new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 12

Out of Length Text Recognition with Sub-String Matching

Scene Text Recognition (STR) methods have demonstrated robust performance in word-level text recognition. However, in real applications the text image is sometimes long due to detected with multiple horizontal words. It triggers the requirement to build long text recognition models from readily available short (i.e., word-level) text datasets, which has been less studied previously. In this paper, we term this task Out of Length (OOL) text recognition. We establish the first Long Text Benchmark (LTB) to facilitate the assessment of different methods in long text recognition. Meanwhile, we propose a novel method called OOL Text Recognition with sub-String Matching (SMTR). SMTR comprises two cross-attention-based modules: one encodes a sub-string containing multiple characters into next and previous queries, and the other employs the queries to attend to the image features, matching the sub-string and simultaneously recognizing its next and previous character. SMTR can recognize text of arbitrary length by iterating the process above. To avoid being trapped in recognizing highly similar sub-strings, we introduce a regularization training to compel SMTR to effectively discover subtle differences between similar sub-strings for precise matching. In addition, we propose an inference augmentation strategy to alleviate confusion caused by identical sub-strings in the same text and improve the overall recognition efficiency. Extensive experimental results reveal that SMTR, even when trained exclusively on short text, outperforms existing methods in public short text benchmarks and exhibits a clear advantage on LTB. Code: https://github.com/Topdu/OpenOCR.

  • 5 authors
·
Jul 17, 2024

Learning to Reason via Mixture-of-Thought for Logical Reasoning

Human beings naturally utilize multiple reasoning modalities to learn and solve logical problems, i.e., different representational formats such as natural language, code, and symbolic logic. In contrast, most existing LLM-based approaches operate with a single reasoning modality during training, typically natural language. Although some methods explored modality selection or augmentation at inference time, the training process remains modality-blind, limiting synergy among modalities. To fill in this gap, we propose Mixture-of-Thought (MoT), a framework that enables LLMs to reason across three complementary modalities: natural language, code, and a newly introduced symbolic modality, truth-table, which systematically enumerates logical cases and partially mitigates key failure modes in natural language reasoning. MoT adopts a two-phase design: (1) self-evolving MoT training, which jointly learns from filtered, self-generated rationales across modalities; and (2) MoT inference, which fully leverages the synergy of three modalities to produce better predictions. Experiments on logical reasoning benchmarks including FOLIO and ProofWriter demonstrate that our MoT framework consistently and significantly outperforms strong LLM baselines with single-modality chain-of-thought approaches, achieving up to +11.7pp average accuracy gain. Further analyses show that our MoT framework benefits both training and inference stages; that it is particularly effective on harder logical reasoning problems; and that different modalities contribute complementary strengths, with truth-table reasoning helping to overcome key bottlenecks in natural language inference.

  • 5 authors
·
May 21 7

An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation

The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs) -- sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of IV-like (IVL) regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.

  • 5 authors
·
Oct 28 1

SLAM-AAC: Enhancing Audio Captioning with Paraphrasing Augmentation and CLAP-Refine through LLMs

Automated Audio Captioning (AAC) aims to generate natural textual descriptions for input audio signals. Recent progress in audio pre-trained models and large language models (LLMs) has significantly enhanced audio understanding and textual reasoning capabilities, making improvements in AAC possible. In this paper, we propose SLAM-AAC to further enhance AAC with paraphrasing augmentation and CLAP-Refine through LLMs. Our approach uses the self-supervised EAT model to extract fine-grained audio representations, which are then aligned with textual embeddings via lightweight linear layers. The caption generation LLM is efficiently fine-tuned using the LoRA adapter. Drawing inspiration from the back-translation method in machine translation, we implement paraphrasing augmentation to expand the Clotho dataset during pre-training. This strategy helps alleviate the limitation of scarce audio-text pairs and generates more diverse captions from a small set of audio clips. During inference, we introduce the plug-and-play CLAP-Refine strategy to fully exploit multiple decoding outputs, akin to the n-best rescoring strategy in speech recognition. Using the CLAP model for audio-text similarity calculation, we could select the textual descriptions generated by multiple searching beams that best match the input audio. Experimental results show that SLAM-AAC achieves state-of-the-art performance on Clotho V2 and AudioCaps, surpassing previous mainstream models.

  • 8 authors
·
Oct 12, 2024

Let Multimodal Embedders Learn When to Augment Query via Adaptive Query Augmentation

Query augmentation makes queries more meaningful by appending further information to the queries to find relevant documents. Current studies have proposed Large Language Model (LLM)-based embedders, which learn representation for embedding and generation for query augmentation in a multi-task manner by leveraging the generative capabilities of LLM. During inference, these jointly trained embedders have conducted query augmentation followed by embedding, showing effective results. However, augmenting every query leads to substantial embedding latency and query augmentation can be detrimental to performance for some queries. Also, previous methods have not been explored in multimodal environments. To tackle these problems, we propose M-Solomon, a universal multimodal embedder that can adaptively determine when to augment queries. Our approach first divides the queries of the training datasets into two groups at the dataset level. One includes queries that require augmentation and the other includes queries that do not. Then, we introduces a synthesis process that generates appropriate augmentations for queries that require them by leveraging a powerful Multimodal LLM (MLLM). Next, we present adaptive query augmentation. Through this step, M-Solomon can conduct query augmentation only when necessary by learning to generate synthetic augmentations with the prefix /augment for queries that demand them and to generate the simple string /embed for others. Experimental results showed that M-Solomon not only surpassed the baseline without augmentation by a large margin but also outperformed the baseline that always used augmentation, providing much faster embedding latency.

  • 5 authors
·
Nov 4 2

Self-supervised Label Augmentation via Input Transformations

Self-supervised learning, which learns by constructing artificial labels given only the input signals, has recently gained considerable attention for learning representations with unlabeled datasets, i.e., learning without any human-annotated supervision. In this paper, we show that such a technique can be used to significantly improve the model accuracy even under fully-labeled datasets. Our scheme trains the model to learn both original and self-supervised tasks, but is different from conventional multi-task learning frameworks that optimize the summation of their corresponding losses. Our main idea is to learn a single unified task with respect to the joint distribution of the original and self-supervised labels, i.e., we augment original labels via self-supervision of input transformation. This simple, yet effective approach allows to train models easier by relaxing a certain invariant constraint during learning the original and self-supervised tasks simultaneously. It also enables an aggregated inference which combines the predictions from different augmentations to improve the prediction accuracy. Furthermore, we propose a novel knowledge transfer technique, which we refer to as self-distillation, that has the effect of the aggregated inference in a single (faster) inference. We demonstrate the large accuracy improvement and wide applicability of our framework on various fully-supervised settings, e.g., the few-shot and imbalanced classification scenarios.

  • 3 authors
·
Oct 13, 2019

Myanmar XNLI: Building a Dataset and Exploring Low-resource Approaches to Natural Language Inference with Myanmar

Despite dramatic recent progress in NLP, it is still a major challenge to apply Large Language Models (LLM) to low-resource languages. This is made visible in benchmarks such as Cross-Lingual Natural Language Inference (XNLI), a key task that demonstrates cross-lingual capabilities of NLP systems across a set of 15 languages. In this paper, we extend the XNLI task for one additional low-resource language, Myanmar, as a proxy challenge for broader low-resource languages, and make three core contributions. First, we build a dataset called Myanmar XNLI (myXNLI) using community crowd-sourced methods, as an extension to the existing XNLI corpus. This involves a two-stage process of community-based construction followed by expert verification; through an analysis, we demonstrate and quantify the value of the expert verification stage in the context of community-based construction for low-resource languages. We make the myXNLI dataset available to the community for future research. Second, we carry out evaluations of recent multilingual language models on the myXNLI benchmark, as well as explore data-augmentation methods to improve model performance. Our data-augmentation methods improve model accuracy by up to 2 percentage points for Myanmar, while uplifting other languages at the same time. Third, we investigate how well these data-augmentation methods generalise to other low-resource languages in the XNLI dataset.

  • 2 authors
·
Apr 13

MuMath-Code: Combining Tool-Use Large Language Models with Multi-perspective Data Augmentation for Mathematical Reasoning

The tool-use Large Language Models (LLMs) that integrate with external Python interpreters have significantly enhanced mathematical reasoning capabilities for open-source LLMs, while tool-free methods chose another track: augmenting math reasoning data. However, a great method to integrate the above two research paths and combine their advantages remains to be explored. In this work, we firstly include new math questions via multi-perspective data augmenting methods and then synthesize code-nested solutions to them. The open LLMs (i.e., Llama-2) are finetuned on the augmented dataset to get the resulting models, MuMath-Code (mu-Math-Code). During the inference phase, our MuMath-Code generates code and interacts with the external python interpreter to get the execution results. Therefore, MuMath-Code leverages the advantages of both the external tool and data augmentation. To fully leverage the advantages of our augmented data, we propose a two-stage training strategy: In Stage-1, we finetune Llama-2 on pure CoT data to get an intermediate model, which then is trained on the code-nested data in Stage-2 to get the resulting MuMath-Code. Our MuMath-Code-7B achieves 83.8 on GSM8K and 52.4 on MATH, while MuMath-Code-70B model achieves new state-of-the-art performance among open methods -- achieving 90.7% on GSM8K and 55.1% on MATH. Extensive experiments validate the combination of tool use and data augmentation, as well as our two-stage training strategy. We release the proposed dataset along with the associated code for public use.

  • 5 authors
·
May 13, 2024 2

RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation

Retrieving documents and prepending them in-context at inference time improves performance of language model (LMs) on a wide range of tasks. However, these documents, often spanning hundreds of words, make inference substantially more expensive. We propose compressing the retrieved documents into textual summaries prior to in-context integration. This not only reduces the computational costs but also relieves the burden of LMs to identify relevant information in long retrieved documents. We present two compressors -- an extractive compressor which selects useful sentences from retrieved documents and an abstractive compressor which generates summaries by synthesizing information from multiple documents. Both compressors are trained to improve LMs' performance on end tasks when the generated summaries are prepended to the LMs' input, while keeping the summary concise.If the retrieved documents are irrelevant to the input or offer no additional information to LM, our compressor can return an empty string, implementing selective augmentation.We evaluate our approach on language modeling task and open domain question answering task. We achieve a compression rate of as low as 6% with minimal loss in performance for both tasks, significantly outperforming the off-the-shelf summarization models. We show that our compressors trained for one LM can transfer to other LMs on the language modeling task and provide summaries largely faithful to the retrieved documents.

