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents
Foundation models that incorporate language, vision, and more recently actions have revolutionized the ability to harness internet scale data to reason about useful tasks. However, one of the key challenges of training embodied foundation models is the lack of data grounded in the physical world. In this paper, we propose AutoRT, a system that leverages existing foundation models to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision. AutoRT leverages vision-language models (VLMs) for scene understanding and grounding, and further uses large language models (LLMs) for proposing diverse and novel instructions to be performed by a fleet of robots. Guiding data collection by tapping into the knowledge of foundation models enables AutoRT to effectively reason about autonomy tradeoffs and safety while significantly scaling up data collection for robot learning. We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies. We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
ArK: Augmented Reality with Knowledge Interactive Emergent Ability
Despite the growing adoption of mixed reality and interactive AI agents, it remains challenging for these systems to generate high quality 2D/3D scenes in unseen environments. The common practice requires deploying an AI agent to collect large amounts of data for model training for every new task. This process is costly, or even impossible, for many domains. In this study, we develop an infinite agent that learns to transfer knowledge memory from general foundation models (e.g. GPT4, DALLE) to novel domains or scenarios for scene understanding and generation in the physical or virtual world. The heart of our approach is an emerging mechanism, dubbed Augmented Reality with Knowledge Inference Interaction (ArK), which leverages knowledge-memory to generate scenes in unseen physical world and virtual reality environments. The knowledge interactive emergent ability (Figure 1) is demonstrated as the observation learns i) micro-action of cross-modality: in multi-modality models to collect a large amount of relevant knowledge memory data for each interaction task (e.g., unseen scene understanding) from the physical reality; and ii) macro-behavior of reality-agnostic: in mix-reality environments to improve interactions that tailor to different characterized roles, target variables, collaborative information, and so on. We validate the effectiveness of ArK on the scene generation and editing tasks. We show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes, compared to baselines, demonstrating the potential benefit of incorporating ArK in generative AI for applications such as metaverse and gaming simulation.
Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning
Reinforcement learning (RL) holds great promise for enabling autonomous acquisition of complex robotic manipulation skills, but realizing this potential in real-world settings has been challenging. We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks, including dynamic manipulation, precision assembly, and dual-arm coordination. Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies that achieve near-perfect success rates and fast cycle times within just 1 to 2.5 hours of training. We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution. Through extensive experiments and analysis, we provide insights into the effectiveness of our approach, demonstrating how it learns robust, adaptive policies for both reactive and predictive control strategies. Our results suggest that RL can indeed learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements. Videos and code are available at our project website https://hil-serl.github.io/.
H2R: A Human-to-Robot Data Augmentation for Robot Pre-training from Videos
Large-scale pre-training using videos has proven effective for robot learning. However, the models pre-trained on such data can be suboptimal for robot learning due to the significant visual gap between human hands and those of different robots. To remedy this, we propose H2R, a simple data augmentation technique that detects human hand keypoints, synthesizes robot motions in simulation, and composites rendered robots into egocentric videos. This process explicitly bridges the visual gap between human and robot embodiments during pre-training. We apply H2R to augment large-scale egocentric human video datasets such as Ego4D and SSv2, replacing human hands with simulated robotic arms to generate robot-centric training data. Based on this, we construct and release a family of 1M-scale datasets covering multiple robot embodiments (UR5 with gripper/Leaphand, Franka) and data sources (SSv2, Ego4D). To verify the effectiveness of the augmentation pipeline, we introduce a CLIP-based image-text similarity metric that quantitatively evaluates the semantic fidelity of robot-rendered frames to the original human actions. We validate H2R across three simulation benchmarks: Robomimic, RLBench and PushT and real-world manipulation tasks with a UR5 robot equipped with Gripper and Leaphand end-effectors. H2R consistently improves downstream success rates, yielding gains of 5.0%-10.2% in simulation and 6.7%-23.3% in real-world tasks across various visual encoders and policy learning methods. These results indicate that H2R improves the generalization ability of robotic policies by mitigating the visual discrepancies between human and robot domains.
Towards Diverse Behaviors: A Benchmark for Imitation Learning with Human Demonstrations
Imitation learning with human data has demonstrated remarkable success in teaching robots in a wide range of skills. However, the inherent diversity in human behavior leads to the emergence of multi-modal data distributions, thereby presenting a formidable challenge for existing imitation learning algorithms. Quantifying a model's capacity to capture and replicate this diversity effectively is still an open problem. In this work, we introduce simulation benchmark environments and the corresponding Datasets with Diverse human Demonstrations for Imitation Learning (D3IL), designed explicitly to evaluate a model's ability to learn multi-modal behavior. Our environments are designed to involve multiple sub-tasks that need to be solved, consider manipulation of multiple objects which increases the diversity of the behavior and can only be solved by policies that rely on closed loop sensory feedback. Other available datasets are missing at least one of these challenging properties. To address the challenge of diversity quantification, we introduce tractable metrics that provide valuable insights into a model's ability to acquire and reproduce diverse behaviors. These metrics offer a practical means to assess the robustness and versatility of imitation learning algorithms. Furthermore, we conduct a thorough evaluation of state-of-the-art methods on the proposed task suite. This evaluation serves as a benchmark for assessing their capability to learn diverse behaviors. Our findings shed light on the effectiveness of these methods in tackling the intricate problem of capturing and generalizing multi-modal human behaviors, offering a valuable reference for the design of future imitation learning algorithms.
