new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 17

Identifying supermassive black hole recoil in elliptical galaxies

We study stellar core growth in simulations of merging massive (M_star>10^{11},M_odot) elliptical galaxies by a supermassive black hole (SMBH) displaced by gravitational wave induced recoil velocity. With controlled, dense sampling of the SMBH recoil velocity, we find the core radius originally formed by SMBH binary scouring can grow by a factor of 2-3 when the recoil velocity exceeds sim50 per cent of the central escape velocity, and the mass deficit grows by up to a factor of sim4. Using Bayesian inference we predict the distribution of stellar core sizes formed through this process to peak at sim1,kpc. An orbital decomposition of stellar particles within the core reveals that radial orbits dominate over tube orbits when the recoil velocity exceeds the velocity dispersion of the core, whereas tube orbits dominate for the lowest recoil kicks. A change in orbital structure is reflected in the anisotropy parameter, with a central tangential bias present only for recoil velocities less than the local stellar velocity dispersion. Emulating current integral field unit observations of the stellar line-of-sight velocity distribution, we uncover a distinct signature in the Gauss-Hermite symmetric deviation coefficient h_4 that uniquely constrains the core size due to binary scouring. This signature is insensitive to the later evolution of the stellar mass distribution due to SMBH recoil. Our results provide a novel method to estimate the SMBH recoil magnitude from observations of local elliptical galaxies, and implies these galaxies primarily experienced recoil velocities less than the stellar velocity dispersion of the core.

  • 11 authors
·
Oct 17, 2024

Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution

Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)--galaxy interaction has long been constrained by observed scaling relations, that is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date dataset, reveals a causal link between galaxy properties and dynamically-measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.

  • 12 authors
·
Oct 1, 2024

KETJU -- resolving small-scale supermassive black hole dynamics in GADGET-4

We present the new public version of the KETJU supermassive black hole (SMBH) dynamics module, as implemented into GADGET-4. KETJU adds a small region around each SMBH where the dynamics of the SMBHs and stellar particles are integrated using an algorithmically regularised integrator instead of the leapfrog integrator with gravitational softening used by GADGET-4. This enables modelling SMBHs as point particles even during close interactions with stellar particles or other SMBHs, effectively removing the spatial resolution limitation caused by gravitational softening. KETJU also includes post-Newtonian corrections, which allows following the dynamics of SMBH binaries to sub-parsec scales and down to tens of Schwarzschild radii. Systems with multiple SMBHs are also supported, with the code also including the leading non-linear cross terms that appear in the post-Newtonian equations for such systems. We present tests of the code showing that it correctly captures, at sufficient mass resolution, the sinking driven by dynamical friction and binary hardening driven by stellar scattering. We also present an example application demonstrating how the code can be applied to study the dynamics of SMBHs in mergers of multiple galaxies and the effect they have on the properties of the surrounding galaxy. We expect that the presented KETJU SMBH dynamics module can also be straightforwardly incorporated into other codes similar to GADGET-4, which would allow coupling small-scale SMBH dynamics to the rich variety of galactic physics models that exist in the literature.

  • 8 authors
·
Jun 8, 2023

The Redshift Evolution of the $M_\bullet-M_\star$ Relation for JWST's Supermassive Black Holes at $z > 4$

JWST has detected many overmassive galactic systems at z > 4, where the mass of the black hole, M_bullet, is 10-100 times larger than expected from local relations, given the host's stellar mass, M_star. This Letter presents a model to describe these overmassive systems in the high-z Universe. We suggest that the black hole mass is the main driver of high-z star formation quenching. SMBHs globally impact their high-z galaxies because their hosts are physically small, and the black holes have duty cycles close to unity at z > 4. In this regime, we assume that black hole mass growth is regulated by the quasar's output, while stellar mass growth is quenched by it and uncorrelated to the global properties of the host halo. We find that the ratio M_bullet/M_star controls the average star formation efficiency: if M_bullet/M_star > 8times 10^{18} (n Lambda/f_{edd})[(Omega_b M_h)/(Omega_m M_star) - 1], then the galaxy is unable to form stars efficiently. Once this ratio exceeds the threshold, a runaway process brings the originally overmassive system towards the local M_bullet - M_star relation. Furthermore, the M_bullet - M_star relation evolves with redshift as propto (1+z)^{5/2}. At z sim 5, we find an overmassive factor of sim 55, in excellent agreement with current JWST data and the high-z relation inferred from those. Extending the black hole horizon farther in redshift and lower in mass will test this model and improve our understanding of the early co-evolution of black holes and galaxies.

  • 2 authors
·
Jan 8, 2024

RABBITS -- I. The crucial role of nuclear star formation in driving the coalescence of supermassive black hole binaries

In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we focus on the hardening and coalescing process of supermassive black hole (SMBH) binaries in galaxy mergers. For simulations including different galaxy formation processes (i.e. gas cooling, star formation, SMBH accretion, stellar and AGN feedback), we systematically control the effect of stochastic eccentricity by fixing it to similar values during the SMBH hardening phase. We find a strong correlation between the SMBH merger time-scales and the presence of nuclear star formation. Throughout the galaxy merging process, gas condenses at the centre due to cooling and tidal torques, leading to nuclear star formation. These recently formed stars, which inherit low angular momenta from the gas, contribute to the loss cone and assist in the SMBH hardening via three-body interactions. Compared to non-radiative hydrodynamical runs, the SMBH merger time-scales measured from the runs including cooling, stellar and SMBH physical processes tend to be shortened by a factor of {sim}1.7. After fixing the eccentricity to the range of e sim 0.6--0.8 during the hardening phase, the simulations with AGN feedback reveal merger time-scales of {sim} 100--500 Myr for disc mergers and {sim} 1--2 Gyr for elliptical mergers. With a semi-analytical approach, we find that the torque interaction between the binary and its circumbinary disc has minimal impact on the shrinking of the binary orbit in our retrograde galaxy merger. Our results are useful in improving the modelling of SMBH merger time-scales and gravitational wave event rates.

  • 8 authors
·
Nov 2, 2023

RABBITS -- II. The impact of AGN feedback on coalescing supermassive black holes in disc and elliptical galaxy mergers

In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we investigate the orbital evolution of supermassive black holes (SMBHs) during galaxy mergers. We simulate both disc and elliptical galaxy mergers using the KETJU code, which can simultaneously follow galaxy (hydro-)dynamics and small-scale SMBH dynamics with post-Newtonian corrections. With our SMBH binary subgrid model, we show how active galactic nuclei (AGNs) feedback affects galaxy properties and SMBH coalescence. We find that simulations without AGN feedback exhibit excessive star formation, resulting in merger remnants that deviate from observed properties. Kinetic AGN feedback proves more effective than thermal AGN feedback in expelling gas from the centre and quenching star formation. The different central galaxy properties, which are a result of distinct AGN feedback models, lead to varying rates of SMBH orbital decay. In the dynamical friction phase, galaxies with higher star formation and higher SMBH masses possess denser centres, become more resistant to tidal stripping, experience greater dynamical friction, and consequently form SMBH binaries earlier. As AGN feedback reduces gas densities in the centres, dynamical friction by stars dominates over gas. In the SMBH hardening phase, compared to elliptical mergers, disc mergers exhibit higher central densities of newly formed stars, resulting in accelerated SMBH hardening and shorter merger time-scales (i.e. lesssim 500 Myr versus gtrsim 1 Gyr). Our findings highlight the importance of AGN feedback and its numerical implementation in understanding the SMBH coalescing process, a key focus for low-frequency gravitational wave observatories.

  • 8 authors
·
Nov 2, 2023

Modelling the accretion and feedback of supermassive black hole binaries in gas-rich galaxy mergers

We introduce a new model for the accretion and feedback of supermassive black hole (SMBH) binaries to the KETJU code, which enables us to resolve the evolution of SMBH binaries down to separations of tens of Schwarzschild radii in gas-rich galaxy mergers. Our subgrid binary accretion model extends the widely used Bondi--Hoyle--Lyttleton accretion into the binary phase and incorporates preferential mass accretion onto the secondary SMBH, which is motivated by results from small-scale hydrodynamical circumbinary disc simulations. We perform idealised gas-rich disc galaxy merger simulations using pure thermal or pure kinetic active galactic nuclei (AGN) feedback. Our binary accretion model provides more physically motivated SMBH mass ratios, which are one of the key parameters for computing gravitational wave (GW) induced recoil velocities. The merger time-scales of our simulated SMBH binaries are in the range t_{rm merge}{sim} 10--400 Myr. Prograde in-plane equal-mass galaxy mergers lead to the shortest merger time-scales, as they experience the strongest starbursts, with the ensuing high stellar density resulting in a rapid SMBH coalescence. Compared to the thermal AGN feedback, the kinetic AGN feedback predicts longer merger time-scales and results in more core-like stellar profiles, as it is more effective in removing gas from the galaxy centre and quenching star formation. This suggests that the AGN feedback implementation plays a critical role in modelling SMBH coalescences. Our model will be useful for improving the modelling of SMBH mergers in gas-rich galaxies, the prime targets for the upcoming LISA GW observatory.

