- ConFit v2: Improving Resume-Job Matching using Hypothetical Resume Embedding and Runner-Up Hard-Negative Mining A reliable resume-job matching system helps a company recommend suitable candidates from a pool of resumes and helps a job seeker find relevant jobs from a list of job posts. However, since job seekers apply only to a few jobs, interaction labels in resume-job datasets are sparse. We introduce ConFit v2, an improvement over ConFit to tackle this sparsity problem. We propose two techniques to enhance the encoder's contrastive training process: augmenting job data with hypothetical reference resume generated by a large language model; and creating high-quality hard negatives from unlabeled resume/job pairs using a novel hard-negative mining strategy. We evaluate ConFit v2 on two real-world datasets and demonstrate that it outperforms ConFit and prior methods (including BM25 and OpenAI text-embedding-003), achieving an average absolute improvement of 13.8% in recall and 17.5% in nDCG across job-ranking and resume-ranking tasks. 6 authors · Feb 17
- ConFit: Improving Resume-Job Matching using Data Augmentation and Contrastive Learning A reliable resume-job matching system helps a company find suitable candidates from a pool of resumes, and helps a job seeker find relevant jobs from a list of job posts. However, since job seekers apply only to a few jobs, interaction records in resume-job datasets are sparse. Different from many prior work that use complex modeling techniques, we tackle this sparsity problem using data augmentations and a simple contrastive learning approach. ConFit first creates an augmented resume-job dataset by paraphrasing specific sections in a resume or a job post. Then, ConFit uses contrastive learning to further increase training samples from B pairs per batch to O(B^2) per batch. We evaluate ConFit on two real-world datasets and find it outperforms prior methods (including BM25 and OpenAI text-ada-002) by up to 19% and 31% absolute in nDCG@10 for ranking jobs and ranking resumes, respectively. 3 authors · Jan 29, 2024
13 LiRank: Industrial Large Scale Ranking Models at LinkedIn We present LiRank, a large-scale ranking framework at LinkedIn that brings to production state-of-the-art modeling architectures and optimization methods. We unveil several modeling improvements, including Residual DCN, which adds attention and residual connections to the famous DCNv2 architecture. We share insights into combining and tuning SOTA architectures to create a unified model, including Dense Gating, Transformers and Residual DCN. We also propose novel techniques for calibration and describe how we productionalized deep learning based explore/exploit methods. To enable effective, production-grade serving of large ranking models, we detail how to train and compress models using quantization and vocabulary compression. We provide details about the deployment setup for large-scale use cases of Feed ranking, Jobs Recommendations, and Ads click-through rate (CTR) prediction. We summarize our learnings from various A/B tests by elucidating the most effective technical approaches. These ideas have contributed to relative metrics improvements across the board at LinkedIn: +0.5% member sessions in the Feed, +1.76% qualified job applications for Jobs search and recommendations, and +4.3% for Ads CTR. We hope this work can provide practical insights and solutions for practitioners interested in leveraging large-scale deep ranking systems. 34 authors · Feb 9, 2024 1
1 Scaling Up Efficient Small Language Models Serving and Deployment for Semantic Job Search Large Language Models (LLMs) have demonstrated impressive quality when applied to predictive tasks such as relevance ranking and semantic search. However, deployment of such LLMs remains prohibitively expensive for industry applications with strict latency and throughput requirements. In this work, we present lessons and efficiency insights from developing a purely text-based decoder-only Small Language Model (SLM) for a semantic search application at LinkedIn. Particularly, we discuss model compression techniques such as pruning that allow us to reduce the model size by up to 40% while maintaining the accuracy. Additionally, we present context compression techniques that allow us to reduce the input context length by up to 10x with minimal loss of accuracy. Finally, we present practical lessons from optimizing the serving infrastructure for deploying such a system on GPUs at scale, serving millions of requests per second. Taken together, this allows us to increase our system's throughput by 10x in a real-world deployment, while meeting our quality bar. LinkedIn · Oct 24