This&That: Language-Gesture Controlled Video Generation for Robot Planning
We propose a robot learning method for communicating, planning, and executing a wide range of tasks, dubbed This&That. We achieve robot planning for general tasks by leveraging the power of video generative models trained on internet-scale data containing rich physical and semantic context. In this work, we tackle three fundamental challenges in video-based planning: 1) unambiguous task communication with simple human instructions, 2) controllable video generation that respects user intents, and 3) translating visual planning into robot actions. We propose language-gesture conditioning to generate videos, which is both simpler and clearer than existing language-only methods, especially in complex and uncertain environments. We then suggest a behavioral cloning design that seamlessly incorporates the video plans. This&That demonstrates state-of-the-art effectiveness in addressing the above three challenges, and justifies the use of video generation as an intermediate representation for generalizable task planning and execution. Project website: https://cfeng16.github.io/this-and-that/.
ReWiND: Language-Guided Rewards Teach Robot Policies without New Demonstrations
We introduce ReWiND, a framework for learning robot manipulation tasks solely from language instructions without per-task demonstrations. Standard reinforcement learning (RL) and imitation learning methods require expert supervision through human-designed reward functions or demonstrations for every new task. In contrast, ReWiND starts from a small demonstration dataset to learn: (1) a data-efficient, language-conditioned reward function that labels the dataset with rewards, and (2) a language-conditioned policy pre-trained with offline RL using these rewards. Given an unseen task variation, ReWiND fine-tunes the pre-trained policy using the learned reward function, requiring minimal online interaction. We show that ReWiND's reward model generalizes effectively to unseen tasks, outperforming baselines by up to 2.4x in reward generalization and policy alignment metrics. Finally, we demonstrate that ReWiND enables sample-efficient adaptation to new tasks, beating baselines by 2x in simulation and improving real-world pretrained bimanual policies by 5x, taking a step towards scalable, real-world robot learning. See website at https://rewind-reward.github.io/.
Auto-Transfer: Learning to Route Transferrable Representations
Knowledge transfer between heterogeneous source and target networks and tasks has received a lot of attention in recent times as large amounts of quality labeled data can be difficult to obtain in many applications. Existing approaches typically constrain the target deep neural network (DNN) feature representations to be close to the source DNNs feature representations, which can be limiting. We, in this paper, propose a novel adversarial multi-armed bandit approach that automatically learns to route source representations to appropriate target representations following which they are combined in meaningful ways to produce accurate target models. We see upwards of 5\% accuracy improvements compared with the state-of-the-art knowledge transfer methods on four benchmark (target) image datasets CUB200, Stanford Dogs, MIT67, and Stanford40 where the source dataset is ImageNet. We qualitatively analyze the goodness of our transfer scheme by showing individual examples of the important features focused on by our target network at different layers compared with the (closest) competitors. We also observe that our improvement over other methods is higher for smaller target datasets making it an effective tool for small data applications that may benefit from transfer learning.
Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI
Scientific discovery has long been constrained by human limitations in expertise, physical capability, and sleep cycles. The recent rise of AI scientists and automated laboratories has accelerated both the cognitive and operational aspects of research. However, key limitations persist: AI systems are often confined to virtual environments, while automated laboratories lack the flexibility and autonomy to adaptively test new hypotheses in the physical world. Recent advances in embodied AI, such as generalist robot foundation models, diffusion-based action policies, fine-grained manipulation learning, and sim-to-real transfer, highlight the promise of integrating cognitive and embodied intelligence. This convergence opens the door to closed-loop systems that support iterative, autonomous experimentation and the possibility of serendipitous discovery. In this position paper, we propose the paradigm of Intelligent Science Laboratories (ISLs): a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence. ISLs unify foundation models for scientific reasoning, agent-based workflow orchestration, and embodied agents for robust physical experimentation. We argue that such systems are essential for overcoming the current limitations of scientific discovery and for realizing the full transformative potential of AI-driven science.
Learning Dynamic Robot-to-Human Object Handover from Human Feedback
Object handover is a basic, but essential capability for robots interacting with humans in many applications, e.g., caring for the elderly and assisting workers in manufacturing workshops. It appears deceptively simple, as humans perform object handover almost flawlessly. The success of humans, however, belies the complexity of object handover as collaborative physical interaction between two agents with limited communication. This paper presents a learning algorithm for dynamic object handover, for example, when a robot hands over water bottles to marathon runners passing by the water station. We formulate the problem as contextual policy search, in which the robot learns object handover by interacting with the human. A key challenge here is to learn the latent reward of the handover task under noisy human feedback. Preliminary experiments show that the robot learns to hand over a water bottle naturally and that it adapts to the dynamics of human motion. One challenge for the future is to combine the model-free learning algorithm with a model-based planning approach and enable the robot to adapt over human preferences and object characteristics, such as shape, weight, and surface texture.
Learning Universal Policies via Text-Guided Video Generation
A goal of artificial intelligence is to construct an agent that can solve a wide variety of tasks. Recent progress in text-guided image synthesis has yielded models with an impressive ability to generate complex novel images, exhibiting combinatorial generalization across domains. Motivated by this success, we investigate whether such tools can be used to construct more general-purpose agents. Specifically, we cast the sequential decision making problem as a text-conditioned video generation problem, where, given a text-encoded specification of a desired goal, a planner synthesizes a set of future frames depicting its planned actions in the future, after which control actions are extracted from the generated video. By leveraging text as the underlying goal specification, we are able to naturally and combinatorially generalize to novel goals. The proposed policy-as-video formulation can further represent environments with different state and action spaces in a unified space of images, which, for example, enables learning and generalization across a variety of robot manipulation tasks. Finally, by leveraging pretrained language embeddings and widely available videos from the internet, the approach enables knowledge transfer through predicting highly realistic video plans for real robots.
AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot Manipulation
We propose a novel framework for learning high-level cognitive capabilities in robot manipulation tasks, such as making a smiley face using building blocks. These tasks often involve complex multi-step reasoning, presenting significant challenges due to the limited paired data connecting human instructions (e.g., making a smiley face) and robot actions (e.g., end-effector movement). Existing approaches relieve this challenge by adopting an open-loop paradigm decomposing high-level instructions into simple sub-task plans, and executing them step-by-step using low-level control models. However, these approaches are short of instant observations in multi-step reasoning, leading to sub-optimal results. To address this issue, we propose to automatically collect a cognitive robot dataset by Large Language Models (LLMs). The resulting dataset AlphaBlock consists of 35 comprehensive high-level tasks of multi-step text plans and paired observation sequences. To enable efficient data acquisition, we employ elaborated multi-round prompt designs that effectively reduce the burden of extensive human involvement. We further propose a closed-loop multi-modal embodied planning model that autoregressively generates plans by taking image observations as input. To facilitate effective learning, we leverage MiniGPT-4 with a frozen visual encoder and LLM, and finetune additional vision adapter and Q-former to enable fine-grained spatial perception for manipulation tasks. We conduct experiments to verify the superiority over existing open and closed-loop methods, and achieve a significant increase in success rate by 21.4% and 14.5% over ChatGPT and GPT-4 based robot tasks. Real-world demos are shown in https://www.youtube.com/watch?v=ayAzID1_qQk .
A Survey on Robotics with Foundation Models: toward Embodied AI
While the exploration for embodied AI has spanned multiple decades, it remains a persistent challenge to endow agents with human-level intelligence, including perception, learning, reasoning, decision-making, control, and generalization capabilities, so that they can perform general-purpose tasks in open, unstructured, and dynamic environments. Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks. They not only provide a solid cornerstone for integrating basic modules into embodied AI systems but also shed light on how to scale up robot learning from a methodological perspective. This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control. Moreover, we showcase their commonly used datasets, simulators, and benchmarks. Importantly, we emphasize the critical challenges intrinsic to this field and delineate potential avenues for future research, contributing to advancing the frontier of academic and industrial discourse.
Human-in-the-loop Embodied Intelligence with Interactive Simulation Environment for Surgical Robot Learning
Surgical robot automation has attracted increasing research interest over the past decade, expecting its potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied intelligence has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant research. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how the human demonstrations would affect policy learning. In this work, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. We showcase the improvement of our simulation environment with the designed new features, and validate effectiveness of incorporating human factors in embodied intelligence through the use of human demonstrations and reinforcement learning as a representative example. Promising results are obtained in terms of learning efficiency. Lastly, five new surgical robot training tasks are developed and released, with which we hope to pave the way for future research on surgical embodied intelligence. Our learning platform is publicly released and will be continuously updated in the website: https://med-air.github.io/SurRoL.
Dynamic Knowledge Integration for Enhanced Vision-Language Reasoning
Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multimodal tasks, but their performance is often constrained by the lack of external knowledge integration, limiting their ability to handle knowledge-intensive tasks such as visual question answering and reasoning. To address this challenge, we propose a novel method, Adaptive Knowledge-Guided Pretraining for Large Vision-Language Models (AKGP-LVLM), which dynamically incorporates structured and unstructured knowledge into LVLMs during pretraining and fine-tuning. Our approach employs a knowledge encoder to represent external knowledge, a retrieval mechanism to select task-relevant information, and a dynamic adaptor to align multimodal and knowledge representations effectively. We evaluate our method on four benchmark datasets, demonstrating significant performance improvements over state-of-the-art models. Furthermore, human evaluations highlight the superior correctness and relevance of our model's outputs. Extensive analyses confirm the robustness, efficiency, and scalability of AKGP-LVLM, making it a compelling solution for real-world knowledge-intensive tasks.
Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics
Large Vision-Language Models (LVLMs) have recently shown great promise in advancing robotics by combining embodied reasoning with robot control. A common approach involves training on embodied reasoning tasks related to robot control using Supervised Fine-Tuning (SFT). However, SFT datasets are often heuristically constructed and not explicitly optimized for improving robot control. Furthermore, SFT often leads to issues such as catastrophic forgetting and reduced generalization performance. To address these limitations, we introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control. Robot-R1 learns to predict the next keypoint state required for task completion, conditioned on the current scene image and environment metadata derived from expert demonstrations. Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions. Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks. Despite having only 7B parameters, Robot-R1 even surpasses GPT-4o on reasoning tasks related to low-level action control, such as spatial and primitive movement reasoning.
Structured World Models from Human Videos
We tackle the problem of learning complex, general behaviors directly in the real world. We propose an approach for robots to efficiently learn manipulation skills using only a handful of real-world interaction trajectories from many different settings. Inspired by the success of learning from large-scale datasets in the fields of computer vision and natural language, our belief is that in order to efficiently learn, a robot must be able to leverage internet-scale, human video data. Humans interact with the world in many interesting ways, which can allow a robot to not only build an understanding of useful actions and affordances but also how these actions affect the world for manipulation. Our approach builds a structured, human-centric action space grounded in visual affordances learned from human videos. Further, we train a world model on human videos and fine-tune on a small amount of robot interaction data without any task supervision. We show that this approach of affordance-space world models enables different robots to learn various manipulation skills in complex settings, in under 30 minutes of interaction. Videos can be found at https://human-world-model.github.io
Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image Transformers Help 3D Representation Learning?