  • 3 authors
·
Oct 6, 2023

Improving Audio Captioning Models with Fine-grained Audio Features, Text Embedding Supervision, and LLM Mix-up Augmentation

Automated audio captioning (AAC) aims to generate informative descriptions for various sounds from nature and/or human activities. In recent years, AAC has quickly attracted research interest, with state-of-the-art systems now relying on a sequence-to-sequence (seq2seq) backbone powered by strong models such as Transformers. Following the macro-trend of applied machine learning research, in this work, we strive to improve the performance of seq2seq AAC models by extensively leveraging pretrained models and large language models (LLMs). Specifically, we utilize BEATs to extract fine-grained audio features. Then, we employ Instructor LLM to fetch text embeddings of captions, and infuse their language-modality knowledge into BEATs audio features via an auxiliary InfoNCE loss function. Moreover, we propose a novel data augmentation method that uses ChatGPT to produce caption mix-ups (i.e., grammatical and compact combinations of two captions) which, together with the corresponding audio mixtures, increase not only the amount but also the complexity and diversity of training data. During inference, we propose to employ nucleus sampling and a hybrid reranking algorithm, which has not been explored in AAC research. Combining our efforts, our model achieves a new state-of-the-art 32.6 SPIDEr-FL score on the Clotho evaluation split, and wins the 2023 DCASE AAC challenge.

  • 7 authors
·
Sep 29, 2023

Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud

Specializing LLMs in various domain-specific tasks has emerged as a critical step towards achieving high performance. However, the construction and annotation of datasets in specific domains are always very costly. Apart from using superior and expensive closed-source LLM APIs to construct datasets, some open-source models have become strong enough to handle dataset construction in many scenarios. Thus, we present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning. These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs: instruction expansion, instruction refinement, and instruction-response pair expansion. To fulfill this goal, we first construct an automatic data collection system with seed datasets generated from both public repositories and our in-house datasets. This system leverages powerful LLMs to expand, refine and re-write the instructions and responses, incorporating quality assessment techniques. Following this, we introduce the training process of our models, which effectively distills task-solving and text synthesis abilities from teacher LLMs. Finally, we demonstrate how we integrate these functionalities into a machine learning platform to support low-cost LLM fine-tuning from both dataset preparation and training perspectives for users. Experiments and an application study prove the effectiveness of our approach.

  • 4 authors
·
Dec 6, 2024

Autonomous In-Situ Soundscape Augmentation via Joint Selection of Masker and Gain

The selection of maskers and playback gain levels in a soundscape augmentation system is crucial to its effectiveness in improving the overall acoustic comfort of a given environment. Traditionally, the selection of appropriate maskers and gain levels has been informed by expert opinion, which may not representative of the target population, or by listening tests, which can be time-consuming and labour-intensive. Furthermore, the resulting static choices of masker and gain are often inflexible to the dynamic nature of real-world soundscapes. In this work, we utilized a deep learning model to perform joint selection of the optimal masker and its gain level for a given soundscape. The proposed model was designed with highly modular building blocks, allowing for an optimized inference process that can quickly search through a large number of masker and gain combinations. In addition, we introduced the use of feature-domain soundscape augmentation conditioned on the digital gain level, eliminating the computationally expensive waveform-domain mixing process during inference time, as well as the tedious pre-calibration process required for new maskers. The proposed system was validated on a large-scale dataset of subjective responses to augmented soundscapes with more than 440 participants, ensuring the ability of the model to predict combined effect of the masker and its gain level on the perceptual pleasantness level.

  • 6 authors
·
Apr 29, 2022

eP-ALM: Efficient Perceptual Augmentation of Language Models

Large Language Models (LLMs) have so far impressed the world, with unprecedented capabilities that emerge in models at large scales. On the vision side, transformer models (i.e., ViT) are following the same trend, achieving the best performance on challenging benchmarks. With the abundance of such unimodal models, a natural question arises; do we need also to follow this trend to tackle multimodal tasks? In this work, we propose to rather direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception. Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency. In particular, they still train a large number of parameters, rely on large multimodal pretraining, use encoders (e.g., CLIP) trained on huge image-text datasets, and add significant inference overhead. In addition, most of these approaches have focused on Zero-Shot and In Context Learning, with little to no effort on direct finetuning. We investigate the minimal computational effort needed to adapt unimodal models for multimodal tasks and propose a new challenging setup, alongside different approaches, that efficiently adapts unimodal pretrained models. We show that by freezing more than 99\% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning across Image, Video, and Audio modalities, following the proposed setup. The code will be available here: https://github.com/mshukor/eP-ALM.

  • 3 authors
·
Mar 20, 2023

AMBEDKAR-A Multi-level Bias Elimination through a Decoding Approach with Knowledge Augmentation for Robust Constitutional Alignment of Language Models

Large Language Models (LLMs) can inadvertently reflect societal biases present in their training data, leading to harmful or prejudiced outputs. In the Indian context, our empirical evaluations across a suite of models reveal that biases around caste and religion are particularly salient. Yet, most existing mitigation strategies are Western-centric and fail to address these local nuances. We propose AMBEDKAR, a framework inspired by the egalitarian vision of Dr B. R. Ambedkar, architect of the Indian Constitution, to guide LLM outputs toward fairness, neutrality, and inclusion in line with Articles 14 to 17. Our approach introduces a Constitution-Aware Decoding Layer, guided by the AI Constitution of India and applied only at inference time, without any parameter updates to the base model. We incorporate a speculative decoding algorithm that proactively reduces casteist and communal bias during generation. This mitigation layer operates directly within the decoding process, avoiding changes to model internals and lowering the computational and infrastructural costs associated with retraining. We reinterpret speculative decoding not merely as an efficiency tool but as a mechanism for fairness. In this framework, a Small Language Model (SLM) acts as a potentially biased generator, while a constitutionally guided Large Language Model (LLM) serves as the verifier. Rather than accelerating generation, the LLM enforces bias-robust trajectories in the SLM outputs. This inversion of roles gives rise to a fairness-by-speculation paradigm. Our approach yields an absolute reduction of bias up to 26.41 percent compared to baseline. Our source code, datasets, and results are available at https://anonymous.4open.science/r/AMBEDKAR-983B/

  • 8 authors
·
Sep 2 1

TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction

Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop.

  • 5 authors
·
Oct 24, 2023

ChildDiffusion: Unlocking the Potential of Generative AI and Controllable Augmentations for Child Facial Data using Stable Diffusion and Large Language Models

In this research work we have proposed high-level ChildDiffusion framework capable of generating photorealistic child facial samples and further embedding several intelligent augmentations on child facial data using short text prompts, detailed textual guidance from LLMs, and further image to image transformation using text guidance control conditioning thus providing an opportunity to curate fully synthetic large scale child datasets. The framework is validated by rendering high-quality child faces representing ethnicity data, micro expressions, face pose variations, eye blinking effects, facial accessories, different hair colours and styles, aging, multiple and different child gender subjects in a single frame. Addressing privacy concerns regarding child data acquisition requires a comprehensive approach that involves legal, ethical, and technological considerations. Keeping this in view this framework can be adapted to synthesise child facial data which can be effectively used for numerous downstream machine learning tasks. The proposed method circumvents common issues encountered in generative AI tools, such as temporal inconsistency and limited control over the rendered outputs. As an exemplary use case we have open-sourced child ethnicity data consisting of 2.5k child facial samples of five different classes which includes African, Asian, White, South Asian/ Indian, and Hispanic races by deploying the model in production inference phase. The rendered data undergoes rigorous qualitative as well as quantitative tests to cross validate its efficacy and further fine-tuning Yolo architecture for detecting and classifying child ethnicity as an exemplary downstream machine learning task.

  • 3 authors
·
Jun 17, 2024

All in Tokens: Unifying Output Space of Visual Tasks via Soft Token

Unlike language tasks, where the output space is usually limited to a set of tokens, the output space of visual tasks is more complicated, making it difficult to build a unified visual model for various visual tasks. In this paper, we seek to unify the output space of visual tasks, so that we can also build a unified model for visual tasks. To this end, we demonstrate a single unified model that simultaneously handles two typical visual tasks of instance segmentation and depth estimation, which have discrete/fixed-length and continuous/varied-length outputs, respectively. We propose several new techniques that take into account the particularity of visual tasks: 1) Soft token. We employ soft token to represent the task output. Unlike hard tokens in the common VQ-VAE which are assigned one-hot to discrete codebooks/vocabularies, the soft token is assigned softly to the codebook embeddings. Soft token can improve the accuracy of both the next token inference and decoding of the task output; 2) Mask augmentation. Many visual tasks have corruption, undefined or invalid values in label annotations, i.e., occluded area of depth maps. We show that a mask augmentation technique can greatly benefit these tasks. With these new techniques and other designs, we show that the proposed general-purpose task-solver can perform both instance segmentation and depth estimation well. Particularly, we achieve 0.279 RMSE on the specific task of NYUv2 depth estimation, setting a new record on this benchmark. The general-purpose task-solver, dubbed AiT, is available at https://github.com/SwinTransformer/AiT.

  • 7 authors
·
Jan 5, 2023

The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering

Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits rankings throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss -- visually grounded tokens gradually become less favored throughout generation, and (2) early excitation -- semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information -- visually grounded tokens though not being eventually decided still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by abount 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies.

Large Language Models as Counterfactual Generator: Strengths and Weaknesses

Large language models (LLMs) have demonstrated remarkable performance in a range of natural language understanding and generation tasks. Yet, their ability to generate counterfactuals, which can be used for areas like data augmentation, remains under-explored. This study aims to investigate the counterfactual generation capabilities of LLMs and analysis factors that influence this ability. First, we evaluate how effective are LLMs in counterfactual generation through data augmentation experiments for small language models (SLMs) across four tasks: sentiment analysis, natural language inference, named entity recognition, and relation extraction. While LLMs show promising enhancements in various settings, they struggle in complex tasks due to their self-limitations and the lack of logical guidance to produce counterfactuals that align with commonsense. Second, our analysis reveals the pivotal role of providing accurate task definitions and detailed step-by-step instructions to LLMs in generating counterfactuals. Interestingly, we also find that LLMs can generate reasonable counterfactuals even with unreasonable demonstrations, which illustrates that demonstrations are primarily to regulate the output format.This study provides the first comprehensive insight into counterfactual generation abilities of LLMs, and offers a novel perspective on utilizing LLMs for data augmentation to enhance SLMs.