  • 9 authors
·
Nov 21, 2022

First Light And Reionization Epoch Simulations (FLARES) -- XIX: Supermassive black hole mergers in the early Universe and their environmental dependence

The upcoming space-based gravitational wave (GW) observatory, LISA, is expected to detect GW signals from supermassive black hole (SMBH) mergers occurring at high redshifts. However, understanding the origin and growth of SMBHs in the early Universe remains an open problem in astrophysics. In this work, we utilize the First Light And Reionization Epoch Simulations (FLARES), a suite of cosmological hydrodynamical zoom-in simulations, to study SMBH mergers at 5 lesssim z lesssim 10 across a wide range of environments. Most mergers in FLARES involve secondary SMBHs near the seed mass (m_{seed} approx 1.5 times 10^{5} M_{odot}) while primary SMBHs span up to 10^{9} M_{odot}, resulting in mass ratios from q sim 10^{-4} to 1, with a peak at q sim 1. The number of mergers increases rapidly towards lower redshifts, and the comoving total number density scales with overdensity as n_{merger} = 10^{-3.80} (1 + delta)^{4.56}. Denser regions host more massive mergers, with higher merger redshifts and lower mass ratios. Within the FLARES redshift range, LISA is expected to detect mergers with 10^{5} lesssim M_{tot} / M_{odot} lesssim 10^{8} and q gtrsim 10^{-2}, corresponding to a detection rate of 0.030 yr^{-1} for events with signal-to-noise ratio SNR geq 10. Our study demonstrates the sensitivity of GW predictions at high redshifts to SMBH seed models and merger time delays, highlighting the need for improved modeling in future cosmological simulations to maximize LISA's scientific return.

  • 13 authors
·
May 18

Red, hot, and very metal poor: extreme properties of a massive accreting black hole in the first 500 Myr

The James Webb Space Telescope (JWST) has recently discovered a new population of objects at high redshift referred to as `Little Red Dots' (LRDs). Their nature currently remains elusive, despite their surprisingly high inferred number densities. This emerging population of red point-like sources is reshaping our view of the early Universe and may shed light on the formation of high-redshift supermassive black holes. Here we present a spectroscopically confirmed LRD CANUCS-LRD-z8.6 at z_{rm spec}=8.6319pm 0.0005 hosting an Active Galactic Nucleus (AGN), using JWST data. This source shows the typical spectral shape of an LRD (blue UV and red optical continuum, unresolved in JWST imaging), along with broad Hbeta line emission, detection of high-ionization emission lines (CIV, NIV]) and very high electron temperature indicative of the presence of AGN. This is also combined with a very low metallicity (Z<0.1 Z_odot). The presence of all these diverse features in one source makes CANUCS-LRD-z8.6 unique. We show that the inferred black hole mass of CANUCS-LRD-z8.6 (M_{rm BH}=1.0^{+0.6}_{-0.4}times 10^{8}rm ~M_odot) strongly challenges current standard theoretical models and simulations of black hole formation, and forces us to adopt `ad hoc' prescriptions. Indeed if massive seeds, or light seeds with super-Eddington accretion, are considered, the observed BH mass of CANUCS-LRD-z8.6 at z=8.6 can be reproduced. Moreover, the black hole is over-massive compared to its host, relative to the local M_{rm BH}-M_* relations, pointing towards an earlier and faster evolution of the black hole compared to its host galaxy.

  • 32 authors
·
Dec 6, 2024

Formation of supermassive stars and dense star clusters in metal-poor clouds exposed to strong FUV radiation

The direct collapse scenario, which predicts the formation of supermassive stars (SMSs) as precursors to supermassive black holes (SMBHs), has been explored primarily under the assumption of metal-free conditions. However, environments exposed to strong far-ultraviolet (FUV) radiation, which is another requirement for the direct collapse, are often chemically enriched to varying degrees. In this study, we perform radiation hydrodynamic simulations of star-cluster formation in clouds with finite metallicities, Z=10^{-6} to 10^{-2} Z_{odot}, incorporating detailed thermal and chemical processes and radiative feedback from forming stars. Extending the simulations to approximately two million years, we demonstrate that SMSs with masses exceeding 10^4~M_odot can form even in metal-enriched clouds with Z lesssim 10^{-3} Z_{odot}. The accretion process in these cases, driven by "super-competitive accretion," preferentially channels gas into central massive stars in spite of small (sub-pc) scale fragmentation. At Z simeq 10^{-2} Z_{odot}, however, enhanced cooling leads to intense fragmentation on larger scales, resulting in the formation of dense star clusters dominated by very massive stars with 10^3 M_{odot} rather than SMSs. These clusters resemble young massive or globular clusters observed in the distant and local universe, exhibiting compact morphologies and high stellar surface densities. Our findings suggest that SMS formation is viable below a metallicity threshold of approximately 10^{-3} Z_{odot}, significantly increasing the number density of massive seed black holes to levels sufficient to account for the ubiquitous SMBHs observed in the local universe. Moreover, above this metallicity, this scenario naturally explains the transition from SMS formation to dense stellar cluster formation.

  • 2 authors
·
Dec 19, 2024

First Light And Reionisation Epoch Simulations (FLARES) VIII. The Emergence of Passive Galaxies at $z \geqslant 5$

Passive galaxies are ubiquitous in the local universe, and various physical channels have been proposed that lead to this passivity. To date, robust passive galaxy candidates have been detected up to z leqslant 5, but it is still unknown if they exist at higher redshifts, what their relative abundances are, and what causes them to stop forming stars. We present predictions from the First Light And Reionisation Epoch Simulations (FLARES), a series of zoom simulations of a range of overdensities using the EAGLE code. Passive galaxies occur naturally in the EAGLE model at high redshift, and are in good agreement with number density estimates from HST and early JWST results at 3 leqslant z leqslant 5. Due to the unique FLARES approach, we extend these predictions to higher redshifts, finding passive galaxy populations up to z sim 8. Feedback from supermassive black holes is the main driver of passivity, leading to reduced gas fractions and star forming gas reservoirs. We find that passive galaxies at z geqslant 5 are not identified in the typical UVJ selection space due to their still relatively young stellar populations, and present new rest--frame selection regions. We also present NIRCam and MIRI fluxes, and find that significant numbers of passive galaxies at z geqslant 5 should be detectable in upcoming wide surveys with JWST. Finally, we present JWST colour distributions, with new selection regions in the observer--frame for identifying these early passive populations.

  • 12 authors
·
Nov 14, 2022

Super-Eddington Accretion in Quasars

This review provides an observational perspective on the fundamental properties of super-Eddington accretion onto supermassive black holes in quasars. It begins by outlining the selection criteria, particularly focusing on optical and UV broad-line intensity ratios, used to identify a population of unobscured super-Eddington candidates. Several defining features place these candidates at the extreme end of the Population A in main sequence of quasars: among them are the highest observed singly-ionized iron emission, extreme outflow velocities in UV resonance lines, and unusually high metal abundances. These key properties reflect the coexistence of a virialized sub-system within the broad-line region alongside powerful outflows, with the observed gas enrichment likely driven by nuclear or circumnuclear star formation. The most compelling evidence for the occurrence of super-Eddington accretion onto supermassive black holes comes from recent observations of massive black holes at early cosmic epochs. These black holes require rapid growth rates that are only achievable through radiatively inefficient super-Eddington accretion. Furthermore, extreme Eddington ratios, close to or slightly exceeding unity, are consistent with the saturation of radiative output per unit mass predicted by accretion disk theory for super-Eddington accretion rates. The extreme properties of super-Eddington candidates suggest that these quasars could make them stable and well-defined cosmological distance indicators, leveraging the correlation between broad-line width and luminosity expected in virialized systems. Finally, several analogies with accretion processes around stellar-mass black holes, particularly in the high/soft state, are explored to provide additional insight into the mechanisms driving super-Eddington accretion.

  • 8 authors
·
Feb 20

Accelerated Bayesian Inference for Pulsar Timing Arrays: Normalizing Flows for Rapid Model Comparison Across Stochastic Gravitational-Wave Background Sources

The recent detection of nanohertz stochastic gravitational-wave backgrounds (SGWBs) by pulsar timing arrays (PTAs) promises unique insights into astrophysical and cosmological origins. However, traditional Markov Chain Monte Carlo (MCMC) approaches become prohibitively expensive for large datasets. We employ a normalizing flow (NF)-based machine learning framework to accelerate Bayesian inference in PTA analyses. For the first time, we perform Bayesian model comparison across SGWB source models in the framework of machine learning by training NF architectures on the PTA dataset (NANOGrav 15-year) and enabling direct evidence estimation via learned harmonic mean estimators. Our examples include 10 conventional SGWB source models such as supermassive black hole binaries, power-law spectrum, cosmic strings, domain walls, scalar-induced GWs, first-order phase transitions, and dual scenario/inflationary gravitational wave. Our approach jointly infers 20 red noise parameters and 2 SGWB parameters per model in sim 20\,hours (including training), compared to sim 10\,days with MCMC. Critically, the NF method preserves rigorous model selection accuracy, with small Hellinger distances (lesssim 0.3) relative to MCMC posteriors, and reproduces MCMC-based Bayes factors across all tested scenarios. This scalable technique for SGWB source comparison will be essential for future PTA expansions and next-generation arrays such as the SKA, offering orders-of-magnitude efficiency gains without sacrificing physical interpretability.

  • 2 authors
·
Apr 5

SgrA* spin and mass estimates through the detection of multiple extremely large mass-ratio inspirals

We analyze the parameter estimation accuracy that can be achieved for the mass and spin of SgrA*, the SMBH in our Galactic Center, by detecting multiple extremely large mass-ratio inspirals (XMRIs). XMRIs are formed by brown dwarfs (BD) inspiraling into a supermassive black hole (SMBH), thus emitting gravitational waves (GWs) inside the detection band of future space-based detectors such as LISA and TianQin. Theoretical estimates suggest the presence of approximately 10 XMRIs emitting detectable GWs, making them some of the most promising candidates for space-based GW detectors. Our analysis indicates that even if individual sources have low SNRs (approx10), high-precision parameter estimates can still be achieved by detecting multiple sources. In this case, the accuracy of the parameter estimates increases by approximately one to two orders of magnitude, at least. Moreover, by analyzing a small sample of 400 initial conditions for XMRIs formed in the Galactic Center, we estimate that almost 80 % of the detectable XMRIs orbiting SgrA* will have eccentricities between 0.43 to 0.95 and an SNRin [10,100]. The remaining sim20 % of the sources have an SNRin [100,1000] and eccentricities ranging from 0.25 to 0.92. Additionally, some XMRIs with high SNR are far from being circular. These loud sources with SNRapprox 1000 can have eccentricities as high as eapprox0.7; although their detection chances are low, representing lesssim2 % of the detectable sources, their presence is not ruled out.