The success of deep learning heavily relies on large-scale data with comprehensive labels, which is more expensive and time-consuming to fetch in 3D compared to 2D images or natural languages. This promotes the potential of utilizing models pretrained with data more than 3D as teachers for cross-modal knowledge transferring. In this paper, we revisit masked modeling in a unified fashion of knowledge distillation, and we show that foundational Transformers pretrained with 2D images or natural languages can help self-supervised 3D representation learning through training Autoencoders as Cross-Modal Teachers (ACT). The pretrained Transformers are transferred as cross-modal 3D teachers using discrete variational autoencoding self-supervision, during which the Transformers are frozen with prompt tuning for better knowledge inheritance. The latent features encoded by the 3D teachers are used as the target of masked point modeling, wherein the dark knowledge is distilled to the 3D Transformer students as foundational geometry understanding. Our ACT pretrained 3D learner achieves state-of-the-art generalization capacity across various downstream benchmarks, e.g., 88.21% overall accuracy on ScanObjectNN. Codes have been released at https://github.com/RunpeiDong/ACT.
GeRM: A Generalist Robotic Model with Mixture-of-experts for Quadruped Robot
Multi-task robot learning holds significant importance in tackling diverse and complex scenarios. However, current approaches are hindered by performance issues and difficulties in collecting training datasets. In this paper, we propose GeRM (Generalist Robotic Model). We utilize offline reinforcement learning to optimize data utilization strategies to learn from both demonstrations and sub-optimal data, thus surpassing the limitations of human demonstrations. Thereafter, we employ a transformer-based VLA network to process multi-modal inputs and output actions. By introducing the Mixture-of-Experts structure, GeRM allows faster inference speed with higher whole model capacity, and thus resolves the issue of limited RL parameters, enhancing model performance in multi-task learning while controlling computational costs. Through a series of experiments, we demonstrate that GeRM outperforms other methods across all tasks, while also validating its efficiency in both training and inference processes. Additionally, we uncover its potential to acquire emergent skills. Additionally, we contribute the QUARD-Auto dataset, collected automatically to support our training approach and foster advancements in multi-task quadruped robot learning. This work presents a new paradigm for reducing the cost of collecting robot data and driving progress in the multi-task learning community.
CrossLoco: Human Motion Driven Control of Legged Robots via Guided Unsupervised Reinforcement Learning
Human motion driven control (HMDC) is an effective approach for generating natural and compelling robot motions while preserving high-level semantics. However, establishing the correspondence between humans and robots with different body structures is not straightforward due to the mismatches in kinematics and dynamics properties, which causes intrinsic ambiguity to the problem. Many previous algorithms approach this motion retargeting problem with unsupervised learning, which requires the prerequisite skill sets. However, it will be extremely costly to learn all the skills without understanding the given human motions, particularly for high-dimensional robots. In this work, we introduce CrossLoco, a guided unsupervised reinforcement learning framework that simultaneously learns robot skills and their correspondence to human motions. Our key innovation is to introduce a cycle-consistency-based reward term designed to maximize the mutual information between human motions and robot states. We demonstrate that the proposed framework can generate compelling robot motions by translating diverse human motions, such as running, hopping, and dancing. We quantitatively compare our CrossLoco against the manually engineered and unsupervised baseline algorithms along with the ablated versions of our framework and demonstrate that our method translates human motions with better accuracy, diversity, and user preference. We also showcase its utility in other applications, such as synthesizing robot movements from language input and enabling interactive robot control.
Knowledge-enhanced Agents for Interactive Text Games
Communication via natural language is a crucial aspect of intelligence, and it requires computational models to learn and reason about world concepts, with varying levels of supervision. While there has been significant progress made on fully-supervised non-interactive tasks, such as question-answering and procedural text understanding, much of the community has turned to various sequential interactive tasks, as in semi-Markov text-based games, which have revealed limitations of existing approaches in terms of coherence, contextual awareness, and their ability to learn effectively from the environment. In this paper, we propose a framework for enabling improved functional grounding of agents in text-based games. Specifically, we consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment. Our framework supports three representative model classes: `pure' reinforcement learning (RL) agents, RL agents enhanced with knowledge graphs, and agents equipped with language models. Furthermore, we devise multiple injection strategies for the above domain knowledge types and agent architectures, including injection via knowledge graphs and augmentation of the existing input encoding strategies. We perform all experiments on the ScienceWorld text-based game environment, to illustrate the performance of various model configurations in challenging science-related instruction-following tasks. Our findings provide crucial insights on the development of effective natural language processing systems for interactive contexts.