  • 5 authors
·
May 24, 2023

DISCO: Distilling Counterfactuals with Large Language Models

Models trained with counterfactually augmented data learn representations of the causal structure of tasks, enabling robust generalization. However, high-quality counterfactual data is scarce for most tasks and not easily generated at scale. When crowdsourced, such data is typically limited in scale and diversity; when generated using supervised methods, it is computationally expensive to extend to new counterfactual dimensions. In this work, we introduce DISCO (DIStilled COunterfactual Data), a new method for automatically generating high quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters these generations to distill high-quality counterfactual data. While task-agnostic, we apply our pipeline to the task of natural language inference (NLI) and find that on challenging evaluations such as the NLI stress test, comparatively smaller student models trained with DISCO generated counterfactuals are more robust (6% absolute) and generalize better across distributions (2%) compared to models trained without data augmentation. Furthermore, DISCO augmented models are 10% more consistent between counterfactual pairs on three evaluation sets, demonstrating that DISCO augmentation enables models to more reliably learn causal representations. Our repository is available at: https://github.com/eric11eca/disco

  • 5 authors
·
Dec 20, 2022

Generalized Trajectory Scoring for End-to-end Multimodal Planning

End-to-end multi-modal planning is a promising paradigm in autonomous driving, enabling decision-making with diverse trajectory candidates. A key component is a robust trajectory scorer capable of selecting the optimal trajectory from these candidates. While recent trajectory scorers focus on scoring either large sets of static trajectories or small sets of dynamically generated ones, both approaches face significant limitations in generalization. Static vocabularies provide effective coarse discretization but struggle to make fine-grained adaptation, while dynamic proposals offer detailed precision but fail to capture broader trajectory distributions. To overcome these challenges, we propose GTRS (Generalized Trajectory Scoring), a unified framework for end-to-end multi-modal planning that combines coarse and fine-grained trajectory evaluation. GTRS consists of three complementary innovations: (1) a diffusion-based trajectory generator that produces diverse fine-grained proposals; (2) a vocabulary generalization technique that trains a scorer on super-dense trajectory sets with dropout regularization, enabling its robust inference on smaller subsets; and (3) a sensor augmentation strategy that enhances out-of-domain generalization while incorporating refinement training for critical trajectory discrimination. As the winning solution of the Navsim v2 Challenge, GTRS demonstrates superior performance even with sub-optimal sensor inputs, approaching privileged methods that rely on ground-truth perception. Code will be available at https://github.com/NVlabs/GTRS.

  • 10 authors
·
Jun 7

Zero-Shot Audio Captioning Using Soft and Hard Prompts

In traditional audio captioning methods, a model is usually trained in a fully supervised manner using a human-annotated dataset containing audio-text pairs and then evaluated on the test sets from the same dataset. Such methods have two limitations. First, these methods are often data-hungry and require time-consuming and expensive human annotations to obtain audio-text pairs. Second, these models often suffer from performance degradation in cross-domain scenarios, i.e., when the input audio comes from a different domain than the training set, which, however, has received little attention. We propose an effective audio captioning method based on the contrastive language-audio pre-training (CLAP) model to address these issues. Our proposed method requires only textual data for training, enabling the model to generate text from the textual feature in the cross-modal semantic space.In the inference stage, the model generates the descriptive text for the given audio from the audio feature by leveraging the audio-text alignment from CLAP.We devise two strategies to mitigate the discrepancy between text and audio embeddings: a mixed-augmentation-based soft prompt and a retrieval-based acoustic-aware hard prompt. These approaches are designed to enhance the generalization performance of our proposed model, facilitating the model to generate captions more robustly and accurately. Extensive experiments on AudioCaps and Clotho benchmarks show the effectiveness of our proposed method, which outperforms other zero-shot audio captioning approaches for in-domain scenarios and outperforms the compared methods for cross-domain scenarios, underscoring the generalization ability of our method.

  • 8 authors
·
Jun 10, 2024

Multimodal Emotion Recognition with Modality-Pairwise Unsupervised Contrastive Loss

Emotion recognition is involved in several real-world applications. With an increase in available modalities, automatic understanding of emotions is being performed more accurately. The success in Multimodal Emotion Recognition (MER), primarily relies on the supervised learning paradigm. However, data annotation is expensive, time-consuming, and as emotion expression and perception depends on several factors (e.g., age, gender, culture) obtaining labels with a high reliability is hard. Motivated by these, we focus on unsupervised feature learning for MER. We consider discrete emotions, and as modalities text, audio and vision are used. Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature. Our end-to-end feature learning approach has several differences (and advantages) compared to existing MER methods: i) it is unsupervised, so the learning is lack of data labelling cost; ii) it does not require data spatial augmentation, modality alignment, large number of batch size or epochs; iii) it applies data fusion only at inference; and iv) it does not require backbones pre-trained on emotion recognition task. The experiments on benchmark datasets show that our method outperforms several baseline approaches and unsupervised learning methods applied in MER. Particularly, it even surpasses a few supervised MER state-of-the-art.

  • 6 authors
·
Jul 23, 2022

A Survey of LLM $\times$ DATA

The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.

  • 17 authors
·
May 23

RandAugment: Practical automated data augmentation with a reduced search space

Recent work has shown that data augmentation has the potential to significantly improve the generalization of deep learning models. Recently, automated augmentation strategies have led to state-of-the-art results in image classification and object detection. While these strategies were optimized for improving validation accuracy, they also led to state-of-the-art results in semi-supervised learning and improved robustness to common corruptions of images. An obstacle to a large-scale adoption of these methods is a separate search phase which increases the training complexity and may substantially increase the computational cost. Additionally, due to the separate search phase, these approaches are unable to adjust the regularization strength based on model or dataset size. Automated augmentation policies are often found by training small models on small datasets and subsequently applied to train larger models. In this work, we remove both of these obstacles. RandAugment has a significantly reduced search space which allows it to be trained on the target task with no need for a separate proxy task. Furthermore, due to the parameterization, the regularization strength may be tailored to different model and dataset sizes. RandAugment can be used uniformly across different tasks and datasets and works out of the box, matching or surpassing all previous automated augmentation approaches on CIFAR-10/100, SVHN, and ImageNet. On the ImageNet dataset we achieve 85.0% accuracy, a 0.6% increase over the previous state-of-the-art and 1.0% increase over baseline augmentation. On object detection, RandAugment leads to 1.0-1.3% improvement over baseline augmentation, and is within 0.3% mAP of AutoAugment on COCO. Finally, due to its interpretable hyperparameter, RandAugment may be used to investigate the role of data augmentation with varying model and dataset size. Code is available online.

  • 4 authors
·
Sep 30, 2019

Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension

Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.

  • 3 authors
·
Sep 22, 2024

Semantic Representation and Inference for NLP

Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).

  • 1 authors
·
Jun 15, 2021

Meta-Learning for Speeding Up Large Model Inference in Decentralized Environments

The deployment of large-scale models, such as large language models (LLMs) and sophisticated image generation systems, incurs substantial costs due to their computational demands. To mitigate these costs and address challenges related to scalability and data security, there is a growing shift towards decentralized systems for deploying such models. In these decentralized environments, efficient inference acceleration becomes crucial to manage computational resources effectively and enhance system responsiveness. In this work, we address the challenge of selecting optimal acceleration methods in decentralized systems by introducing a meta-learning-based framework. This framework automates the selection process by learning from historical performance data of various acceleration techniques across different tasks. Unlike traditional methods that rely on random selection or expert intuition, our approach systematically identifies the best acceleration strategies based on the specific characteristics of each task. We demonstrate that our meta-learning framework not only streamlines the decision-making process but also consistently outperforms conventional methods in terms of efficiency and performance. Our results highlight the potential of meta-learning to revolutionize inference acceleration in decentralized AI systems, offering a path towards more democratic and economically feasible artificial intelligence solutions.

  • 9 authors
·
Oct 28, 2024

Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?

We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances -- an aspect often overlooked in the literature in favor of the meta-learning paradigm. We introduce a transductive inference for a given query image, leveraging the statistics of its unlabeled pixels, by optimizing a new loss containing three complementary terms: i) the cross-entropy on the labeled support pixels; ii) the Shannon entropy of the posteriors on the unlabeled query-image pixels; and iii) a global KL-divergence regularizer based on the proportion of the predicted foreground. As our inference uses a simple linear classifier of the extracted features, its computational load is comparable to inductive inference and can be used on top of any base training. Foregoing episodic training and using only standard cross-entropy training on the base classes, our inference yields competitive performances on standard benchmarks in the 1-shot scenarios. As the number of available shots increases, the gap in performances widens: on PASCAL-5i, our method brings about 5% and 6% improvements over the state-of-the-art, in the 5- and 10-shot scenarios, respectively. Furthermore, we introduce a new setting that includes domain shifts, where the base and novel classes are drawn from different datasets. Our method achieves the best performances in this more realistic setting. Our code is freely available online: https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation.

  • 6 authors
·
Dec 11, 2020

Improving Black-box Robustness with In-Context Rewriting

Machine learning models often excel on in-distribution (ID) data but struggle with unseen out-of-distribution (OOD) inputs. Most techniques for improving OOD robustness are not applicable to settings where the model is effectively a black box, such as when the weights are frozen, retraining is costly, or the model is leveraged via an API. Test-time augmentation (TTA) is a simple post-hoc technique for improving robustness that sidesteps black-box constraints by aggregating predictions across multiple augmentations of the test input. TTA has seen limited use in NLP due to the challenge of generating effective natural language augmentations. In this work, we propose LLM-TTA, which uses LLM-generated augmentations as TTA's augmentation function. LLM-TTA outperforms conventional augmentation functions across sentiment, toxicity, and news classification tasks for BERT and T5 models, with BERT's OOD robustness improving by an average of 4.30 percentage points without regressing average ID performance. We explore selectively augmenting inputs based on prediction entropy to reduce the rate of expensive LLM augmentations, allowing us to maintain performance gains while reducing the average number of generated augmentations by 57.76%. LLM-TTA is agnostic to the task model architecture, does not require OOD labels, and is effective across low and high-resource settings. We share our data, models, and code for reproducibility.