  • 3 authors
·
Dec 30, 2024

The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background

We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper limits for a GWB from supermassive black hole binaries under power law, broken power law, and free spectral coefficient GW spectrum models. We place a 95\% upper limit on the strain amplitude (at a frequency of yr^{-1}) in the power law model of A_{rm gw} < 1.5times 10^{-15}. For a broken power law model, we place priors on the strain amplitude derived from simulations of Sesana (2013) and McWilliams et al. (2014). We find that the data favor a broken power law to a pure power law with odds ratios of 22 and 2.2 to one for the McWilliams and Sesana prior models, respectively. The McWilliams model is essentially ruled out by the data, and the Sesana model is in tension with the data under the assumption of a pure power law. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. We then place the most stringent limits so far on the energy density of relic GWs, Omega_gw(f),h^2 < 4.2 times 10^{-10}, yielding a limit on the Hubble parameter during inflation of H_*=1.6times10^{-2}~m_{Pl}, where m_{Pl} is the Planck mass. Our limit on the cosmic string GWB, Omega_gw(f), h^2 < 2.2 times 10^{-10}, translates to a conservative limit of Gmu<3.3times 10^{-8} - a factor of 4 better than the joint Planck and high-l CMB data from other experiments.

  • 48 authors
·
Aug 12, 2015

A Machine Learning Framework for Stellar Collision Transient Identification

Modern astronomical surveys, such as the Zwicky Transient Facility (ZTF), are capable of detecting thousands of transient events per year, necessitating the use of automated and scalable data analysis techniques. Recent advances in machine learning have enabled the efficient classification and characterization of these transient phenomena. We aim to develop a fully systematic pipeline to identify candidate stellar collision events in galactic nuclei, which may otherwise be identified as tidal disruption events or other transients. We also seek to validate our simulations by comparing key physical parameters derived from observations and used in modeling these events. We generate a comprehensive bank of simulated light curves spanning a range of physical parameters and employ an approximate nearest neighbor algorithm (via the annoy library) to match these with observed ZTF light curves. Our pipeline is successfully able to associate observed ZTF light curves with simulated events. The resulting estimated parameters, including supermassive black hole masses and ejecta mass, are presented and compared to known values when applicable. We demonstrate that a systematic, machine learning-based approach can effectively identify and characterize stellar collision candidate events from large-scale transient surveys. This methodology is especially promising for future surveys which will provide us with significantly high volumes of data, such as LSST, where automated, data-intensive analysis will be critical for advancing our understanding of transient astrophysical phenomena.

  • 2 authors
·
Apr 15

European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background

We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95% upper limit on the dimensionless strain amplitude A of the background of A<3.0times 10^{-15} at a reference frequency of 1yr^{-1} and a spectral index of 13/3, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to Omega_gw(f)h^2 < 1.1times10^{-9} at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of sim 5times10^{-9}~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95% upper limits on the string tension, Gmu/c^2, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gmu/c^2<1.3times10^{-7}, identical to that set by the {\it Planck} Collaboration, when combining {\it Planck} and high-ell Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of Omega^relic_gw(f)h^2<1.2 times10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.

  • 36 authors
·
Apr 14, 2015

Searching For Anisotropic Gravitational-wave Backgrounds Using Pulsar Timing Arrays

We present the results of simulated injections testing the first Bayesian search-pipeline capable of investigating the angular-structure of a gravitational-wave (GW) background influencing pulsar signals. A stochastic background of GWs from the incoherent superposition of many inspiraling supermassive black hole binaries at nHz frequencies is likely to be the dominant GW signal detectable by pulsar timing arrays (PTAs). Even though one might expect a background composed of a high-redshift cosmological population of sources to be fairly isotropic, deviations from isotropy may be indicative of local GW hotspots or some form of continuous anisotropy in the angular-distribution of GW-power. A GWB induces time-of-arrival deviations in pulsar signals which are correlated between separated pulsars. In an isotropic background this cross-correlation follows a distinctive relationship, known as the Hellings and Downs curve, that depends only on the angular separation of the pulsars. If the background is anisotropic, the cross-correlation is different, but predictable, and also depends on the absolute position of the pulsars. By simulating datasets containing GWBs with various anisotropic configurations, we have explored the prospects for constraining anisotropy using near future data. We find that at moderate to high signal to noise ratio the assumption of isotropy is no longer an appropriate description of the simulated background. Furthermore, we can recover the nature of the injected anisotropy in a Bayesian parameter-estimation search, and propose a prior on the anisotropy search-space motivated by the physicality of the implied distribution of sources.

  • 2 authors
·
Jun 23, 2013

Probing X-ray Timing and Spectral Variability in the Blazar PKS 2155-304 Over a Decade of XMM-Newton Observations

Blazars, a class of active galactic nuclei (AGN) powered by supermassive black holes, are known for their remarkable variability across multiple timescales and wavelengths. With advancements in both ground- and space-based telescopes, our understanding of AGN central engines has significantly improved. However, the mechanisms driving this variability remain elusive, and continue to fascinate both theorists and observers alike. The primary objective of this study is to constrain the X-ray variability properties of the TeV blazar PKS 2155-304. We conduct a comprehensive X-ray spectral and timing analysis, focusing on both long-term and intra-day variability. This analysis uses data from 22 epochs of XMM-Newton EPIC-pn observations, collected over 15 years (2000-2014). To investigate the variability of the source, we applied both timing and spectral analyses. For the timing analysis, we estimated fractional variability, variability amplitude, minimum variability timescales, flux distribution, and power spectral density (PSD). In the spectral analysis, we fitted the X-ray spectra using power-law, log-parabola, and broken power-law (BPL) models to determine the best-fitting parameters. Additionally, we studied the hardness ratio (HR). We observed moderate intra-day variability in most of the light curves. Seven out of the twenty-two observations showed a clear bimodal flux distribution, indicating the presence of two distinct flux states. Our analysis revealed a variable power-law PSD slope. Most HR plots did not show significant variation with flux, except for one observation (OBSID 0124930501), where HR increased with flux (Count/s). The fitted X-ray spectra favored the BPL model for the majority of observations. The findings of this work shed light on the intraday variability of blazars, providing insights into the non-thermal jet processes that drive the observed flux variations.

  • 8 authors
·
Oct 2, 2024

What Drives Cluster Cool-Core Transformations? A Population Level Analysis of TNG-Cluster

In this study, we examine the frequency and physical drivers of transformations from cool-core (CC) to non-cool-core (NCC) clusters, and vice versa, in a sample of 352 massive galaxy clusters (M_vir = 10^14-15.3 M_sun) from the TNG-Cluster magnetohydrodynamical cosmological simulation of galaxies. By identifying transformations based on the evolution of central entropy and focusing on z<2.5, we find that clusters frequently undergo such events, depending on their assembly and supermassive black hole histories. On average, clusters experience 2 to 3 transformations. Transformations can occur in both directions and can be temporary, but those to higher entropy cores, i.e. in the direction from CC to NCC states, are the vast majority. CC phases are shorter than NCC phases, and thus overall the TNG-Cluster population forms with low-entropy cores and moves towards NCC states with time. We study the role that mergers play in driving transformations, and find that mergers within ~1Gyr prior to a transformation toward higher (but not lower) entropy cores occur statistically more often than in a random control sample. Most importantly, we find examples of mergers associated with CC disruption regardless of their mass ratio or angular momentum. However, past merger activity is not a good predictor for z=0 CC status, at least based on core entropy, even though clusters undergoing more mergers eventually have the highest core entropy values at z=0. We consider the interplay between AGN feedback and evolving cluster core thermodynamics. We find that core transformations are accompanied by an increase in AGN activity, whereby frequent and repeated (kinetic) energy injections from the central SMBHs can produce a collective, long-term impact on central entropy, ultimately heating cluster cores. Whether such fast-paced periods of AGN activity are triggered by mergers is plausible, but not necessary.

  • 3 authors
·
Mar 3

Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images

Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays.

  • 274 authors
·
Mar 19

The GRACE project: Hard X-ray giant radio galaxies and their duty cycle

The advent of new generation radio telescopes is opening new possibilities on the classification and study of extragalactic high-energy sources, specially the underrepresented ones like radio galaxies. Among these, Giant Radio Galaxies (GRG, larger than 0.7 Mpc) are among the most extreme manifestations of the accretion/ejection processes on supermassive black holes. Our recent studies have shown that GRG can be up to four times more abundant in hard X-ray selected (i.e. from INTEGRAL/IBIS and Swift/BAT at >20 keV) samples and, most interestingly, the majority of them present signs of restarted radio activity. This makes them the ideal test-bed to study the so far unknown duty cycle of jets in active galactic nuclei. Open questions in the field include: How and when jets are restarted? How jets evolve and what's their dynamic? What is the jet's duty cycle and what triggers them? Our group has recently collected a wealth of radio data on these high-energy selected GRGs, allowing us to study their jet formation and evolution from the pc to kpc scales, across different activity epochs. In particular, thanks to our EVN large programme, we were able to probe the new radio phase in the core of these giants. Furthermore, we are devoting an effort to the exploitation of new radio surveys data for the discovery of new classes of counterparts of Fermi/LAT catalogues. In particular, we are unveiling the hidden population of radio galaxies associated with gamma-ray sources.