Overcoming Knowledge Barriers: Online Imitation Learning from Observation with Pretrained World Models
Incorporating the successful paradigm of pretraining and finetuning from Computer Vision and Natural Language Processing into decision-making has become increasingly popular in recent years. In this paper, we study Imitation Learning from Observation with pretrained models and find existing approaches such as BCO and AIME face knowledge barriers, specifically the Embodiment Knowledge Barrier (EKB) and the Demonstration Knowledge Barrier (DKB), greatly limiting their performance. The EKB arises when pretrained models lack knowledge about unseen observations, leading to errors in action inference. The DKB results from policies trained on limited demonstrations, hindering adaptability to diverse scenarios. We thoroughly analyse the underlying mechanism of these barriers and propose AIME-v2 upon AIME as a solution. AIME-v2 uses online interactions with data-driven regulariser to alleviate the EKB and mitigates the DKB by introducing a surrogate reward function to enhance policy training. Experimental results on tasks from the DeepMind Control Suite and Meta-World benchmarks demonstrate the effectiveness of these modifications in improving both sample-efficiency and converged performance. The study contributes valuable insights into resolving knowledge barriers for enhanced decision-making in pretraining-based approaches. Code will be available at https://github.com/argmax-ai/aime-v2.
Sim-to-Real Reinforcement Learning for Vision-Based Dexterous Manipulation on Humanoids
Reinforcement learning has delivered promising results in achieving human- or even superhuman-level capabilities across diverse problem domains, but success in dexterous robot manipulation remains limited. This work investigates the key challenges in applying reinforcement learning to solve a collection of contact-rich manipulation tasks on a humanoid embodiment. We introduce novel techniques to overcome the identified challenges with empirical validation. Our main contributions include an automated real-to-sim tuning module that brings the simulated environment closer to the real world, a generalized reward design scheme that simplifies reward engineering for long-horizon contact-rich manipulation tasks, a divide-and-conquer distillation process that improves the sample efficiency of hard-exploration problems while maintaining sim-to-real performance, and a mixture of sparse and dense object representations to bridge the sim-to-real perception gap. We show promising results on three humanoid dexterous manipulation tasks, with ablation studies on each technique. Our work presents a successful approach to learning humanoid dexterous manipulation using sim-to-real reinforcement learning, achieving robust generalization and high performance without the need for human demonstration.
Open-World Object Manipulation using Pre-trained Vision-Language Models
For robots to follow instructions from people, they must be able to connect the rich semantic information in human vocabulary, e.g. "can you get me the pink stuffed whale?" to their sensory observations and actions. This brings up a notably difficult challenge for robots: while robot learning approaches allow robots to learn many different behaviors from first-hand experience, it is impractical for robots to have first-hand experiences that span all of this semantic information. We would like a robot's policy to be able to perceive and pick up the pink stuffed whale, even if it has never seen any data interacting with a stuffed whale before. Fortunately, static data on the internet has vast semantic information, and this information is captured in pre-trained vision-language models. In this paper, we study whether we can interface robot policies with these pre-trained models, with the aim of allowing robots to complete instructions involving object categories that the robot has never seen first-hand. We develop a simple approach, which we call Manipulation of Open-World Objects (MOO), which leverages a pre-trained vision-language model to extract object-identifying information from the language command and image, and conditions the robot policy on the current image, the instruction, and the extracted object information. In a variety of experiments on a real mobile manipulator, we find that MOO generalizes zero-shot to a wide range of novel object categories and environments. In addition, we show how MOO generalizes to other, non-language-based input modalities to specify the object of interest such as finger pointing, and how it can be further extended to enable open-world navigation and manipulation. The project's website and evaluation videos can be found at https://robot-moo.github.io/
AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks described by natural language. Recent advances in large language models (LLMs) have shown promise for translating natural language into robot action sequences for complex tasks. However, existing approaches either translate the natural language directly into robot trajectories or factor the inference process by decomposing language into task sub-goals and relying on a motion planner to execute each sub-goal. When complex environmental and temporal constraints are involved, inference over planning tasks must be performed jointly with motion plans using traditional task-and-motion planning (TAMP) algorithms, making factorization into subgoals untenable. Rather than using LLMs to directly plan task sub-goals, we instead perform few-shot translation from natural language task descriptions to an intermediate task representation that can then be consumed by a TAMP algorithm to jointly solve the task and motion plan. To improve translation, we automatically detect and correct both syntactic and semantic errors via autoregressive re-prompting, resulting in significant improvements in task completion. We show that our approach outperforms several methods using LLMs as planners in complex task domains. See our project website https://yongchao98.github.io/MIT-REALM-AutoTAMP/ for prompts, videos, and code.
Motion Tracks: A Unified Representation for Human-Robot Transfer in Few-Shot Imitation Learning
Teaching robots to autonomously complete everyday tasks remains a challenge. Imitation Learning (IL) is a powerful approach that imbues robots with skills via demonstrations, but is limited by the labor-intensive process of collecting teleoperated robot data. Human videos offer a scalable alternative, but it remains difficult to directly train IL policies from them due to the lack of robot action labels. To address this, we propose to represent actions as short-horizon 2D trajectories on an image. These actions, or motion tracks, capture the predicted direction of motion for either human hands or robot end-effectors. We instantiate an IL policy called Motion Track Policy (MT-pi) which receives image observations and outputs motion tracks as actions. By leveraging this unified, cross-embodiment action space, MT-pi completes tasks with high success given just minutes of human video and limited additional robot demonstrations. At test time, we predict motion tracks from two camera views, recovering 6DoF trajectories via multi-view synthesis. MT-pi achieves an average success rate of 86.5% across 4 real-world tasks, outperforming state-of-the-art IL baselines which do not leverage human data or our action space by 40%, and generalizes to scenarios seen only in human videos. Code and videos are available on our website https://portal-cornell.github.io/motion_track_policy/.