  • 8 authors
·
Feb 13, 2024

A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency

Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workloads such as chain-of-thought, complex reasoning, and agent services significantly increase the inference cost by invoking the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking. This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions. We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/sihyeong/Awesome-LLM-Inference-Engine

  • 6 authors
·
May 2 5

Data-Efficient Augmentation for Training Neural Networks

Data augmentation is essential to achieve state-of-the-art performance in many deep learning applications. However, the most effective augmentation techniques become computationally prohibitive for even medium-sized datasets. To address this, we propose a rigorous technique to select subsets of data points that when augmented, closely capture the training dynamics of full data augmentation. We first show that data augmentation, modeled as additive perturbations, improves learning and generalization by relatively enlarging and perturbing the smaller singular values of the network Jacobian, while preserving its prominent directions. This prevents overfitting and enhances learning the harder to learn information. Then, we propose a framework to iteratively extract small subsets of training data that when augmented, closely capture the alignment of the fully augmented Jacobian with labels/residuals. We prove that stochastic gradient descent applied to the augmented subsets found by our approach has similar training dynamics to that of fully augmented data. Our experiments demonstrate that our method achieves 6.3x speedup on CIFAR10 and 2.2x speedup on SVHN, and outperforms the baselines by up to 10% across various subset sizes. Similarly, on TinyImageNet and ImageNet, our method beats the baselines by up to 8%, while achieving up to 3.3x speedup across various subset sizes. Finally, training on and augmenting 50% subsets using our method on a version of CIFAR10 corrupted with label noise even outperforms using the full dataset. Our code is available at: https://github.com/tianyu139/data-efficient-augmentation

  • 2 authors
·
Oct 15, 2022

Synthetic continued pretraining

Pretraining on large-scale, unstructured internet text has enabled language models to acquire a significant amount of world knowledge. However, this knowledge acquisition is data-inefficient -- to learn a given fact, models must be trained on hundreds to thousands of diverse representations of it. This poses a challenge when adapting a pretrained model to a small corpus of domain-specific documents, where each fact may appear rarely or only once. We propose to bridge this gap with synthetic continued pretraining: using the small domain-specific corpus to synthesize a large corpus more amenable to learning, and then performing continued pretraining on the synthesized corpus. We instantiate this proposal with EntiGraph, a synthetic data augmentation algorithm that extracts salient entities from the source documents and then generates diverse text by drawing connections between the sampled entities. Synthetic continued pretraining using EntiGraph enables a language model to answer questions and follow generic instructions related to the source documents without access to them. If instead, the source documents are available at inference time, we show that the knowledge acquired through our approach compounds with retrieval-augmented generation. To better understand these results, we build a simple mathematical model of EntiGraph, and show how synthetic data augmentation can "rearrange" knowledge to enable more data-efficient learning.

  • 5 authors
·
Sep 11, 2024

Hogwild! Inference: Parallel LLM Generation via Concurrent Attention

Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's partial progress in the concurrent cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's generated tokens. Hogwild! inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.

  • 8 authors
·
Apr 8 6

Energy-Based Transformers are Scalable Learners and Thinkers

Inference-time computation techniques, analogous to human System 2 Thinking, have recently become popular for improving model performances. However, most existing approaches suffer from several limitations: they are modality-specific (e.g., working only in text), problem-specific (e.g., verifiable domains like math and coding), or require additional supervision/training on top of unsupervised pretraining (e.g., verifiers or verifiable rewards). In this paper, we ask the question "Is it possible to generalize these System 2 Thinking approaches, and develop models that learn to think solely from unsupervised learning?" Interestingly, we find the answer is yes, by learning to explicitly verify the compatibility between inputs and candidate-predictions, and then re-framing prediction problems as optimization with respect to this verifier. Specifically, we train Energy-Based Transformers (EBTs) -- a new class of Energy-Based Models (EBMs) -- to assign an energy value to every input and candidate-prediction pair, enabling predictions through gradient descent-based energy minimization until convergence. Across both discrete (text) and continuous (visual) modalities, we find EBTs scale faster than the dominant Transformer++ approach during training, achieving an up to 35% higher scaling rate with respect to data, batch size, parameters, FLOPs, and depth. During inference, EBTs improve performance with System 2 Thinking by 29% more than the Transformer++ on language tasks, and EBTs outperform Diffusion Transformers on image denoising while using fewer forward passes. Further, we find that EBTs achieve better results than existing models on most downstream tasks given the same or worse pretraining performance, suggesting that EBTs generalize better than existing approaches. Consequently, EBTs are a promising new paradigm for scaling both the learning and thinking capabilities of models.

SemAug: Semantically Meaningful Image Augmentations for Object Detection Through Language Grounding

Data augmentation is an essential technique in improving the generalization of deep neural networks. The majority of existing image-domain augmentations either rely on geometric and structural transformations, or apply different kinds of photometric distortions. In this paper, we propose an effective technique for image augmentation by injecting contextually meaningful knowledge into the scenes. Our method of semantically meaningful image augmentation for object detection via language grounding, SemAug, starts by calculating semantically appropriate new objects that can be placed into relevant locations in the image (the what and where problems). Then it embeds these objects into their relevant target locations, thereby promoting diversity of object instance distribution. Our method allows for introducing new object instances and categories that may not even exist in the training set. Furthermore, it does not require the additional overhead of training a context network, so it can be easily added to existing architectures. Our comprehensive set of evaluations showed that the proposed method is very effective in improving the generalization, while the overhead is negligible. In particular, for a wide range of model architectures, our method achieved ~2-4% and ~1-2% mAP improvements for the task of object detection on the Pascal VOC and COCO datasets, respectively.

  • 3 authors
·
Aug 15, 2022

Retrieval-Augmented Meta Learning for Low-Resource Text Classification

Meta learning have achieved promising performance in low-resource text classification which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. However, due to the limited training data in the meta-learning scenario and the inherent properties of parameterized neural networks, poor generalization performance has become a pressing problem that needs to be addressed. To deal with this issue, we propose a meta-learning based method called Retrieval-Augmented Meta Learning(RAML). It not only uses parameterization for inference but also retrieves non-parametric knowledge from an external corpus to make inferences, which greatly alleviates the problem of poor generalization performance caused by the lack of diverse training data in meta-learning. This method differs from previous models that solely rely on parameters, as it explicitly emphasizes the importance of non-parametric knowledge, aiming to strike a balance between parameterized neural networks and non-parametric knowledge. The model is required to determine which knowledge to access and utilize during inference. Additionally, our multi-view passages fusion network module can effectively and efficiently integrate the retrieved information into low-resource classification task. The extensive experiments demonstrate that RAML significantly outperforms current SOTA low-resource text classification models.

  • 7 authors
·
Sep 10, 2023

Zero-Indexing Internet Search Augmented Generation for Large Language Models

Retrieval augmented generation has emerged as an effective method to enhance large language model performance. This approach typically relies on an internal retrieval module that uses various indexing mechanisms to manage a static pre-processed corpus. However, such a paradigm often falls short when it is necessary to integrate the most up-to-date information that has not been updated into the corpus during generative inference time. In this paper, we explore an alternative approach that leverages standard search engine APIs to dynamically integrate the latest online information (without maintaining any index for any fixed corpus), thereby improving the quality of generated content. We design a collaborative LLM-based paradigm, where we include: (i) a parser-LLM that determines if the Internet augmented generation is demanded and extracts the search keywords if so with a single inference; (ii) a mixed ranking strategy that re-ranks the retrieved HTML files to eliminate bias introduced from the search engine API; and (iii) an extractor-LLM that can accurately and efficiently extract relevant information from the fresh content in each HTML file. We conduct extensive empirical studies to evaluate the performance of this Internet search augmented generation paradigm. The experimental results demonstrate that our method generates content with significantly improved quality. Our system has been successfully deployed in a production environment to serve 01.AI's generative inference requests.

  • 8 authors
·
Nov 29, 2024

Efficient Online Processing with Deep Neural Networks

The capabilities and adoption of deep neural networks (DNNs) grow at an exhilarating pace: Vision models accurately classify human actions in videos and identify cancerous tissue in medical scans as precisely than human experts; large language models answer wide-ranging questions, generate code, and write prose, becoming the topic of everyday dinner-table conversations. Even though their uses are exhilarating, the continually increasing model sizes and computational complexities have a dark side. The economic cost and negative environmental externalities of training and serving models is in evident disharmony with financial viability and climate action goals. Instead of pursuing yet another increase in predictive performance, this dissertation is dedicated to the improvement of neural network efficiency. Specifically, a core contribution addresses the efficiency aspects during online inference. Here, the concept of Continual Inference Networks (CINs) is proposed and explored across four publications. CINs extend prior state-of-the-art methods developed for offline processing of spatio-temporal data and reuse their pre-trained weights, improving their online processing efficiency by an order of magnitude. These advances are attained through a bottom-up computational reorganization and judicious architectural modifications. The benefit to online inference is demonstrated by reformulating several widely used network architectures into CINs, including 3D CNNs, ST-GCNs, and Transformer Encoders. An orthogonal contribution tackles the concurrent adaptation and computational acceleration of a large source model into multiple lightweight derived models. Drawing on fusible adapter networks and structured pruning, Structured Pruning Adapters achieve superior predictive accuracy under aggressive pruning using significantly fewer learned weights compared to fine-tuning with pruning.

  • 1 authors
·
Jun 23, 2023

When Neural Code Completion Models Size up the Situation: Attaining Cheaper and Faster Completion through Dynamic Model Inference

Leveraging recent advancements in large language models, modern neural code completion models have demonstrated the capability to generate highly accurate code suggestions. However, their massive size poses challenges in terms of computational costs and environmental impact, hindering their widespread adoption in practical scenarios. Dynamic inference emerges as a promising solution, as it allocates minimal computation during inference while maintaining the model's performance. In this research, we explore dynamic inference within the context of code completion. Initially, we conducted an empirical investigation on GPT-2, focusing on the inference capabilities of intermediate layers for code completion. We found that 54.4% of tokens can be accurately generated using just the first layer, signifying significant computational savings potential. Moreover, despite using all layers, the model still fails to predict 14.5% of tokens correctly, and the subsequent completions continued from them are rarely considered helpful, with only a 4.2% Acceptance Rate. These findings motivate our exploration of dynamic inference in code completion and inspire us to enhance it with a decision-making mechanism that stops the generation of incorrect code. We thus propose a novel dynamic inference method specifically tailored for code completion models. This method aims not only to produce correct predictions with largely reduced computation but also to prevent incorrect predictions proactively. Our extensive evaluation shows that it can averagely skip 1.7 layers out of 16 layers in the models, leading to an 11.2% speedup with only a marginal 1.1% reduction in ROUGE-L.