  • 17 authors
·
Jan 13

EPOCHS Paper V. The dependence of galaxy formation on galaxy structure at z < 7 from JWST observations

We measure the broad impact of galaxy structure on galaxy formation by examining the ongoing star formation and integrated star formation history as revealed through the stellar masses of galaxies at z < 7 based on JWST CEERS data from the Extended Groth Strip (EGS). Using the morphological catalog of 3965 visually classified JWST galaxies from Ferreira et al. (2023), we investigate the evolution of stars, and when they form, as a function of morphological type as well as galaxies classified as passive and starburst through spectral energy distributions. Although disk galaxies dominate the structures of galaxies at z < 7, we find that these disks are in general either `passive', or on the main-sequence of star formation, and do not contain a large population of starburst galaxies. We also find no significant correlation between morphological type and the star formation rate or colours of galaxies at z < 7. In fact, we find that the morphologically classified `spheroids' tend to be blue and are not found to be predominately passive systems at z > 1.5. We also find that the stellar mass function for disk galaxies does not evolve significantly during this time, whereas other galaxy types, such as the peculiar population, evolve dramatically, declining at lower redshifts. This indicates that massive peculiars are more common at higher redshifts. We further find that up to z sim 7, the specific star formation rate (sSFR) does not vary with visual morphology, but strongly depends on stellar mass and internal galaxy mass density. This demonstrates that at early epochs galaxy assembly is a mass-driven, rather than a morphologically-driven, process. Quenching of star formation is therefore a mass-dominated process throughout the universe's history, likely due to the presence of supermassive black holes.

  • 14 authors
·
May 1, 2024

First Light and Reionization Epoch Simulations (FLARES) -- XV: The physical properties of super-massive black holes and their impact on galaxies in the early universe

Understanding the co-evolution of super-massive black holes (SMBHs) and their host galaxies remains a key challenge of extragalactic astrophysics, particularly the earliest stages at high-redshift. However, studying SMBHs at high-redshift with cosmological simulations, is challenging due to the large volumes and high-resolution required. Through its innovative simulation strategy, the First Light And Reionisation Epoch Simulations (FLARES) suite of cosmological hydrodynamical zoom simulations allows us to simulate a much wider range of environments which contain SMBHs with masses extending to M_{bullet}>10^{9} M_{odot} at z=5. In this paper, we use FLARES to study the physical properties of SMBHs and their hosts in the early Universe (5le, z le10). FLARES predicts a sharply declining density with increasing redshift, decreasing by a factor of 100 over the range z=5to 10. Comparison between our predicted bolometric luminosity function and pre-JWST observations yield a good match. However, recent JWST observations appear to suggest a larger contribution of SMBHs than previously observed, or predicted by FLARES. Finally, by using a re-simulation with AGN feedback disabled, we explore the impact of AGN feedback on their host galaxies. This reveals that AGN feedback results in a reduction of star formation activity, even at z>5, but only in the most massive galaxies. A deeper analysis reveals that AGN are also the cause of suppressed star formation in passive galaxies but that the presence of an AGN doesn't necessarily result in the suppression of star formation.

  • 12 authors
·
Apr 3, 2024

Characterising gravitational wave stochastic background anisotropy with Pulsar Timing Arrays

Detecting a stochastic gravitational wave background, particularly radiation from individually unresolvable super-massive black hole binary systems, is one of the primary targets for Pulsar Timing Arrays. Increasingly more stringent upper limits are being set on these signals under the assumption that the background radiation is isotropic. However, some level of anisotropy may be present and the characterisation of the power at different angular scales carries important information. We show that the standard analysis for isotropic backgrounds can be generalised in a conceptually straightforward way to the case of generic anisotropic background radiation by decomposing the angular distribution of the gravitational wave power on the sky into multipole moments. We introduce the concept of generalised overlap reduction functions which characterise the effect of the anisotropy multipoles on the correlation of the timing residuals from the pulsars timed by a Pulsar Timing Array. In a search for a signal characterised by a generic anisotropy, the generalised overlap reduction functions play the role of the so-called Hellings and Downs curve used for isotropic radiation. We compute the generalised overlap reduction functions for a generic level of anisotropy and Pulsar Timing Array configuration. We also provide an order of magnitude estimate of the level of anisotropy that can be expected in the background generated by super-massive black hole binary systems.

  • 4 authors
·
Jun 23, 2013

A helical magnetic field in quasar NRAO150 revealed by Faraday rotation

Active Galactic Nuclei (AGN) are some of the most luminous and extreme environments in the Universe. The central engines of AGN, believed to be super-massive black-holes, are fed by accretion discs threaded by magnetic fields within a dense magneto-ionic medium. We report our findings from polarimetric Very-long-baseline Interferometry (VLBI) observations of quasar NRAO150 taken in October 2022 using a combined network of the Very Long Baseline Array (VLBA) and Effelsberg 100-m Radio Telescope. These observations are the first co-temporal multi-frequency polarimetric VLBI observations of NRAO150 at frequencies above 15GHz. We use the new VLBI polarization calibration procedure, GPCAL, with polarization observations of frequencies of 12GHz, 15GHz, 24GHz, and 43GHz of NRAO150. From these observations, we measure Faraday rotation. Using our measurement of Faraday rotation, we also derive the intrinsic electric vector position angle (EVPA0) for the source. As a complementary measurement we determine the behavior of polarization as a function of observed frequency. The polarization from NRAO150 only comes from the core region, with a peak polarization intensity occurring at 24GHz. Across the core region of NRAO150 we see clear gradients in Faraday rotation and EVPA0 values that are aligned with the direction of the jet curving around the core region. We find that for the majority of the polarized region the polarization fraction is greater at higher frequencies, with intrinsic polarization fractions in the core 3%. The Faraday rotation gradients and circular patterns in EVPA0 are strong evidence for a helical/toroidal magnetic field, and the presence of low intrinsic polarization fractions indicate that the polarized emission and hence the helical/toroidal magnetic field, occur within the innermost jet.

  • 10 authors
·
Mar 5

Optical Emission Model for Binary Black Hole Merger Remnants Travelling through Discs of Active Galactic Nuclei

Active galactic nuclei (AGNs) have been proposed as plausible sites for hosting a sizable fraction of the binary black hole (BBH) mergers measured through gravitational waves (GWs) by the LIGO-Virgo-Kagra (LVK) experiment. These GWs could be accompanied by radiation feedback due to the interaction of the BBH merger remnant with the AGN disc. We present a new predicted radiation signature driven by the passage of a kicked BBH remnant throughout a thin AGN disc. We analyse the situation of a merger occurring outside the thin disc, where the merger is of second or higher generation in a merging hierarchical sequence. The coalescence produces a kicked BH remnant that eventually plunges into the disc, accretes material, and inflates jet cocoons. We consider the case of a jet cocoon propagating quasi-parallel to the disc plane and study the outflow that results when the cocoon emerges from the disc. We calculate the transient emission of the emerging cocoon using a photon diffusion model typically employed to describe the light curves of supernovae. Depending on the parameter configuration, the flare produced by the emerging cocoon could be comparable to or exceed the AGN background emission at optical, and extreme ultraviolet wavelengths. For instance, in AGNs with central engines of sim 5times10^{6} M_odot, flares driven by BH remnants with masses of sim 100 M_odot can appear in about sim[10-100] days after the GW, lasting for few days.

  • 4 authors
·
Apr 20, 2023

Wave optics lensing of gravitational waves: theory and phenomenology of triple systems in the LISA band

We study lensing of gravitational waves by a black hole in the deep wave optics regime, i.e. when the wavelength is much larger than the black hole Schwarzschild radius. We apply it to triple systems, with a binary of stellar mass objects in the inspiraling phase orbiting around a central massive black hole. We describe the full polarisation structure of the wave and derive predictions for the polarisation modes of the scattered wave measured by the observer. We show that lensing in the wave optics regime is not helicity preserving, as opposed to lensing in the geometric optics regime. The amplitude of the total wave is modulated due to interference between the directly transmitted and lensed components. The relative amplitude of the modulation is fixed by the lensing geometry and can reach unity in the most favourable settings. This indicates that wave optics lensing is potentially detectable by LISA for sufficiently high SNR systems. Our findings show that in the wave optics regime it is necessary to go beyond the usual lensing description where the amplification factor is assumed to be the same for both helicity modes. While motivated by GW190521 and the AGN formation scenario, our results apply more broadly to stellar-mass binaries orbiting a third body described as a Schwarzschild black hole, with a period comparable to the GW observation time.

  • 4 authors
·
Apr 10, 2024

How do Massive Primordial Black Holes Impact the Formation of the First Stars and Galaxies?

We investigate the impact of massive primordial black holes (PBHs; m_{rm BH}sim 10^6~M_{odot}) on the star formation and first galaxy assembly process using high-resolution hydrodynamical simulations from z = 1100 to z sim 9. We find that PBH accretion is self-regulated by feedback, suppressing mass growth unless feedback is weak. PBHs accelerate structure formation by seeding dark matter halos and gravitationally attracting gas, but strong feedback can delay cooling and suppress star formation. In addition, the presence of baryon-dark matter streaming creates an offset between the PBH location and the peaks induced in gas density, promoting earlier and more efficient star formation compared to standard LambdaCDM. By z sim 10, PBH-seeded galaxies form dense star clusters, with PBH-to-stellar mass ratios comparable to observed high-z AGN like UHZ-1. Our results support PBHs as viable SMBH seeds but do not exclude alternative scenarios. We emphasize that PBH-seeding provides a natural explanation for some of the newly-discovered overmassive SMBHs at high redshift, in particular those with extreme ratios of BH-to-dynamical (virial) mass that challenge standard formation channels. Future studies with ultra-deep JWST surveys, the Roman Space Telescope, and radio surveys with facilities such as SKA and HERA will be critical in distinguishing PBH-driven SMBH growth from other pathways.