Human-AI Teaming Using Large Language Models: Boosting Brain-Computer Interfacing (BCI) and Brain Research
Recently, there is an increasing interest in using artificial intelligence (AI) to automate aspects of the research process, or even autonomously conduct the full research cycle from idea generation, over data analysis, to composing and evaluation of scientific manuscripts. Examples of working AI scientist systems have been demonstrated for computer science tasks and running molecular biology labs. While some approaches aim for full autonomy of the scientific AI, others rather aim for leveraging human-AI teaming. Here, we address how to adapt such approaches for boosting Brain-Computer Interface (BCI) development, as well as brain research resp. neuroscience at large. We argue that at this time, a strong emphasis on human-AI teaming, in contrast to fully autonomous AI BCI researcher will be the most promising way forward. We introduce the collaborative workspaces concept for human-AI teaming based on a set of Janusian design principles, looking both ways, to the human as well as to the AI side. Based on these principles, we present ChatBCI, a Python-based toolbox for enabling human-AI collaboration based on interaction with Large Language Models (LLMs), designed for BCI research and development projects. We show how ChatBCI was successfully used in a concrete BCI project on advancing motor imagery decoding from EEG signals. Our approach can be straightforwardly extended to broad neurotechnological and neuroscientific topics, and may by design facilitate human expert knowledge transfer to scientific AI systems in general.
Sensor-Invariant Tactile Representation
High-resolution tactile sensors have become critical for embodied perception and robotic manipulation. However, a key challenge in the field is the lack of transferability between sensors due to design and manufacturing variations, which result in significant differences in tactile signals. This limitation hinders the ability to transfer models or knowledge learned from one sensor to another. To address this, we introduce a novel method for extracting Sensor-Invariant Tactile Representations (SITR), enabling zero-shot transfer across optical tactile sensors. Our approach utilizes a transformer-based architecture trained on a diverse dataset of simulated sensor designs, allowing it to generalize to new sensors in the real world with minimal calibration. Experimental results demonstrate the method's effectiveness across various tactile sensing applications, facilitating data and model transferability for future advancements in the field.
MST-Distill: Mixture of Specialized Teachers for Cross-Modal Knowledge Distillation
Knowledge distillation as an efficient knowledge transfer technique, has achieved remarkable success in unimodal scenarios. However, in cross-modal settings, conventional distillation methods encounter significant challenges due to data and statistical heterogeneities, failing to leverage the complementary prior knowledge embedded in cross-modal teacher models. This paper empirically reveals two critical issues in existing approaches: distillation path selection and knowledge drift. To address these limitations, we propose MST-Distill, a novel cross-modal knowledge distillation framework featuring a mixture of specialized teachers. Our approach employs a diverse ensemble of teacher models across both cross-modal and multimodal configurations, integrated with an instance-level routing network that facilitates adaptive and dynamic distillation. This architecture effectively transcends the constraints of traditional methods that rely on monotonous and static teacher models. Additionally, we introduce a plug-in masking module, independently trained to suppress modality-specific discrepancies and reconstruct teacher representations, thereby mitigating knowledge drift and enhancing transfer effectiveness. Extensive experiments across five diverse multimodal datasets, spanning visual, audio, and text, demonstrate that our method significantly outperforms existing state-of-the-art knowledge distillation methods in cross-modal distillation tasks. The source code is available at https://github.com/Gray-OREO/MST-Distill.
Human-Robot Gym: Benchmarking Reinforcement Learning in Human-Robot Collaboration
Deep reinforcement learning (RL) has shown promising results in robot motion planning with first attempts in human-robot collaboration (HRC). However, a fair comparison of RL approaches in HRC under the constraint of guaranteed safety is yet to be made. We, therefore, present human-robot gym, a benchmark for safe RL in HRC. Our benchmark provides eight challenging, realistic HRC tasks in a modular simulation framework. Most importantly, human-robot gym includes a safety shield that provably guarantees human safety. We are, thereby, the first to provide a benchmark to train RL agents that adhere to the safety specifications of real-world HRC. This bridges a critical gap between theoretic RL research and its real-world deployment. Our evaluation of six environments led to three key results: (a) the diverse nature of the tasks offered by human-robot gym creates a challenging benchmark for state-of-the-art RL methods, (b) incorporating expert knowledge in the RL training in the form of an action-based reward can outperform the expert, and (c) our agents negligibly overfit to training data.
HARD: Hard Augmentations for Robust Distillation
Knowledge distillation (KD) is a simple and successful method to transfer knowledge from a teacher to a student model solely based on functional activity. However, current KD has a few shortcomings: it has recently been shown that this method is unsuitable to transfer simple inductive biases like shift equivariance, struggles to transfer out of domain generalization, and optimization time is magnitudes longer compared to default non-KD model training. To improve these aspects of KD, we propose Hard Augmentations for Robust Distillation (HARD), a generally applicable data augmentation framework, that generates synthetic data points for which the teacher and the student disagree. We show in a simple toy example that our augmentation framework solves the problem of transferring simple equivariances with KD. We then apply our framework in real-world tasks for a variety of augmentation models, ranging from simple spatial transformations to unconstrained image manipulations with a pretrained variational autoencoder. We find that our learned augmentations significantly improve KD performance on in-domain and out-of-domain evaluation. Moreover, our method outperforms even state-of-the-art data augmentations and since the augmented training inputs can be visualized, they offer a qualitative insight into the properties that are transferred from the teacher to the student. Thus HARD represents a generally applicable, dynamically optimized data augmentation technique tailored to improve the generalization and convergence speed of models trained with KD.