  • 5 authors
·
Jan 18, 2024

Thinking Augmented Pre-training

This paper introduces a simple and scalable approach to improve the data efficiency of large language model (LLM) training by augmenting existing text data with thinking trajectories. The compute for pre-training LLMs has been growing at an unprecedented rate, while the availability of high-quality data remains limited. Consequently, maximizing the utility of available data constitutes a significant research challenge. A primary impediment is that certain high-quality tokens are difficult to learn given a fixed model capacity, as the underlying rationale for a single token can be exceptionally complex and deep. To address this issue, we propose Thinking augmented Pre-Training (TPT), a universal methodology that augments text with automatically generated thinking trajectories. Such augmentation effectively increases the volume of the training data and makes high-quality tokens more learnable through step-by-step reasoning and decomposition. We apply TPT across diverse training configurations up to 100B tokens, encompassing pre-training with both constrained and abundant data, as well as mid-training from strong open-source checkpoints. Experimental results indicate that our method substantially improves the performance of LLMs across various model sizes and families. Notably, TPT enhances the data efficiency of LLM pre-training by a factor of 3. For a 3B parameter model, it improves the post-training performance by over 10% on several challenging reasoning benchmarks.

  • 5 authors
·
Sep 24 2

Reasoning to Learn from Latent Thoughts

Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% rightarrow 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.

  • 4 authors
·
Mar 24 1

Text Data Augmentation for Large Language Models: A Comprehensive Survey of Methods, Challenges, and Opportunities

The increasing size and complexity of pre-trained language models have demonstrated superior performance in many applications, but they usually require large training datasets to be adequately trained. Insufficient training sets could unexpectedly make the model overfit and fail to cope with complex tasks. Large language models (LLMs) trained on extensive corpora have prominent text generation capabilities, which improve the quality and quantity of data and play a crucial role in data augmentation. Specifically, distinctive prompt templates are given in personalised tasks to guide LLMs in generating the required content. Recent promising retrieval-based techniques further improve the expressive performance of LLMs in data augmentation by introducing external knowledge to enable them to produce more grounded-truth data. This survey provides an in-depth analysis of data augmentation in LLMs, classifying the techniques into Simple Augmentation, Prompt-based Augmentation, Retrieval-based Augmentation and Hybrid Augmentation. We summarise the post-processing approaches in data augmentation, which contributes significantly to refining the augmented data and enabling the model to filter out unfaithful content. Then, we provide the common tasks and evaluation metrics. Finally, we introduce existing challenges and future opportunities that could bring further improvement to data augmentation.

  • 3 authors
·
Jan 30

Lookahead: An Inference Acceleration Framework for Large Language Model with Lossless Generation Accuracy

As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named lookahead, introduces a multi-branch strategy. Instead of generating a single token at a time, we propose a Trie-based Retrieval (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a Verification and Accept (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: https://github.com/alipay/PainlessInferenceAcceleration.

  • 4 authors
·
Dec 19, 2023

Evaluating the Effectiveness and Scalability of LLM-Based Data Augmentation for Retrieval

Compact dual-encoder models are widely used for retrieval owing to their efficiency and scalability. However, such models often underperform compared to their Large Language Model (LLM)-based retrieval counterparts, likely due to their limited world knowledge. While LLM-based data augmentation has been proposed as a strategy to bridge this performance gap, there is insufficient understanding of its effectiveness and scalability to real-world retrieval problems. Existing research does not systematically explore key factors such as the optimal augmentation scale, the necessity of using large augmentation models, and whether diverse augmentations improve generalization, particularly in out-of-distribution (OOD) settings. This work presents a comprehensive study of the effectiveness of LLM augmentation for retrieval, comprising over 100 distinct experimental settings of retrieval models, augmentation models and augmentation strategies. We find that, while augmentation enhances retrieval performance, its benefits diminish beyond a certain augmentation scale, even with diverse augmentation strategies. Surprisingly, we observe that augmentation with smaller LLMs can achieve performance competitive with larger augmentation models. Moreover, we examine how augmentation effectiveness varies with retrieval model pre-training, revealing that augmentation provides the most benefit to models which are not well pre-trained. Our insights pave the way for more judicious and efficient augmentation strategies, thus enabling informed decisions and maximizing retrieval performance while being more cost-effective. Code and augmented datasets accompanying this work are publicly available at https://aka.ms/DAGR.

  • 4 authors
·
Sep 19

ALP: Data Augmentation using Lexicalized PCFGs for Few-Shot Text Classification

Data augmentation has been an important ingredient for boosting performances of learned models. Prior data augmentation methods for few-shot text classification have led to great performance boosts. However, they have not been designed to capture the intricate compositional structure of natural language. As a result, they fail to generate samples with plausible and diverse sentence structures. Motivated by this, we present the data Augmentation using Lexicalized Probabilistic context-free grammars (ALP) that generates augmented samples with diverse syntactic structures with plausible grammar. The lexicalized PCFG parse trees consider both the constituents and dependencies to produce a syntactic frame that maximizes a variety of word choices in a syntactically preservable manner without specific domain experts. Experiments on few-shot text classification tasks demonstrate that ALP enhances many state-of-the-art classification methods. As a second contribution, we delve into the train-val splitting methodologies when a data augmentation method comes into play. We argue empirically that the traditional splitting of training and validation sets is sub-optimal compared to our novel augmentation-based splitting strategies that further expand the training split with the same number of labeled data. Taken together, our contributions on the data augmentation strategies yield a strong training recipe for few-shot text classification tasks.

  • 5 authors
·
Dec 16, 2021

Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models

In reasoning tasks, even a minor error can cascade into inaccurate results, leading to suboptimal performance of large language models in such domains. Earlier fine-tuning approaches sought to mitigate this by leveraging more precise supervisory signals from human labeling, larger models, or self-sampling, although at a high cost. Conversely, we develop a method that avoids external resources, relying instead on introducing perturbations to the input. Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks. When applied to fine-tuning with GSM8K, this method achieved a 5% improvement in accuracy over standard supervised fine-tuning with a few codes modified and no additional labeling effort. Furthermore, it is complementary to existing methods. When integrated with related data augmentation methods, it leads to an average improvement of 3% improvement in GSM8K accuracy and 1% improvement in MATH accuracy across five datasets of various quality and size, as well as two base models. We further investigate the mechanisms behind this improvement through case studies and quantitative analysis, suggesting that our approach may provide superior support for the model in capturing long-distance dependencies, especially those related to questions. This enhancement could deepen understanding of premises in questions and prior steps. Our code is available at Github.

  • 9 authors
·
Mar 4, 2024

Toward Understanding Generative Data Augmentation

Generative data augmentation, which scales datasets by obtaining fake labeled examples from a trained conditional generative model, boosts classification performance in various learning tasks including (semi-)supervised learning, few-shot learning, and adversarially robust learning. However, little work has theoretically investigated the effect of generative data augmentation. To fill this gap, we establish a general stability bound in this not independently and identically distributed (non-i.i.d.) setting, where the learned distribution is dependent on the original train set and generally not the same as the true distribution. Our theoretical result includes the divergence between the learned distribution and the true distribution. It shows that generative data augmentation can enjoy a faster learning rate when the order of divergence term is o(maxleft( log(m)beta_m, 1 / m)right), where m is the train set size and beta_m is the corresponding stability constant. We further specify the learning setup to the Gaussian mixture model and generative adversarial nets. We prove that in both cases, though generative data augmentation does not enjoy a faster learning rate, it can improve the learning guarantees at a constant level when the train set is small, which is significant when the awful overfitting occurs. Simulation results on the Gaussian mixture model and empirical results on generative adversarial nets support our theoretical conclusions. Our code is available at https://github.com/ML-GSAI/Understanding-GDA.

  • 3 authors
·
May 27, 2023

The Impact of Hyperparameters on Large Language Model Inference Performance: An Evaluation of vLLM and HuggingFace Pipelines

The recent surge of open-source large language models (LLMs) enables developers to create AI-based solutions while maintaining control over aspects such as privacy and compliance, thereby providing governance and ownership of the model deployment process. To utilize these LLMs, inference engines are needed. These engines load the model's weights onto available resources, such as GPUs, and process queries to generate responses. The speed of inference, or performance, of the LLM, is critical for real-time applications, as it computes millions or billions of floating point operations per inference. Recently, advanced inference engines such as vLLM have emerged, incorporating novel mechanisms such as efficient memory management to achieve state-of-the-art performance. In this paper, we analyze the performance, particularly the throughput (tokens generated per unit of time), of 20 LLMs using two inference libraries: vLLM and HuggingFace's pipelines. We investigate how various hyperparameters, which developers must configure, influence inference performance. Our results reveal that throughput landscapes are irregular, with distinct peaks, highlighting the importance of hyperparameter optimization to achieve maximum performance. We also show that applying hyperparameter optimization when upgrading or downgrading the GPU model used for inference can improve throughput from HuggingFace pipelines by an average of 9.16% and 13.7%, respectively.

  • 1 authors
·
Aug 2, 2024 4

Automatic Data Augmentation via Invariance-Constrained Learning

Underlying data structures, such as symmetries or invariances to transformations, are often exploited to improve the solution of learning tasks. However, embedding these properties in models or learning algorithms can be challenging and computationally intensive. Data augmentation, on the other hand, induces these symmetries during training by applying multiple transformations to the input data. Despite its ubiquity, its effectiveness depends on the choices of which transformations to apply, when to do so, and how often. In fact, there is both empirical and theoretical evidence that the indiscriminate use of data augmentation can introduce biases that outweigh its benefits. This work tackles these issues by automatically adapting the data augmentation while solving the learning task. To do so, it formulates data augmentation as an invariance-constrained learning problem and leverages Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical algorithm that not only does away with a priori searches for augmentation distributions, but also dynamically controls if and when data augmentation is applied. Our experiments illustrate the performance of this method, which achieves state-of-the-art results in automatic data augmentation benchmarks for CIFAR datasets. Furthermore, this approach can be used to gather insights on the actual symmetries underlying a learning task.

  • 3 authors
·
Sep 29, 2022

Inference Scaling for Long-Context Retrieval Augmented Generation

The scaling of inference computation has unlocked the potential of long-context large language models (LLMs) across diverse settings. For knowledge-intensive tasks, the increased compute is often allocated to incorporate more external knowledge. However, without effectively utilizing such knowledge, solely expanding context does not always enhance performance. In this work, we investigate inference scaling for retrieval augmented generation (RAG), exploring strategies beyond simply increasing the quantity of knowledge. We focus on two inference scaling strategies: in-context learning and iterative prompting. These strategies provide additional flexibility to scale test-time computation (e.g., by increasing retrieved documents or generation steps), thereby enhancing LLMs' ability to effectively acquire and utilize contextual information. We address two key questions: (1) How does RAG performance benefit from the scaling of inference computation when optimally configured? (2) Can we predict the optimal test-time compute allocation for a given budget by modeling the relationship between RAG performance and inference parameters? Our observations reveal that increasing inference computation leads to nearly linear gains in RAG performance when optimally allocated, a relationship we describe as the inference scaling laws for RAG. Building on this, we further develop the computation allocation model to estimate RAG performance across different inference configurations. The model predicts optimal inference parameters under various computation constraints, which align closely with the experimental results. By applying these optimal configurations, we demonstrate that scaling inference compute on long-context LLMs achieves up to 58.9% gains on benchmark datasets compared to standard RAG.