  • 6 authors
·
Mar 21

Channels of Stellar-mass Black Hole Formation

On the basis of a large collection of detailed 3D core-collapse supernova simulations carried to late times, we identify four channels of stellar mass black hole formation. Our examples for Channel 1 involve the formation of lower-gap and above black holes in energetic asymmetric supernova explosions. Our Channel 2 example involves a modest supernova explosion that may leave behind a lower-gap to sim10 M_{odot} black hole. The latter may not be easily distinguishable from ``standard" supernovae that birth neutron stars. Our Channel 3 example experiences an aborted core-collapse explosion, more often in the context of a low-metallicity progenitor, whose residue is a black hole with a mass perhaps up to sim40 M_{odot}. The latter may be accompanied by a pulsational-pair instability supernova (PPISN). Channel 4 is the only quiescent or ``silent" scenario for which perhaps sim5 to 15 M_{odot} black holes are left. Where appropriate, we estimate ^{56}Ni yields, explosion energies, approximate recoil speeds, and residual black hole masses. The progenitor mass density and binding energy profiles at collapse influence the outcome in a systematic way. The statistics and prevalence of these various channels depend not only on still evolving supernova theory, but on remaining issues with the theory of massive star evolution, binary interaction, wind mass loss, metallicity, and the nuclear equation of state. Importantly, we suggest, but have not proven, that the silent channel for black hole formation may not be the dominant formation modality.

  • 3 authors
·
Dec 10, 2024

The S2 orbit and tidally disrupted binaries: indications for collisional depletion in the Galactic center

The properties of the stellar cluster surrounding Sagittarius A* can be assessed indirectly through the motion of the S-stars. Specifically, the current accuracy to which the prograde precession of the S2 star is measured allows to place significant constraints on the extended mass enclosed by its orbit. We suggest that high velocity destructive collisions (DCs) offer a natural mechanism for depleting the mass inside the S2 orbit, thus allowing to reconcile the measured precession and the existence of a dense stellar cluster. Such a solution is especially necessary when considering that stars are supplied to the inner part of the cluster by both dynamical relaxation and by stars being captured in tight orbits during tidal disruption of binaries. We use analytic arguments and results from simulations to demonstrate that in order to obtain a precession that is consistent with observations, collisional depletion is necessary if the capture rate is greater than a few 10^{-6} yr^{-1}. We also show that fluctuations arising from the finite number of stars cannot serve as an alternative to DCs for generating consistency with the observed S2 precession. We conclude that astrometric observations of the S-stars provide a meaningful indication that the inner part of our galactic center is shaped by collisional depletion, supporting the hypothesis that DCs occur in galactic nuclei at an astrophysically significant rate.

  • 2 authors
·
Dec 10, 2024

A multi-messenger hierarchical triple merger gravitational-wave event pair GW190514-GW190521 inside AGN J124942.3 + 344929

There is a candidate electromagnetic counterpart to the binary black hole merger GW190521, identified as ZTF19abanrhr within AGN J124942.3 + 344929. Additionally, GW190514 is proposed as a plausible precursor merger to GW190521 within a hierarchical merger scenario. In this study, we investigate the potential association between GW190514 and GW190521 as a hierarchical triple merger associated with ZTF19abanrhr, taking into account of sky position, distance, and mass of the sources using a Bayesian criterion. Our analysis reveals that the association is favored over a random coincidence, with a log Bayes factor of 16.8, corresponding to an odds ratio of sim199:1, assuming an astrophysical prior odds of 10^{-5}. Notably, when accounting for the primary masses of the two gravitational wave events as potential products of mergers in the AGN formation channel, the Bayes factor increases significantly, further enhancing the preference for this association by a factor of sim10^2, corresponding to a log Bayes factor of 21.5 and an odds ratio of sim2times10^4:1. Our results suggest strong evidence for the first hierarchical triple merger associated with an electromagnetic counterpart in the AGN formation channel. This work is crucial for understanding the formation mechanisms of massive black holes, the role of AGNs in hierarchical mergers, and the implications of multi-messenger astronomy.

  • 2 authors
·
Mar 21

Dark matter halos of luminous AGNs from galaxy-galaxy lensing with the HSC Subaru Strategic Program

We assess the dark matter halo masses of luminous AGNs over the redshift range 0.2 to 1.2 using galaxy-galaxy lensing based on imaging data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We measure the weak lensing signal of a sample of 48907 AGNs constructed using HSC and WISE photometry. %The lensing detection around AGNs has a signal to noise ratio of 29. As expected, we find that the lensing mass profile of total AGN sample is consistent with that of massive galaxies (rm log(M_{*}/h^{-2}M_odot)sim 10.61). Surprisingly, the lensing signal remains unchanged when the AGN sample is split into four stellar mass bins of host galaxies. Specifically, we find that the excess surface density (ESD) of AGNs, residing in galaxies with high stellar masses, significantly differs from that of the control sample. We further fit a halo occupation distribution model to the data to infer the posterior distribution of parameters including the average halo mass. We find that the characteristic halo mass of the full AGN population lies near the knee (rm log(M_h/h^{-1}M_{odot})=12.0) of the stellar-to-halo mass relation (SHMR). Illustrative of the results given above, the halo masses of AGNs residing in host galaxies with high stellar masses (i.e., above the knee of the SHMR) falls below the calibrated SHMR while the halo mass of the low stellar mass sample is more consistent with the established SHMR. These results indicate that massive halos with higher clustering bias tends to suppress AGN activity, probably due to the lack of available gas.

  • 15 authors
·
Apr 7, 2022

Investigating cannibalistic millisecond pulsar binaries using MESA: New constraints from pulsar spin and mass evolution

Compact binary millisecond pulsars (MSPs) with orbital periods lesssim1d are key to understanding binary evolution involving massive neutron stars (NSs). Due to the ablation of the companion by the rapidly spinning pulsar, these systems are also known as spiders and categorized into two main branches: redbacks (RBs; companion mass in the range of 0.1 to 0.5\,\Msun) and black widows (BWs; companion mass lesssim\,0.1\,\Msun). We present models of low- and intermediate-mass X-ray binaries and compare them with observations of Galactic spiders (including the presence or absence of hydrogen lines in their optical spectra), and we constrain and quantify the interaction between the pulsar and the companion. Using MESA, we created the allowed initial parameter space. For the first time in MESA, we also included the detailed evolution of the pulsar spin and modeled the irradiation of the companion by the pulsar wind. Efficient mass accretion onto the NS (at least 70% of the mass transferred is accreted) with an X-ray irradiated disk followed by strong irradiation of the companion can explain most of the properties of the observed spiders. Our RB evolutionary tracks continue to the BW regime, connecting the two branches of spiders. Our models explain the lack of hydrogen in some observed BWs with ultra-light companions. During accretion induced spin up, the mass required to spin up an NS to sub-milliseconds is high enough to collapse it into a black hole. Finally, after analyzing the formation of RB-like spiders with giant companions and orbital periods of several days (huntsmen), we conclude that they are unlikely to produce super-massive NSs (maximum accreted mass lesssim0.5M_{odot}). Cannibalistic MSP binary formation depends heavily on the interplay between accretion onto the pulsar and pulsar wind irradiation.

  • 3 authors
·
Aug 28, 2024

An X-ray Significantly Variable, Luminous, Type 2 Quasar at z = 2.99 with a Massive Host Galaxy

We present a comprehensive X-ray analysis and spectral energy distribution (SED) fitting of WISEA J171419.96+602724.6, an extremely luminous type 2 quasar at z = 2.99. The source was suggested as a candidate Compton-thick (column density N_{rm H}>1.5 times 10^{24} cm^{-2}) quasar by a short XMM-Newton observation in 2011. We recently observed the source with deep NuSTAR and XMM-Newton exposures in 2021 and found that the source has a lower obscuration of N_{rm H}sim5 times 10^{22} cm^{-2} with an about four times lower flux. The two epochs of observations suggested that the source was significantly variable in X-ray obscuration, flux, and intrinsic luminosity at 2-3~sigma in less than 2.5 years (in the source rest frame). We performed SED fitting of this source using CIGALE thanks to its great availability of multiwavelength data (from hard X-rays to radio). The source is very luminous with a bolometric luminosity of L_{rm BOL}sim 2.5 times 10^{47} erg s^{-1}. Its host galaxy has a huge star formation rate (SFR) of sim1280 Solar mass yr^{-1} and a huge stellar mass of sim1.1 times 10^{12} Solar mass. The correlation between the SFR and stellar mass of this source is consistent with what was measured in the high-z quasars. It is also consistent with what was measured in the main-sequence star-forming galaxies, suggesting that the presence of the active nucleus in our target does not enhance or suppress the SFR of its host galaxy. The source is an Infrared hyper-luminous, obscured galaxy with significant amount of hot dust in its torus and shares many similar properties with hot, dust obscured galaxies.

  • 11 authors
·
Sep 3, 2024

Complementary Probes of Warped Extra Dimension: Colliders, Gravitational Waves and Primordial Black Holes from Phase Transitions

We study the formation of primordial black holes (PBHs) and stochastic gravitational waves background (SGWB) produced by the supercooled radion phase transition (PT) in warped extra-dimension models solving the gauge hierarchy problem. We first determine how the SGWB and the produced PBH mass and abundance depend on the warped model's infrared energy scale rho, and the number of holographic colors N. With this finding, we recast on the plane {rho, N} the current SGWB and PBH constraints, as well as the expected parameter reaches of GW detectors, as LISA and ET, and the gravitational lensing ones, such as NGRST. On the same plane, we also map the collider bounds on massive graviton production, and cosmological bounds on the radion phenomenology. We find that, for N sim 10-50, the considered PT predicts a PBH population mass in the range M_{rm PBH}sim(10^{-1} - 10^{-25}) M_{odot} for rho sim (10^{-4} - 10^{8}) TeV. In the range rho simeq (0.05 - 0.5) GeV, it can explain the recent SGWB hint at nHz frequencies and generate PBH binaries with mass M_{rm PBH}sim(0.1 - 1 ) M_odot detectable at LISA and ET. The experimentally allowed mass region where PBHs can account for the whole dark matter abundance, and are produced with a tuning lesssim 10^{-4}, corresponds to 10 TeV lesssim rholesssim 10^4 TeV. These PBHs can compensate the lack of natural candidates for dark matter in warped extra dimensional models. Such a region represents a great science case where forthcoming and future colliders like HE-LHC and FCC-hh, gravitational-wave observatories and other PBHs probes play a key complementary role.