MLCopilot: Unleashing the Power of Large Language Models in Solving Machine Learning Tasks
The field of machine learning (ML) has gained widespread adoption, leading to a significant demand for adapting ML to specific scenarios, which is yet expensive and non-trivial. The predominant approaches towards the automation of solving ML tasks (e.g., AutoML) are often time consuming and hard to understand for human developers. In contrast, though human engineers have the incredible ability to understand tasks and reason about solutions, their experience and knowledge are often sparse and difficult to utilize by quantitative approaches. In this paper, we aim to bridge the gap between machine intelligence and human knowledge by introducing a novel framework MLCopilot, which leverages the state-of-the-art LLMs to develop ML solutions for novel tasks. We showcase the possibility of extending the capability of LLMs to comprehend structured inputs and perform thorough reasoning for solving novel ML tasks. And we find that, after some dedicated design, the LLM can (i) observe from the existing experiences of ML tasks and (ii) reason effectively to deliver promising results for new tasks. The solution generated can be used directly to achieve high levels of competitiveness.
Latent Action Pretraining from Videos
We introduce Latent Action Pretraining for general Action models (LAPA), an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels. Existing Vision-Language-Action models require action labels typically collected by human teleoperators during pretraining, which significantly limits possible data sources and scale. In this work, we propose a method to learn from internet-scale videos that do not have robot action labels. We first train an action quantization model leveraging VQ-VAE-based objective to learn discrete latent actions between image frames, then pretrain a latent VLA model to predict these latent actions from observations and task descriptions, and finally finetune the VLA on small-scale robot manipulation data to map from latent to robot actions. Experimental results demonstrate that our method significantly outperforms existing techniques that train robot manipulation policies from large-scale videos. Furthermore, it outperforms the state-of-the-art VLA model trained with robotic action labels on real-world manipulation tasks that require language conditioning, generalization to unseen objects, and semantic generalization to unseen instructions. Training only on human manipulation videos also shows positive transfer, opening up the potential for leveraging web-scale data for robotics foundation model.
Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled Datasets
Enabling robots to learn novel visuomotor skills in a data-efficient manner remains an unsolved problem with myriad challenges. A popular paradigm for tackling this problem is through leveraging large unlabeled datasets that have many behaviors in them and then adapting a policy to a specific task using a small amount of task-specific human supervision (i.e. interventions or demonstrations). However, how best to leverage the narrow task-specific supervision and balance it with offline data remains an open question. Our key insight in this work is that task-specific data not only provides new data for an agent to train on but can also inform the type of prior data the agent should use for learning. Concretely, we propose a simple approach that uses a small amount of downstream expert data to selectively query relevant behaviors from an offline, unlabeled dataset (including many sub-optimal behaviors). The agent is then jointly trained on the expert and queried data. We observe that our method learns to query only the relevant transitions to the task, filtering out sub-optimal or task-irrelevant data. By doing so, it is able to learn more effectively from the mix of task-specific and offline data compared to naively mixing the data or only using the task-specific data. Furthermore, we find that our simple querying approach outperforms more complex goal-conditioned methods by 20% across simulated and real robotic manipulation tasks from images. See https://sites.google.com/view/behaviorretrieval for videos and code.
PropMEND: Hypernetworks for Knowledge Propagation in LLMs
Knowledge editing techniques for large language models (LLMs) can inject knowledge that is later reproducible verbatim, but they fall short on propagating that knowledge: models cannot answer questions that require reasoning with the injected knowledge. We present a hypernetwork-based approach for knowledge propagation, named PropMEND, where we meta-learn how to modify gradients of a language modeling loss to encourage injected information to propagate. Our approach extends the meta-objective of MEND [29] so that gradient updates on knowledge are transformed to enable answering multi-hop questions involving that knowledge. We show improved performance on the RippleEdit dataset, showing almost 2x accuracy on challenging multi-hop questions whose answers are not explicitly stated in the injected fact. We further introduce a new dataset, Controlled RippleEdit, to evaluate the generalization of our hypernetwork, testing knowledge propagation along relations and entities unseen during hypernetwork training. PropMEND still outperforms existing approaches in unseen entity-relation pairs, yet the performance gap decreases substantially, suggesting future work in propagating knowledge to a wide range of relations.
UniCoD: Enhancing Robot Policy via Unified Continuous and Discrete Representation Learning
Building generalist robot policies that can handle diverse tasks in open-ended environments is a central challenge in robotics. To leverage knowledge from large-scale pretraining, prior work has typically built generalist policies either on top of vision-language understanding models (VLMs) or generative models. However, both semantic understanding from vision-language pretraining and visual dynamics modeling from visual-generation pretraining are crucial for embodied robots. Recent unified models of generation and understanding have demonstrated strong capabilities in both comprehension and generation through large-scale pretraining. We posit that robotic policy learning can likewise benefit from the combined strengths of understanding, planning and continuous future representation learning. Building on this insight, we introduce UniCoD, which acquires the ability to dynamically model high-dimensional visual features through pretraining on over 1M internet-scale instructional manipulation videos. Subsequently, UniCoD is fine-tuned on data collected from the robot embodiment, enabling the learning of mappings from predictive representations to action tokens. Extensive experiments show our approach consistently outperforms baseline methods in terms of 9\% and 12\% across simulation environments and real-world out-of-distribution tasks.