  • 10 authors
·
Oct 5, 2024 2

TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models

Data collection is often difficult in critical fields such as medicine, physics, and chemistry. As a result, classification methods usually perform poorly with these small datasets, leading to weak predictive performance. Increasing the training set with additional synthetic data, similar to data augmentation in images, is commonly believed to improve downstream classification performance. However, current tabular generative methods that learn either the joint distribution p(x, y) or the class-conditional distribution p(x mid y) often overfit on small datasets, resulting in poor-quality synthetic data, usually worsening classification performance compared to using real data alone. To solve these challenges, we introduce TabEBM, a novel class-conditional generative method using Energy-Based Models (EBMs). Unlike existing methods that use a shared model to approximate all class-conditional densities, our key innovation is to create distinct EBM generative models for each class, each modelling its class-specific data distribution individually. This approach creates robust energy landscapes, even in ambiguous class distributions. Our experiments show that TabEBM generates synthetic data with higher quality and better statistical fidelity than existing methods. When used for data augmentation, our synthetic data consistently improves the classification performance across diverse datasets of various sizes, especially small ones. Code is available at https://github.com/andreimargeloiu/TabEBM.

  • 4 authors
·
Sep 24, 2024

Large Language Monkeys: Scaling Inference Compute with Repeated Sampling

Scaling the amount of compute used to train language models has dramatically improved their capabilities. However, when it comes to inference, we often limit the amount of compute to only one attempt per problem. Here, we explore inference compute as another axis for scaling by increasing the number of generated samples. Across multiple tasks and models, we observe that coverage - the fraction of problems solved by any attempt - scales with the number of samples over four orders of magnitude. In domains like coding and formal proofs, where all answers can be automatically verified, these increases in coverage directly translate into improved performance. When we apply repeated sampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-V2-Coder-Instruct increases from 15.9% with one sample to 56% with 250 samples, outperforming the single-attempt state-of-the-art of 43% which uses more capable frontier models. Moreover, using current API pricing, amplifying the cheaper DeepSeek model with five samples is more cost-effective and solves more issues than paying a premium for one sample from GPT-4o or Claude 3.5 Sonnet. Interestingly, the relationship between coverage and the number of samples is often log-linear and can be modelled with an exponentiated power law, suggesting the existence of inference-time scaling laws. Finally, we find that identifying correct samples out of many generations remains an important direction for future research in domains without automatic verifiers. When solving math word problems from GSM8K and MATH, coverage with Llama-3 models grows to over 95% with 10,000 samples. However, common methods to pick correct solutions from a sample collection, such as majority voting or reward models, plateau beyond several hundred samples and fail to fully scale with the sample budget.

  • 7 authors
·
Jul 31, 2024

Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks

Despite large successes of recent language models on diverse tasks, they suffer from severe performance degeneration in low-resource settings with limited training data available. Many existing works tackle this problem by generating synthetic data from the training data and then training models on them, recently using Large Language Models (LLMs). However, in low-resource settings, the amount of seed data samples to use for data augmentation is very small, which makes generated samples suboptimal and less diverse. To tackle this challenge, we propose a novel method that augments training data by incorporating a wealth of examples from other datasets, along with the given training data. Specifically, we first retrieve the relevant instances from other datasets, such as their input-output pairs or contexts, based on their similarities with the given seed data, and then prompt LLMs to generate new samples with the contextual information within and across the original and retrieved samples. This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone. We validate our proposed Retrieval-Augmented Data Augmentation (RADA) framework on multiple datasets under low-resource settings of training and test-time data augmentation scenarios, on which it outperforms existing LLM-powered data augmentation baselines.

  • 4 authors
·
Feb 20, 2024

Inference-Time Scaling for Complex Tasks: Where We Stand and What Lies Ahead

Inference-time scaling can enhance the reasoning capabilities of large language models (LLMs) on complex problems that benefit from step-by-step problem solving. Although lengthening generated scratchpads has proven effective for mathematical tasks, the broader impact of this approach on other tasks remains less clear. In this work, we investigate the benefits and limitations of scaling methods across nine state-of-the-art models and eight challenging tasks, including math and STEM reasoning, calendar planning, NP-hard problems, navigation, and spatial reasoning. We compare conventional models (e.g., GPT-4o) with models fine-tuned for inference-time scaling (e.g., o1) through evaluation protocols that involve repeated model calls, either independently or sequentially with feedback. These evaluations approximate lower and upper performance bounds and potential for future performance improvements for each model, whether through enhanced training or multi-model inference systems. Our extensive empirical analysis reveals that the advantages of inference-time scaling vary across tasks and diminish as problem complexity increases. In addition, simply using more tokens does not necessarily translate to higher accuracy in these challenging regimes. Results from multiple independent runs with conventional models using perfect verifiers show that, for some tasks, these models can achieve performance close to the average performance of today's most advanced reasoning models. However, for other tasks, a significant performance gap remains, even in very high scaling regimes. Encouragingly, all models demonstrate significant gains when inference is further scaled with perfect verifiers or strong feedback, suggesting ample potential for future improvements.

Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization

We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5\% on AIME 2024, 83.2\% on AIME 2025, 66.0\% on LiveCodeBench V5 and 58.1\% on LiveCodeBench V6.

  • 8 authors
·
Aug 11 4

Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs

Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.

  • 4 authors
·
Feb 13, 2024

ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure

Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.

  • 8 authors
·
Oct 3, 2024

Improving Reasoning Performance in Large Language Models via Representation Engineering

Recent advancements in large language models (LLMs) have resulted in increasingly anthropomorphic language concerning the ability of LLMs to reason. Whether reasoning in LLMs should be understood to be inherently different is, however, widely debated. We propose utilizing a representation engineering approach wherein model activations are read from the residual stream of an LLM when processing a reasoning task. The activations are used to derive a control vector that is applied to the model as an inference-time intervention, modulating the representational space of the model, to improve performance on the specified task. We publish the code for deriving control vectors and analyzing model representations. The method allows us to improve performance on reasoning benchmarks and assess how control vectors influence the final logit distribution of a model via metrics such as KL divergence and entropy. We apply control vectors to Mistral-7B-Instruct and a range of Pythia models on an inductive, a deductive and mathematical reasoning task. We show that an LLM can, to a certain degree, be controlled to improve its perceived reasoning ability by modulating activations. The intervention is dependent upon the ability to reliably extract the model's typical state when correctly solving a task. Our results suggest that reasoning performance can be modulated in the same manner as other information-processing tasks performed by LLMs and demonstrate that we are capable of improving performance on specific tasks via a simple intervention on the residual stream with no additional training.

  • 3 authors
·
Apr 28

LLaSA: Large Language and E-Commerce Shopping Assistant

The e-commerce platform has evolved rapidly due to its widespread popularity and convenience. Developing an e-commerce shopping assistant for customers is crucial to aiding them in quickly finding desired products and recommending precisely what they need. However, most previous shopping assistants face two main problems: (1) task-specificity, which necessitates the development of different models for various tasks, thereby increasing development costs and limiting effectiveness; and (2) poor generalization, where the trained model performs inadequately on up-to-date products. To resolve these issues, we employ Large Language Models (LLMs) to construct an omnipotent assistant, leveraging their adeptness at handling multiple tasks and their superior generalization capability. Nonetheless, LLMs lack inherent knowledge of e-commerce concepts. To address this, we create an instruction dataset comprising 65,000 samples and diverse tasks, termed as EshopInstruct. Through instruction tuning on our dataset, the assistant, named LLaSA, demonstrates the potential to function as an omnipotent assistant. Additionally, we propose various inference optimization strategies to enhance performance with limited inference resources. In the Amazon KDD Cup 2024 Challenge, our proposed method, LLaSA, achieved an overall ranking of 3rd place on ShopBench, including 57 tasks and approximately 20,000 questions, and we secured top-5 rankings in each track, especially in track4, where we achieved the best performance result among all student teams. Our extensive practices fully demonstrate that LLMs possess the great potential to be competent e-commerce shopping assistants.

  • 7 authors
·
Aug 4, 2024

Is linguistically-motivated data augmentation worth it?

Data augmentation, a widely-employed technique for addressing data scarcity, involves generating synthetic data examples which are then used to augment available training data. Researchers have seen surprising success from simple methods, such as random perturbations from natural examples, where models seem to benefit even from data with nonsense words, or data that doesn't conform to the rules of the language. A second line of research produces synthetic data that does in fact follow all linguistic constraints; these methods require some linguistic expertise and are generally more challenging to implement. No previous work has done a systematic, empirical comparison of both linguistically-naive and linguistically-motivated data augmentation strategies, leaving uncertainty about whether the additional time and effort of linguistically-motivated data augmentation work in fact yields better downstream performance. In this work, we conduct a careful and comprehensive comparison of augmentation strategies (both linguistically-naive and linguistically-motivated) for two low-resource languages with different morphological properties, Uspanteko and Arapaho. We evaluate the effectiveness of many different strategies and their combinations across two important sequence-to-sequence tasks for low-resource languages: machine translation and interlinear glossing. We find that linguistically-motivated strategies can have benefits over naive approaches, but only when the new examples they produce are not significantly unlike the training data distribution.

  • 3 authors
·
Jun 4

A*-Decoding: Token-Efficient Inference Scaling

Inference-time scaling has emerged as a powerful alternative to parameter scaling for improving language model performance on complex reasoning tasks. While existing methods have shown strong performance gains under fixed compute budgets, there has been little focus on optimally utilizing that budget during inference. In this work, we introduce A*-decoding, a search-based inference-time strategy that builds on the A* search algorithm to optimally utilize a fixed compute budget by prioritizing high-quality reasoning paths during generation. We frame language model decoding as a structured search in a state space of partial solutions, applying the A* transition model to identify promising continuations guided by an external process supervision signal. In our experiments, A*-decoding reaches the performance levels of strong inference scaling baselines like best-of-N and particle filtering while using up to 3x fewer tokens and 30% fewer PRM passes under equivalent compute budgets. On the MATH500 and AIME 2024 benchmarks, A*-decoding enables Llama-3.2-1B-Instruct to match the performance of the 70x larger Llama-3.1-70B-Instruct, and allows Qwen3-1.7B to reach o1-like reasoning accuracy. These results highlight the power of structured search in decoding, offering an alternative to brute-force sampling or scale-driven gains. Our work demonstrates how thoughtful inference-time strategies can enhance reasoning in SLMs, pointing toward future advances in more efficient and scalable language model deployment.