  • 4 authors
·
Feb 5

First systematic study reporting the changes in eclipse cut-off frequency for pulsar J1544+4937

We present results from a long-term monitoring of frequency dependent eclipses of the radio emission from PSR J1544+4937 which is a ``black widow spider'' millisecond pulsar (MSP) in a compact binary system. The majority of such systems often exhibit relatively long duration radio eclipses caused by ablated material from their companion stars. With the wide spectral bandwidth of upgraded Giant Metrewave Radio Telescope (uGMRT), we present first systematic study of temporal variation of eclipse cut-off frequency. With decade-long monitoring of 39 eclipses for PSR J1544+4937, we notice significant changes in the observed cut-off frequency ranging from 343 pm 7 MHz to > 740 MHz. We also monitored changes in eclipse cut-off frequency on timescales of tens of days and observed a maximum change of ge 315 MHz between observations that were separated by 22 days. In addition, we observed a change of sim 47 MHz in eclipse cut-off frequency between adjacent orbits, i.e. on timescales of sim 2.9 hours. We infer that such changes in the eclipse cut-off frequency depict an eclipse environment for the PSR J1544+4937 system that is dynamically evolving, where, along with the change in electron density, the magnetic field could also be varying. We also report a significant correlation between the eclipse cut-off frequency and the mass loss rate of the companion. This study provides the first direct evidence of mass loss rate affecting the frequency dependent eclipsing in a spider MSP.

  • 6 authors
·
Nov 3, 2023

The implications of stochastic gas torques for asymmetric binaries in the LISA band

Gravitational waves from asymmetric mass-ratio black-hole binaries carry unique information about their astrophysical environment. For instance, the Laser Interferometer Space Antenna (LISA) could potentially measure the amplitude and slope of gas torques in binaries embedded in the accretion disks of Active Galactic Nuclei, helping differentiate competing accretion disk models. However, this relies on simplified analytic models, which do not account for the stochastic variability of torques seen in hydrodynamic simulations. In this work, we use hydrodynamic simulations to create gravitational waveforms for extreme and intermediate mass-ratio inspirals in the LISA band. We then analyze these simulated waveforms using simpler templates that assume analytic torques, without stochastic time variability. By performing realistic Bayesian parameter estimation, we find no bias at 90% confidence in the binary parameters; however, estimates of accretion disk parameters, such as torque amplitude and slope, may be biased. Typically, the posterior distribution is centered around the average value of the torques, but when stochastic variability is large, the posterior can indicate no torques, even though they are present in the simulation. Our results suggest that while simplified analytic torque models work well for estimating binary parameters, caution is needed when using them to infer properties of the accretion disk. This work moves towards a more realistic assessment of one of the LISA science objectives, i.e., probing the properties of the astrophysical environments of black holes.

  • 5 authors
·
Feb 14

Radio observations point to a moderately relativistic outflow in the fast X-ray transient EP241021a

Fast X-ray transients (FXRTs) are short-lived X-ray outbursts with diverse progenitor scenarios, including compact object mergers, stellar core-collapses and tidal disruption events. The Einstein Probe (EP) has enabled the rapid discovery and follow-up of dozens of FXRTs, revealing that while some of them overlap with traditional gamma-ray bursts (GRBs), a larger fraction of FXRTs have no associated gamma-ray counterpart down to deep limits. The origin of these gamma-ray dark FXRTs and their connection to the diverse landscape of stellar explosions remains an open question, which can be tackled through the study of their multi-wavelength counterparts and environment. In this paper, we present long-term radio observations of the gamma-ray dark EP241021a, which exhibits sustained radio emission for over 100 days, placing it among the longest-lived radio afterglows. We detect signature of interstellar scintillation in early epochs, allowing us to constrain the angular size and Lorentz factor of the emitting region. Our observations point to an outflow that is at least mildly relativistic with Lorentz factor > 4. Afterglow modeling favors a moderately relativistic and collimated outflow interacting with a low-density interstellar medium. The derived beaming-corrected kinetic energy and low radiative efficiency are consistent with a standard relativistic explosion which did not produce bright gamma-rays. Alternatively, a highly-relativistic structured jet remains consistent with our observations if seen substantially off-axis. In the latter case, the initial X-ray flare detected by EP would be caused by the slower ejecta from the lateral wings intercepting our line of sight rather than by traditional prompt-emission mechanisms within the jet core.

  • 10 authors
·
May 13

The nature of an imaginary quasi-periodic oscillation in the soft-to-hard transition of MAXI J1820+070

A recent study shows that if the power spectra (PS) of accreting compact objects consist of a combination of Lorentzian functions that are coherent in different energy bands but incoherent with each other, the same is true for the Real and Imaginary parts of the cross spectrum (CS). Using this idea, we discovered imaginary quasi-periodic oscillations (QPOs) in NICER observations of the black hole candidate MAXI J1820+070. The imaginary QPOs appear as narrow features with a small Real and large Imaginary part in the CS but are not significantly detected in the PS when they overlap in frequency with other variability components. The coherence function drops and the phase lags increase abruptly at the frequency of the imaginary QPO. We show that the multi-Lorentzian model that fits the PS and CS of the source in two energy bands correctly reproduces the lags and the coherence, and that the narrow drop of the coherence is caused by the interaction of the imaginary QPO with other variability components. The imaginary QPO appears only in the decay of the outburst, during the transition from the high-soft to the low-hard state of MAXI J1820+070, and its frequency decreases from approximately 5 Hz to around 1 Hz as the source spectrum hardens. We also analysed the earlier observations of the transition, where no narrow features were seen, and we identified a QPO in the PS that appears to evolve into the imaginary QPO as the source hardens. As for the type-B and C QPOs in this source, the rms spectrum of the imaginary QPO increases with energy. The lags of the imaginary QPO are similar to those of the type-B and C QPOs above 2 keV but differ from the lags of those other QPOs below that energy. While the properties of this imaginary QPO resemble those of type-C QPOs, we cannot rule out that it is a new type of QPO.

  • 5 authors
·
Feb 17

Effects of Dark Matter Self Interactions on Sagittarius and Its Stream

This work explores how assumptions regarding the particle-physics nature of dark matter can alter the evolution of the Sagittarius (Sgr) dwarf spheroidal galaxy and its expansive stellar stream. We run a large suite of N-body simulations to model the infall of a Sgr-like dwarf, exploring how the presence of dark matter self interactions impacts its evolution. For a scattering cross section of sigma/m_chi = 30 cm^2/g (at orbital velocity scales), these interactions result in significantly less stellar mass and little to no dark matter bound to the progenitor at the present day. To isolate the cause of this mass loss, we introduce a novel technique for controlling which pairs of dark matter simulation particles can interact. This enables us to identify ram-pressure evaporation - the scattering of satellite and host dark matter particles - as the primary source of the enhanced mass loss. The rapid disintegration of the Sgr progenitor when self interactions are allowed alters some key properties of the resulting stellar stream, most dramatically suppressing the presence of a "spur" on the apocenter of the trailing stream arm that correlates with the mass of the satellite at last pericenter. We demonstrate how the effects on the Sgr system scale with the particular choice of self-interaction cross section, which affects the degree of ram-pressure evaporation. These findings generalize beyond the Sgr system, underscoring that dwarf stellar streams and dwarf galaxies with close passages may serve as sensitive probes for dark matter self interactions.

  • 4 authors
·
Mar 19

Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory

We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.

  • 68 authors
·
Dec 3, 2014

GOALS-JWST: Gas Dynamics and Excitation in NGC7469 revealed by NIRSpec

We present new JWST-NIRSpec IFS data for the luminous infrared galaxy NGC7469: a nearby (70.6Mpc) active galaxy with a Sy 1.5 nucleus that drives a highly ionized gas outflow and a prominent nuclear star-forming ring. Using the superb sensitivity and high spatial resolution of the JWST instrument NIRSpec-IFS, we investigate the role of the Seyfert nucleus in the excitation and dynamics of the circumnuclear gas. Our analysis focuses on the [Fe ii], H2, and hydrogen recombination lines that trace the radiation/shocked-excited molecular and ionized ISM around the AGN. We investigate the gas excitation through H2/Br{\gamma} and [Fe ii]/Paeta emission line ratios and find that photoionization by the AGN dominates within the central 300 pc of the galaxy and together with a small region show ing signatures of shock-heated gas; these shock-heated regions are likely associated with a compact radio jet. In addition, the velocity field and velocity dispersion maps reveal complex gas kinematics. Rotation is the dominant feature, but we also identify non-circular motions consistent with gas inflows as traced by the velocity residuals and the spiral pattern in the Pa{\alpha} velocity dispersion map. The inflow is consistent with the mass outflow rate and two orders of magnitude higher than the AGN accretion rate. The compact nuclear radio jet has enough power to drive the highly ionized outflow. This scenario suggests that the inflow and outflow are in a self-regulating feeding-feedback process, with a contribution from the radio jet helping to drive the outflow.