WiseAD: Knowledge Augmented End-to-End Autonomous Driving with Vision-Language Model
The emergence of general human knowledge and impressive logical reasoning capacity in rapidly progressed vision-language models (VLMs) have driven increasing interest in applying VLMs to high-level autonomous driving tasks, such as scene understanding and decision-making. However, an in-depth study on the relationship between knowledge proficiency, especially essential driving expertise, and closed-loop autonomous driving performance requires further exploration. In this paper, we investigate the effects of the depth and breadth of fundamental driving knowledge on closed-loop trajectory planning and introduce WiseAD, a specialized VLM tailored for end-to-end autonomous driving capable of driving reasoning, action justification, object recognition, risk analysis, driving suggestions, and trajectory planning across diverse scenarios. We employ joint training on driving knowledge and planning datasets, enabling the model to perform knowledge-aligned trajectory planning accordingly. Extensive experiments indicate that as the diversity of driving knowledge extends, critical accidents are notably reduced, contributing 11.9% and 12.4% improvements in the driving score and route completion on the Carla closed-loop evaluations, achieving state-of-the-art performance. Moreover, WiseAD also demonstrates remarkable performance in knowledge evaluations on both in-domain and out-of-domain datasets.
Prompt-Time Symbolic Knowledge Capture with Large Language Models
Augmenting large language models (LLMs) with user-specific knowledge is crucial for real-world applications, such as personal AI assistants. However, LLMs inherently lack mechanisms for prompt-driven knowledge capture. This paper investigates utilizing the existing LLM capabilities to enable prompt-driven knowledge capture, with a particular emphasis on knowledge graphs. We address this challenge by focusing on prompt-to-triple (P2T) generation. We explore three methods: zero-shot prompting, few-shot prompting, and fine-tuning, and then assess their performance via a specialized synthetic dataset. Our code and datasets are publicly available at https://github.com/HaltiaAI/paper-PTSKC.
Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control
Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate this guided decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.
KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models
We present KNOW--the Knowledge Navigator Ontology for the World--the first ontology designed to capture everyday knowledge to augment large language models (LLMs) in real-world generative AI use cases such as personal AI assistants. Our domain is human life, both its everyday concerns and its major milestones. We have limited the initial scope of the modeled concepts to only established human universals: spacetime (places, events) plus social (people, groups, organizations). The inclusion criteria for modeled concepts are pragmatic, beginning with universality and utility. We compare and contrast previous work such as Schema.org and Cyc--as well as attempts at a synthesis of knowledge graphs and language models--noting how LLMs already encode internally much of the commonsense tacit knowledge that took decades to capture in the Cyc project. We also make available code-generated software libraries for the 12 most popular programming languages, enabling the direct use of ontology concepts in software engineering. We emphasize simplicity and developer experience in promoting AI interoperability.
SGL: Symbolic Goal Learning in a Hybrid, Modular Framework for Human Instruction Following
This paper investigates robot manipulation based on human instruction with ambiguous requests. The intent is to compensate for imperfect natural language via visual observations. Early symbolic methods, based on manually defined symbols, built modular framework consist of semantic parsing and task planning for producing sequences of actions from natural language requests. Modern connectionist methods employ deep neural networks to automatically learn visual and linguistic features and map to a sequence of low-level actions, in an endto-end fashion. These two approaches are blended to create a hybrid, modular framework: it formulates instruction following as symbolic goal learning via deep neural networks followed by task planning via symbolic planners. Connectionist and symbolic modules are bridged with Planning Domain Definition Language. The vision-and-language learning network predicts its goal representation, which is sent to a planner for producing a task-completing action sequence. For improving the flexibility of natural language, we further incorporate implicit human intents with explicit human instructions. To learn generic features for vision and language, we propose to separately pretrain vision and language encoders on scene graph parsing and semantic textual similarity tasks. Benchmarking evaluates the impacts of different components of, or options for, the vision-and-language learning model and shows the effectiveness of pretraining strategies. Manipulation experiments conducted in the simulator AI2THOR show the robustness of the framework to novel scenarios.
Large Language Models for Robotics: Opportunities, Challenges, and Perspectives
Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains. Notably, in the realm of robot task planning, LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions. However, for embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception. This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks. Additionally, we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions. Our results, based on diverse datasets, indicate that GPT-4V effectively enhances robot performance in embodied tasks. This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights toward bridging the gap in Human-Robot-Environment interaction.
Plug-and-Play Knowledge Injection for Pre-trained Language Models
Injecting external knowledge can improve the performance of pre-trained language models (PLMs) on various downstream NLP tasks. However, massive retraining is required to deploy new knowledge injection methods or knowledge bases for downstream tasks. In this work, we are the first to study how to improve the flexibility and efficiency of knowledge injection by reusing existing downstream models. To this end, we explore a new paradigm plug-and-play knowledge injection, where knowledge bases are injected into frozen existing downstream models by a knowledge plugin. Correspondingly, we propose a plug-and-play injection method map-tuning, which trains a mapping of knowledge embeddings to enrich model inputs with mapped embeddings while keeping model parameters frozen. Experimental results on three knowledge-driven NLP tasks show that existing injection methods are not suitable for the new paradigm, while map-tuning effectively improves the performance of downstream models. Moreover, we show that a frozen downstream model can be well adapted to different domains with different mapping networks of domain knowledge. Our code and models are available at https://github.com/THUNLP/Knowledge-Plugin.
