new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 14

Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning

The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.

  • 5 authors
·
Jul 1, 2021

Multiphysics Continuous Shape Optimization of the TAP Reactor Components

The Transatomic Power (TAP) reactor has an unusual design for a molten salt reactor technology, building upon the foundation laid by the Molten Salt Reactor Experiment (MSRE). This design introduces three key modifications to enhance efficiency and compactness: a revised fuel salt composition, an alternative moderator material, and moderator pins surrounded by the molten salt fuel. Unlike traditional solid-fueled reactors that rely on excess positive reactivity at the beginning of life, the TAP concept employs a dynamic approach. The core's design, featuring a cylindrical geometry with square assemblies of moderator rods surrounded by flowing fuel salt, provides flexibility in adjusting the moderator-to-fuel ratio during operation - using movable moderator rods - further adding criticality control capability in addition to the control rods system. Shape optimization of the core can play a crucial role in enhancing performance and efficiency. By applying multiphysics continuous shape optimization techniques to key components, such as the unit cells of the TAP reactor or its moderator assemblies, we can fine-tune the reactor's geometry to achieve optimal performance in key physics like neutronics and thermal hydraulics. We explore this aspect using the optimization module in the Multiphysics Object Oriented Simulation Environment (MOOSE) framework which allows for multiphysics continuous shape optimization. The results reported here illustrate the benefits of applying continuous shape optimization in the design of nuclear reactor components and can help in extending the TAP reactor's performance.

  • 3 authors
·
Feb 2