  • 1 authors
·
May 19

When Life Gives You Samples: The Benefits of Scaling up Inference Compute for Multilingual LLMs

Recent advancements in large language models (LLMs) have shifted focus toward scaling inference-time compute, improving performance without retraining the model. A common approach is to sample multiple outputs in parallel, and select one of these as the final output. However, work to date has focused on English and a handful of domains such as math and code. In contrast, we are most interested in techniques that generalize across open-ended tasks, formally verifiable tasks, and across languages. In this work, we study how to robustly scale inference-time compute for open-ended generative tasks in a multilingual, multi-task setting. Our findings show that both sampling strategy based on temperature variation and selection strategy must be adapted to account for diverse domains and varied language settings. We evaluate existing selection methods, revealing that strategies effective in English often fail to generalize across languages. We propose novel sampling and selection strategies specifically adapted for multilingual and multi-task inference scenarios, and show they yield notable gains across languages and tasks. In particular, our combined sampling and selection methods lead to an average +6.8 jump in win-rates for our 8B models on m-ArenaHard-v2.0 prompts, against proprietary models such as Gemini. At larger scale, Command-A (111B model) equipped with our methods, shows +9.0 improvement in win-rates on the same benchmark with just five samples against single-sample decoding, a substantial increase at minimal cost. Our results underscore the need for language- and task-aware approaches to inference-time compute, aiming to democratize performance improvements in underrepresented languages.

  • 5 authors
·
Jun 25 1

A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods

Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code and further information is available at https://probabilistic-inference-scaling.github.io.

Activation Steering for Chain-of-Thought Compression

Large language models (LLMs) excel at complex reasoning when they include intermediate steps, known as "chains of thought" (CoTs). However, these rationales are often overly verbose, even for simple problems, leading to wasted context, increased latency, and higher energy consumption. We observe that verbose, English-heavy CoTs and concise, math-centric CoTs occupy distinct regions in the model's residual-stream activation space. By extracting and injecting a "steering vector" to transition between these modes, we can reliably shift generation toward more concise reasoning, effectively compressing CoTs without retraining. We formalize this approach as Activation-Steered Compression (ASC), an inference-time technique that shortens reasoning traces by directly modifying hidden representations. In addition, we provide a theoretical analysis of the impact of ASC on the output distribution, derived from a closed-form KL-divergence-bounded constraint to regulate steering strength. Using only 100 paired verbose and concise examples, ASC achieves up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free method, ASC introduces negligible runtime overhead and, on MATH500, delivers an average 2.73x speedup in end-to-end reasoning wall-clock time on an 8B model. This makes ASC a practical and efficient tool for streamlining the deployment of reasoning-capable LLMs in latency- or cost-sensitive settings. The code is available at: https://github.com/ArminAzizi98/ASC

  • 3 authors
·
Jul 7 1

Retrieve Anything To Augment Large Language Models

Large language models (LLMs) face significant challenges stemming from the inherent limitations in knowledge, memory, alignment, and action. These challenges cannot be addressed by LLMs alone, but should rely on assistance from the external world, such as knowledge base, memory store, demonstration examples, and tools. Retrieval augmentation stands as a vital mechanism for bridging the gap between LLMs and the external assistance. However, conventional methods encounter two pressing issues. On one hand, the general-purpose retrievers are not properly optimized for the retrieval augmentation of LLMs. On the other hand, the task-specific retrievers lack the required versatility, hindering their performance across the diverse retrieval augmentation scenarios. In this work, we present a novel approach, the LLM Embedder, which comprehensively support the diverse needs of LLMs' retrieval augmentation with one unified embedding model. Training such an unified model is non-trivial, as various retrieval tasks aim to capture distinct semantic relationships, often subject to mutual interference. To address this challenge, we systematically optimize our training methodology. This includes reward formulation based on LLMs' feedback, the stabilization of knowledge distillation, multi-task fine-tuning with explicit instructions, and the use of homogeneous in-batch negative sampling. These optimization strategies contribute to the outstanding empirical performance of the LLM-Embedder. Notably, it yields remarkable enhancements in retrieval augmentation for LLMs, surpassing both general-purpose and task-specific retrievers in various evaluation scenarios. This project is made publicly available at https://github.com/FlagOpen/FlagEmbedding.

  • 5 authors
·
Oct 11, 2023

Bag of Tricks for Inference-time Computation of LLM Reasoning

With the advancement of large language models (LLMs), solving complex reasoning tasks has gained increasing attention. Inference-time computation methods (e.g., Best-of-N, beam search, et al.) are particularly valuable as they can enhance reasoning performance without modifying model parameters or requiring additional training. However, these techniques come with implementation challenges, and most existing methods remain at the proof-of-concept stage with limited practical adoption due to their computational complexity and varying effectiveness across different tasks. In this paper, we investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity. Since most current methods rely on a proposer-verifier pipeline that first generates candidate solutions (e.g., reasoning solutions) and then selects the best one based on reward signals (e.g., RLHF rewards, process rewards), our research focuses on optimizing both candidate solution generation (e.g., instructing prompts, hyperparameters such as temperature and top-p) and reward mechanisms (e.g., self-evaluation, reward types). Through extensive experiments (more than 20,000 A100-80G GPU hours with over 1,000 experiments) across a variety of models (e.g., Llama, Qwen, and Mistral families) of various sizes, our ablation studies reveal that previously overlooked strategies can significantly enhance performance (e.g., tuning temperature can improve reasoning task performance by up to 5%). Furthermore, we establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks. These findings provide a stronger foundation for future research. The code is available at https://github.com/usail-hkust/benchmark_inference_time_computation_LLM

  • 4 authors
·
Feb 10

MathFusion: Enhancing Mathematic Problem-solving of LLM through Instruction Fusion

Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, MathFusionQA, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.

  • 9 authors
·
Mar 20 2

Contrastive Learning with Logic-driven Data Augmentation for Logical Reasoning over Text

Pre-trained large language model (LLM) is under exploration to perform NLP tasks that may require logical reasoning. Logic-driven data augmentation for representation learning has been shown to improve the performance of tasks requiring logical reasoning, but most of these data rely on designed templates and therefore lack generalization. In this regard, we propose an AMR-based logical equivalence-driven data augmentation method (AMR-LE) for generating logically equivalent data. Specifically, we first parse a text into the form of an AMR graph, next apply four logical equivalence laws (contraposition, double negation, commutative and implication laws) on the AMR graph to construct a logically equivalent/inequivalent AMR graph, and then convert it into a logically equivalent/inequivalent sentence. To help the model to better learn these logical equivalence laws, we propose a logical equivalence-driven contrastive learning training paradigm, which aims to distinguish the difference between logical equivalence and inequivalence. Our AMR-LE (Ensemble) achieves #2 on the ReClor leaderboard https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347 . Our model shows better performance on seven downstream tasks, including ReClor, LogiQA, MNLI, MRPC, RTE, QNLI, and QQP. The source code and dataset are public at https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning .

  • 10 authors
·
May 21, 2023

(Dynamic) Prompting might be all you need to repair Compressed LLMs

Large language models (LLMs), while transformative for NLP, come with significant computational demands, underlining the need for efficient, training-free compression. Notably, the reliability of perplexity as a benchmark for compressed model efficacy is in question, as our tests using LLaMA-7B and OPT-6.7b reveal a significant performance drop in several realistic downstream tasks, underscoring the disparity between perplexity as a performance indicator and real-world performance. Investigation into the trade-off between resource-intensive post-compression re-training highlights the prospect of prompt-driven recovery as a lightweight adaption tool. However, existing studies, confined mainly to perplexity evaluations and simple tasks, fail to offer unequivocal confidence in the scalability and generalizability of prompting. We tackle this uncertainty in two key ways. First, we uncover the vulnerability of naive prompts in LLM compression as an over-reliance on a singular prompt per input. In response, we propose inference-time dynamic prompting (IDP), a mechanism that autonomously chooses from a set of curated prompts based on the context of each individual input. Second, we delve into a scientific understanding of why ``prompting might be all you need post-LLM compression". Our findings suggest that compression doesn't irretrievably erase LLM model knowledge but displace it, necessitating a new inference path. IDP effectively redirects this path, enabling the model to tap into its inherent yet displaced knowledge and thereby recover performance. Empirical tests affirm the value of IDP, demonstrating an average performance improvement of 1.24% across nine varied tasks spanning multiple knowledge domains.

  • 5 authors
·
Oct 1, 2023

Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference

Autoregressive models, despite their commendable performance in a myriad of generative tasks, face challenges stemming from their inherently sequential structure. Inference on these models, by design, harnesses a temporal dependency, where the current token's probability distribution is conditioned on preceding tokens. This inherent characteristic severely impedes computational efficiency during inference as a typical inference request can require more than thousands of tokens, where generating each token requires a load of entire model weights, making the inference more memory-bound. The large overhead becomes profound in real deployment where requests arrive randomly, necessitating various generation lengths. Existing solutions, such as dynamic batching and concurrent instances, introduce significant response delays and bandwidth contention, falling short of achieving optimal latency and throughput. To address these shortcomings, we propose Flover -- a temporal fusion framework for efficiently inferring multiple requests in parallel. We deconstruct the general generation pipeline into pre-processing and token generation, and equip the framework with a dedicated work scheduler for fusing the generation process temporally across all requests. By orchestrating the token-level parallelism, Flover exhibits optimal hardware efficiency and significantly spares the system resources. By further employing a fast buffer reordering algorithm that allows memory eviction of finished tasks, it brings over 11x inference speedup on GPT and 16x on LLAMA compared to the cutting-edge solutions provided by NVIDIA FasterTransformer. Crucially, by leveraging the advanced tensor parallel technique, Flover proves efficacious across diverse computational landscapes, from single-GPU setups to distributed scenarios, thereby offering robust performance optimization that adapts to variable use cases.