  • 39 authors
·
Jul 31, 2023

Model-agnostic search for the quasinormal modes of gravitational wave echoes

Post-merger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure of astrophysical black holes, that may be modified due to non-perturbative quantum gravity phenomena. However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop model-agnostic search methods for detecting echoes from observational data. A promising strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, {\it in frequency space}, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon our previous work targeting these modes by incorporating relative phase information to optimize the Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be significantly improved for well-resolved QNMs. This enables an efficient model-agnostic search for QNMs of different shapes by using a simple search template. To demonstrate the robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-agnostic approach to "quantum black hole seismology".

  • 4 authors
·
Aug 2, 2023

Cluster-lensed supernova yields from the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope

Through gravitational lensing, galaxy clusters can magnify supernovae (SNe) and create multiple images of the same SN. This enables measurements of cosmological parameters, which will be increasingly important in light of upcoming telescopic surveys. We study the prospects of detecting strongly lensed SNe in cluster fields with the Nancy Grace Roman Space Telescope (Roman)'s High Latitude Time Domain Survey (HLTDS) and the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST). We employed two approaches: one focusing on known multiply imaged galaxies behind clusters, along with the SN rates specific to those galaxies, and another based on the expected number of lensed SNe exploding in a given volume behind a galaxy cluster. We collected all the clusters in the literature that feature a well-constrained lens model and multiply imaged galaxies behind clusters with high-quality data for the lensed galaxies. This allowed us to determine the SN rate for each galaxy. We provide predictions for 46 clusters visible to the Vera C. Rubin Observatory, as well as for 9 observable by Roman's HLTDS, depending on whether the clusters fall within the survey's observing field. We predict that the number of multiply imaged SNe discovered by LSST in its first three years is 3.95 pm 0.89 from the first approach or 4.94 pm 1.02 from the second. For the HLTDS, the expected number of multiply imaged SNe ranges from 0.38 pm 0.15 to 5.2 pm 2.2, depending on the specific cluster observed, however, the fields to be targeted remain a matter of discussion. We conclude that LSST offers great prospects for detecting multiply imaged SNe. Our predictions are effectively lower limits, as we only considered the most massive and well-studied clusters. We provide a recommendation for HLTDS observing field selection, namely: either MACS J0553.4-3342 or Abell 1758a should be observed by the survey.

  • 8 authors
·
Apr 1

Gravitational waves in massive gravity: Waveforms generated by a particle plunging into a black hole and the excitation of quasinormal modes and quasibound states

With the aim of testing massive gravity in the context of black hole physics, we investigate the gravitational radiation emitted by a massive particle plunging into a Schwarzschild black hole from slightly below the innermost stable circular orbit. To do so, we first construct the quasinormal and quasibound resonance spectra of the spin-2 massive field for odd and even parity. Then, we compute the waveforms produced by the plunging particle and study their spectral content. This allows us to highlight and interpret important phenomena in the plunge regime, including (i) the excitation of quasibound states, with particular emphasis on the amplification and slow decay of the post-ringdown phase of the even-parity dipolar mode due to harmonic resonance; (ii) during the adiabatic phase, the waveform emitted by the plunging particle is very well described by the waveform emitted by the particle living on the innermost stable circular orbit, and (iii) the regularized waveforms and their unregularized counterparts constructed from the quasinormal mode spectrum are in excellent agreement. Finally, we construct, for arbitrary directions of observation and, in particular, outside the orbital plane of the plunging particle, the regularized multipolar waveforms, i.e., the waveforms constructed by summing over partial waveforms.

  • 1 authors
·
Nov 25, 2024

Extremely Dense Gas around Little Red Dots and High-redshift Active Galactic Nuclei: A Non-stellar Origin of the Balmer Break and Absorption Features

The James Webb Space Telescope (JWST) has uncovered low-luminosity active galactic nuclei (AGNs) at high redshifts of zgtrsim 4-7, powered by accreting black holes (BHs) with masses of sim 10^{6-8}~M_odot. One remarkable distinction of these JWST-identified AGNs, compared to their low-redshift counterparts, is that at least sim 20% of them present Halpha and/or Hbeta absorption, which must be associated with extremely dense (gtrsim 10^9~{rm cm}^{-3}) gas in the broad-line region or its immediate surroundings. These Balmer absorption features unavoidably imply the presence of a Balmer break caused by the same dense gas. In this Letter, we quantitatively demonstrate that a Balmer break can form in AGN spectra without stellar components, when the accretion disk is heavily embedded in dense neutral gas clumps with densities of sim 10^{9-11}~{rm cm}^{-3}, where hydrogen atoms are collisionally excited to the n=2 states and effectively absorb the AGN continuum at the bluer side of the Balmer limit. The non-stellar origin of a Balmer break offers a potential solution to the large stellar masses and densities inferred for little red dots (LRDs) when assuming that their continuum is primarily due to stellar light. Our calculations indicate that the observed Balmer absorption blueshifted by a few hundreds {rm km~s}^{-1} suggests the presence of dense outflows in the nucleus at rates exceeding the Eddington value. Other spectral features such as higher equivalent widths of broad Halpha emission and presence of OI lines observed in high-redshift AGNs including LRDs align with the predicted signatures of a dense super-Eddington accretion disk.

  • 2 authors
·
Sep 12, 2024

DA 362: A Gamma-ray Emitting Compact Symmetric Object

The Gamma-ray detection from an astrophysical object indicates the presence of an extreme environment where high-energy radiation is produced. With the continuous monitoring of the Gamma-ray sky by the Fermi Large Area Telescope (LAT), leading to deeper sensitivity, the high-energy Gamma-ray emission has now been detected from a diverse class of jetted active galactic nuclei (AGN). Here, we present the results of a multiwavelength study of the radio source DA~362, which was reported to be a blazar candidate of uncertain type. However, it was recently identified as a bona fide compact symmetric object (CSO) based on its sub-kpc, bi-polar radio morphology, and lack of radio variability. This makes DA~362 the only fourth Gamma-ray emitting object of this enigmatic class of radio-loud AGN. Using five very long baseline interferometry observations covering 1996-2018, we found the jet separation velocity to be subluminal (v_{rm app}sim 0.2c), thus supporting its CSO nature. Its Fermi-LAT observations revealed a Gamma-ray flaring activity, a phenomenon never detected from the other three Gamma-ray detected CSOs. This object is bright in the near-infrared band but extremely faint in the optical-ultraviolet filters, hinting at possible obscuration. The Swift X-Ray Telescope observation of DA 362 reveals an extremely hard X-ray spectrum, though a strong claim cannot be made due to large uncertainties. We conclude that deeper observations are needed to probe the broadband properties of this enigmatic object and to understand the origin of high-energy Gamma-ray emission.

  • 4 authors
·
Dec 17, 2024

IXPE Observation of the Low-Synchrotron Peaked Blazar S4 0954+65 During An Optical-X-ray Flare

The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength campaign on the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array. The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3pm4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3sigma level) on the X-ray polarization degree; although a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3sigma). We model the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. The constraints we obtain with our combined multi-wavelength polarization observations and SED modeling tentatively disfavor hadronic models for the X-ray emission in S4 0954+65.

  • 137 authors
·
Nov 25, 2024

Evidence for a Massive Protocluster in S255N

S255N is a luminous far-infrared source that contains many indications of active star formation but lacks a prominent near-infrared stellar cluster. We present mid-infrared through radio observations aimed at exploring the evolutionary state of this region. Our observations include 1.3mm continuum and spectral line data from the Submillimeter Array, VLA 3.6cm continuum and 1.3cm water maser data, and multicolor IRAC images from the Spitzer Space Telescope. The cometary morphology of the previously-known UCHII region G192.584-0.041 is clearly revealed in our sensitive, multi-configuration 3.6cm images. The 1.3mm continuum emission has been resolved into three compact cores, all of which are dominated by dust emission and have radii < 7000AU. The mass estimates for these cores range from 6 to 35 Msun. The centroid of the brightest dust core (SMA1) is offset by 1.1'' (2800 AU) from the peak of the cometary UCHII region and exhibits the strongest HC3N, CN, and DCN line emission in the region. SMA1 also exhibits compact CH3OH, SiO, and H2CO emission and likely contains a young hot core. We find spatial and kinematic evidence that SMA1 may contain further multiplicity, with one of the components coincident with a newly-detected H2O maser. There are no mid-infrared point source counterparts to any of the dust cores, further suggesting an early evolutionary phase for these objects. The dominant mid-infrared emission is a diffuse, broadband component that traces the surface of the cometary UCHII region but is obscured by foreground material on its southern edge. An additional 4.5 micron linear feature emanating to the northeast of SMA1 is aligned with a cluster of methanol masers and likely traces a outflow from a protostar within SMA1. Our observations provide direct evidence that S255N is forming a cluster of intermediate to high-mass stars.

  • 3 authors
·
Apr 7, 2007

The High-resolution Accretion Disks of Embedded protoStars (HADES) simulations. I. Impact of Protostellar Magnetic Fields on the Accretion Modes

How embedded, actively accreting low-mass protostars accrete their mass is still greatly debated. Observations are now piecing together the puzzle of embedded protostellar accretion, in particular with new facilities in the near-infrared. However, high-resolution theoretical models are still lacking, with a stark paucity of detailed simulations of these early phases. Here we present high-resolution non-ideal magneto-hydrodynamic simulations of a Solar mass protostar accreting at rates exceeding 10^{-6} M_{odot} yr^{-1}. We show the results of the accretion flow for four different protostellar magnetic fields, 10 G, 500 G, 1 kG, and 2 kG, combined with a disk magnetic field. For weaker (10 G and 500 G) protostar magnetic fields, accretion occurs via a turbulent boundary layer mode, with disk material impacting across the protostellar surface. In the 500 G model, the presence of a magnetically dominated outflow focuses the accretion towards the equator, slightly enhancing and ordering the accretion. For kG magnetic fields, the disk becomes truncated due to the protostellar dipole and exhibits magnetospheric accretion, with the 2 kG model having accretion bursts induced by the interchange instability. We present bolometric light curves for the models and find that they reproduce observations of Class I protostars from YSOVAR, with high bursts followed by an exponential decay possibly being a signature of instability-driven accretion. Finally, we present the filling fractions of accretion and find that 90\% of the mass is accreted in a surface area fraction of 10-20\%. These simulations will be extended in future work for a broader parameter space, with their high resolution and high temporal spacing able to explore a wide range of interesting protostellar physics.