  • 7 authors
·
May 22, 2023

EvolProver: Advancing Automated Theorem Proving by Evolving Formalized Problems via Symmetry and Difficulty

Large Language Models (LLMs) for formal theorem proving have shown significant promise, yet they often lack generalizability and are fragile to even minor transformations of problem statements. To address this limitation, we introduce a novel data augmentation pipeline designed to enhance model robustness from two perspectives: symmetry and difficulty. From the symmetry perspective, we propose two complementary methods: EvolAST, an Abstract Syntax Tree (AST) based approach that targets syntactic symmetry to generate semantically equivalent problem variants, and EvolDomain, which leverages LLMs to address semantic symmetry by translating theorems across mathematical domains. From the difficulty perspective, we propose EvolDifficulty, which uses carefully designed evolutionary instructions to guide LLMs in generating new theorems with a wider range of difficulty. We then use the evolved data to train EvolProver, a 7B-parameter non-reasoning theorem prover. EvolProver establishes a new state-of-the-art (SOTA) on FormalMATH-Lite with a 53.8% pass@32 rate, surpassing all models of comparable size, including reasoning-based models. It also sets new SOTA records for non-reasoning models on MiniF2F-Test (69.8% pass@32), Ineq-Comp-Seed (52.2% pass@32), and Ineq-Comp-Transformed (34.0% pass@32). Ablation studies further confirm our data augmentation pipeline's effectiveness across multiple benchmarks.

  • 9 authors
·
Oct 1 2

DiffIER: Optimizing Diffusion Models with Iterative Error Reduction

Diffusion models have demonstrated remarkable capabilities in generating high-quality samples and enhancing performance across diverse domains through Classifier-Free Guidance (CFG). However, the quality of generated samples is highly sensitive to the selection of the guidance weight. In this work, we identify a critical ``training-inference gap'' and we argue that it is the presence of this gap that undermines the performance of conditional generation and renders outputs highly sensitive to the guidance weight. We quantify this gap by measuring the accumulated error during the inference stage and establish a correlation between the selection of guidance weight and minimizing this gap. Furthermore, to mitigate this gap, we propose DiffIER, an optimization-based method for high-quality generation. We demonstrate that the accumulated error can be effectively reduced by an iterative error minimization at each step during inference. By introducing this novel plug-and-play optimization framework, we enable the optimization of errors at every single inference step and enhance generation quality. Empirical results demonstrate that our proposed method outperforms baseline approaches in conditional generation tasks. Furthermore, the method achieves consistent success in text-to-image generation, image super-resolution, and text-to-speech generation, underscoring its versatility and potential for broad applications in future research.

  • 3 authors
·
Aug 19

SemEval-2023 Task 7: Multi-Evidence Natural Language Inference for Clinical Trial Data

This paper describes the results of SemEval 2023 task 7 -- Multi-Evidence Natural Language Inference for Clinical Trial Data (NLI4CT) -- consisting of 2 tasks, a Natural Language Inference (NLI) task, and an evidence selection task on clinical trial data. The proposed challenges require multi-hop biomedical and numerical reasoning, which are of significant importance to the development of systems capable of large-scale interpretation and retrieval of medical evidence, to provide personalized evidence-based care. Task 1, the entailment task, received 643 submissions from 40 participants, and Task 2, the evidence selection task, received 364 submissions from 23 participants. The tasks are challenging, with the majority of submitted systems failing to significantly outperform the majority class baseline on the entailment task, and we observe significantly better performance on the evidence selection task than on the entailment task. Increasing the number of model parameters leads to a direct increase in performance, far more significant than the effect of biomedical pre-training. Future works could explore the limitations of large models for generalization and numerical inference, and investigate methods to augment clinical datasets to allow for more rigorous testing and to facilitate fine-tuning. We envisage that the dataset, models, and results of this task will be useful to the biomedical NLI and evidence retrieval communities. The dataset, competition leaderboard, and website are publicly available.

  • 6 authors
·
May 4, 2023

Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling

Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks. However, existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling. While reinforcement learning (RL) holds promise for enabling self-exploration and learning from feedback, recent attempts yield only modest improvements in complex reasoning. In this paper, we present T1 to scale RL by encouraging exploration and understand inference scaling. We first initialize the LLM using synthesized chain-of-thought data that integrates trial-and-error and self-verification. To scale RL training, we promote increased sampling diversity through oversampling. We further employ an entropy bonus as an auxiliary loss, alongside a dynamic anchor for regularization to facilitate reward optimization. We demonstrate that T1 with open LLMs as its base exhibits inference scaling behavior and achieves superior performance on challenging math reasoning benchmarks. For example, T1 with Qwen2.5-32B as the base model outperforms the recent Qwen QwQ-32B-Preview model on MATH500, AIME2024, and Omni-math-500. More importantly, we present a simple strategy to examine inference scaling, where increased inference budgets directly lead to T1's better performance without any additional verification. We will open-source the T1 models and the data used to train them at https://github.com/THUDM/T1.

  • 9 authors
·
Jan 20

Imagination Augmented Generation: Learning to Imagine Richer Context for Question Answering over Large Language Models

Retrieval-Augmented-Generation and Gener-ation-Augmented-Generation have been proposed to enhance the knowledge required for question answering over Large Language Models (LLMs). However, the former depends on external resources, and both require incorporating the explicit documents into the context, which results in longer contexts that lead to more resource consumption. Recent works indicate that LLMs have modeled rich knowledge, albeit not effectively triggered or activated. Inspired by this, we propose a novel knowledge-augmented framework, Imagination-Augmented-Generation (IAG), which simulates the human capacity to compensate for knowledge deficits while answering questions solely through imagination, without relying on external resources. Guided by IAG, we propose an imagine richer context method for question answering (IMcQA), which obtains richer context through the following two modules: explicit imagination by generating a short dummy document with long context compress and implicit imagination with HyperNetwork for generating adapter weights. Experimental results on three datasets demonstrate that IMcQA exhibits significant advantages in both open-domain and closed-book settings, as well as in both in-distribution performance and out-of-distribution generalizations. Our code will be available at https://github.com/Xnhyacinth/IAG.

  • 7 authors
·
Mar 22, 2024

Parametric Augmentation for Time Series Contrastive Learning

Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on univariate forecasting tasks demonstrate the highly competitive results of our method, with an average 6.5\% reduction in MSE and 4.7\% in MAE over the leading baselines. In classification tasks, AutoTCL achieves a 1.2% increase in average accuracy.

  • 7 authors
·
Feb 15, 2024

Archon: An Architecture Search Framework for Inference-Time Techniques

Inference-time techniques are emerging as highly effective tools to enhance large language model (LLM) capabilities. However, best practices for developing systems that combine these techniques remain underdeveloped due to our limited understanding of the utility of individual inference-time techniques and the interactions between them. Additionally, efficiently and automatically searching the space of model choices, inference-time techniques, and their compositions is challenging due to the large design space. To address these challenges, we introduce Archon, a modular framework for selecting, combining, and stacking layers of inference-time techniques to construct optimized LLM systems for target benchmarks. Rather than relying on a single LLM called once, we leverage a diverse set of LLMs and inference-time techniques, creating LLM systems greater than the sum of their parts. Archon defines an extensible design space, encompassing techniques such as generation ensembling, repeated sampling, ranking, fusion, critiquing, verification, and unit testing. It transforms the problem of building LLM systems into a hyperparameter optimization objective. Given the available LLMs, inference-time techniques, and compute budget, Archon utilizes hyperparameter search techniques to discover optimized architectures for target benchmark(s). We evaluate Archon architectures across a range of instruction-following, reasoning, and coding benchmarks, including MT-Bench, Arena-Hard-Auto, AlpacaEval 2.0, MixEval, MixEval Hard, MATH, and CodeContests. Archon architectures outperform frontier models, such as GPT-4o and Claude 3.5 Sonnet, on these benchmarks, achieving an average accuracy increase of 15.1 percentage points by using all available LLMs. We make our code and datasets available publicly on Github: https://github.com/ScalingIntelligence/Archon.

  • 11 authors
·
Sep 23, 2024

Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods

There is intense interest in investigating how inference time compute (ITC) (e.g. repeated sampling, refinements, etc) can improve large language model (LLM) capabilities. At the same time, recent breakthroughs in reasoning models, such as Deepseek-R1, unlock the opportunity for reinforcement learning to improve LLM reasoning skills. An in-depth understanding of how ITC interacts with reasoning across different models could provide important guidance on how to further advance the LLM frontier. This work conducts a comprehensive analysis of inference-time scaling methods for both reasoning and non-reasoning models on challenging reasoning tasks. Specifically, we focus our research on verifier-free inference time-scaling methods due to its generalizability without needing a reward model. We construct the Pareto frontier of quality and efficiency. We find that non-reasoning models, even with an extremely high inference budget, still fall substantially behind reasoning models. For reasoning models, majority voting proves to be a robust inference strategy, generally competitive or outperforming other more sophisticated ITC methods like best-of-N and sequential revisions, while the additional inference compute offers minimal improvements. We further perform in-depth analyses of the association of key response features (length and linguistic markers) with response quality, with which we can improve the existing ITC methods. We find that correct responses from reasoning models are typically shorter and have fewer hedging and thinking markers (but more discourse markers) than the incorrect responses.

  • 10 authors
·
Apr 18

Query and Response Augmentation Cannot Help Out-of-domain Math Reasoning Generalization

In math reasoning with large language models (LLMs), fine-tuning data augmentation by query evolution and diverse reasoning paths is empirically verified effective, profoundly narrowing the gap between open-sourced LLMs and cutting-edge proprietary LLMs. In this paper, we conduct an investigation for such data augmentation in math reasoning and are intended to answer: (1) What strategies of data augmentation are more effective; (2) What is the scaling relationship between the amount of augmented data and model performance; and (3) Can data augmentation incentivize generalization to out-of-domain mathematical reasoning tasks? To this end, we create a new dataset, AugGSM8K, by complicating and diversifying the queries from GSM8K and sampling multiple reasoning paths. We obtained a series of LLMs called MuggleMath by fine-tuning on subsets of AugGSM8K. MuggleMath substantially achieves new state-of-the-art on GSM8K (from 54% to 68.4% at the scale of 7B, and from 63.9% to 74.0% at the scale of 13B). A log-linear relationship is presented between MuggleMath's performance and the amount of augmented data. We also find that MuggleMath is weak in out-of-domain math reasoning generalization to MATH. This is attributed to the differences in query distribution between AugGSM8K and MATH which suggest that augmentation on a single benchmark could not help with overall math reasoning performance. Codes and AugGSM8K will be uploaded to https://github.com/OFA-Sys/gsm8k-ScRel.

  • 8 authors
·
Oct 9, 2023