  • 4 authors
·
Oct 18, 2024

First Light and Reionization Epoch Simulations (FLARES) -- XVIII: the ionising emissivities and hydrogen recombination line properties of early AGN

One of the most remarkable results from the James Webb Space Telescope has been the discovery of a large population of compact sources exhibiting strong broad Halpha emission, typically interpreted to be low-luminosity broad-line (Type 1) active galactic nuclei (BLAGN). An important question is whether these observations are in tension with galaxy formation models, and if so how? While comparisons have been made using physical properties (i.e.~black hole mass and accretion rate) inferred from observations, these require the use of SED modelling assumptions, or locally inferred scaling relations, which may be unjustified, at least in the distant high-redshift Universe. In this work we take an alternative approach and forward model predictions from the First Light And Reionisation Epoch Simulations (FLARES) suite of cosmological hydrodynamical zoom simulations to predict the observable properties of BLAGN. We achieve this by first coupling \flares\ with the \qsosed\ model to predict the ionising photon luminosities of high-redshift (z>5) AGN. To model the observed broad Halpha emission we then assume a constant conversion factor and covering fraction, and the fraction of AGN that have observable broad-lines. With a reasonable choice of these parameters, \flares\ is able to reproduce observational constraints on the Halpha luminosity function and equivalent width distribution at z=5.

  • 13 authors
·
May 8

The dark side of early galaxies: geko uncovers dark-matter fractions at zsim4-6

JWST/NIRCam slitless spectroscopy enables dynamical mass measurements for typical star-forming galaxies only a billion years after the Big Bang. We model the Halpha morpho-kinematics of 163 galaxies at redshift zapprox4-6 from FRESCO and CONGRESS (with JADES imaging), using the geko code, and infer rotational velocities and dispersions within r_{rm e}. Our sample spans log M_{star}approx7-10 and log M_{rm dyn}approx9-11. Gas masses are estimated via scaling relations, yielding baryonic masses and dark-matter (DM) fractions f_{rm DM}(r<r_{rm e}) within the Halpha half-light radius. We find high median fractions of langle f_{rm gas}rangle=0.77 and langle f_{rm DM}rangle=0.73, where f_{rm gas} is measured with respect to the baryonic mass and f_{rm DM} with respect to the DM+baryonic mass. About two-thirds of systems are DM-dominated within r_{rm e}sim0.5-1 kpc. Both f_{rm gas} and f_{rm DM} decrease with stellar mass, consistent with simulations. The stellar Tully-Fisher relation shows a tentative offset to higher v_{rm circ} at fixed M_{star} and substantial intrinsic scatter, suggesting that the relation is only beginning to emerge at zsim5. We measure a negative correlation between f_{rm DM} and baryonic surface density Sigma_{rm bar}, weaker but broadly consistent with trends at cosmic noon and at zsim0. Qualitatively comparing with modified NFW profiles coupled to an empirical stellar-to-halo mass relation suggests that the lowest f_{rm DM} (lesssim0.4) require cored inner DM profiles, while the highest fractions favour cuspier profiles, potentially reflecting adiabatic contraction. Overall, the elevated f_{rm gas} and f_{rm DM} at zgtrsim4 are compatible with progenitors of baryon-dominated systems at zsim2 and naturally anticipate overmassive black holes at fixed M_{star}.

  • 18 authors
·
Oct 16

Testing the extended corona model with the optical/UV reverberation mapping of the accretion disk

The illumination of the accretion disks is frequently studied assuming that the incident X-ray flux is a point-like source. The approach is referred as lamppost model.The most recent computations of the X-ray reprocessing by the disk take into account the departure from the simple lamppost models. However, in computations of the incident flux thermalization and subsequent re-emission in the optical-UV band the lamppost approximation is most frequently assumed. We test if the UV-optical reverberation mapping and time delay measurements are sensitive to this assumption. We assume that the incident radiation originates from a region extended along the symmetry axis. To model this, we adopt a simple setup by representing the emission as two lamps irradiating the disk simultaneously from two different heights. We then compare the resulting predictions with those obtained for a single lamppost located at an intermediate height. We show at the basis of the transfer function that the deviation of the wavelength-dependent delay curve shows at most a difference of 20% in comparison to a single lamppost, assuming the black hole mass of 10^8 M_{odot}, Eddington ratio 1, and the location of the lamps at 5 and 100 rg. The maximum deviation happens for the lamp luminosity ratio sim3. When simulating light curves for a two-lamp setup and a standard lamppost with the same black hole mass and a sampling rate of 0.1 days, we find no measurable differences in the ICCF profiles between the two setups. Larger black hole mass and considerably lower Eddington ratio would allow to see larger differences between a single lamppost and a two-lampost model. UV/optical reverberation mapping is not very sensitive to the vertical extension of the corona.

  • 2 authors
·
Jan 1

TESS Discovers a Second System of Transiting Exocomets in the Extreme Debris Disk of RZ Psc

We present the TESS discovery of only the second system of transiting exocomets with a sufficient number of events to measure the size distribution in the RZ Psc system, enabling comparisons with the beta Pictoris and Solar System size distributions. Twenty-four transits with absorption depths (AD) of 1--20\% were observed across three TESS sectors of the 20-50 Myr K0V star, detected as part of our TESS survey of extreme debris disks identified by their IR excess. We discover that the ADs (and hence exocomet radii) follow a broken power-law cumulative frequency distribution not previously seen in extrasolar contexts but similar to that observed in Solar System Kuiper Belt Object sizes, with power-law slopes above and below the break of gamma_AD>break=2.32pm0.12 and gamma_AD<break=0.11pm0.04, respectively. We derive size distributions of 1--7~km from two independent lines of evidence. We use the RZ Psc exocomet rate to predict exocomet yields for the Early eVolution Explorer (EVE) NASA astrophysics Small Explorer (SMEX) mission concept to obtain simultaneous photometry of 10^4 young stars in NUV, optical, and NIR bands. Assuming occurrence rates scaled from RZ Psc, EVE would detect 590 exocomets from approx70 young systems in the optical band, with approx120 simultaneous 5sigma detections in all three bands. These data would enable grain sizes of 200--700~nm and graphite--olivine compositions of dozens of events to be distinguished at 2.5--3sigma, as well as a 4sigma determination of the accuracy of the Herschel-derived M-debris disk fraction.

  • 12 authors
·
Oct 10

Pixel-level modelling of group-scale strong lens CASSOWARY 19

We present the first high-precision model for the group-scale strong lensing system CASSOWARY 19 (CSWA19), utilising images from the Hubble Space Telescope (HST). Sixteen member galaxies identified via the red-sequence method, and the main halo, all modelled as the dual Pseudo Isothermal Elliptical profile (dPIE), are incorporated into a parametric lens model alongside an external shear field. To model the system, we adopt the PyAutoLens software package, employing a progressive search chain strategy for realizing the transition of source model from multiple S\'ersic profiles to a brightness-adaptive pixelization, which uses 1000 pixels in the source plane to reconstruct the background source corresponding to 177,144 image pixels in the image plane. Our results indicate that the total mass within the Einstein radius is M_{theta_E} approx 1.41times10^{13}M_{odot} and the average slope of the total mass density rho (r)propto r^{-gamma} is gamma=1.33 within the effective radius. This slope is shallower than those measured in galaxies and groups but is closer to those of galaxy clusters. In addition, our approach successfully resolves the two merging galaxies in the background source and yields a total magnification of mu=103.18^{+0.23}_{-0.19}, which is significantly higher than the outcomes from previous studies of CSWA19. In summary, our research demonstrates the effectiveness of the brightness-adaptive pixelization source reconstruction technique for modelling group-scale strong lensing systems. It can serve as a technical reference for future investigations into pixel-level modelling of the group- and cluster-scale strong lensing systems.

  • 9 authors
·
Apr 15

A 2.4% Determination of the Local Value of the Hubble Constant

We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant (H_0) from 3.3% to 2.4%. Improvements come from new, near-infrared observations of Cepheid variables in 11 new hosts of recent SNe~Ia, more than doubling the sample of SNe~Ia having a Cepheid-calibrated distance for a total of 19; these leverage the magnitude-z relation based on 300 SNe~Ia at z<0.15. All 19 hosts and the megamaser system NGC4258 were observed with WFC3, thus nullifying cross-instrument zeropoint errors. Other improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC4258, more Cepheids and a more robust distance to the LMC from late-type DEBs, HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes, and (iv) 2 DEBs in M31. H_0 from each is 72.25+/-2.51, 72.04+/-2.67, 76.18+/-2.37, and 74.50+/-3.27 km/sec/Mpc, respectively. Our best estimate of 73.24+/-1.74 km/sec/Mpc combines the anchors NGC4258, MW, and LMC, and includes systematic errors for a final uncertainty of 2.4%. This value is 3.4 sigma higher than 66.93+/-0.62 km/sec/Mpc predicted by LambdaCDM with 3 neutrinos with mass 0.06 eV and the Planck data, but reduces to 2.1 sigma relative to the prediction of 69.3+/-0.7 km/sec/Mpc with the combination of WMAP+ACT+SPT+BAO, suggesting systematic uncertainties in CMB measurements may play a role in the tension. If we take the conflict between Planck and H_0 at face value, one plausible explanation could involve an additional source of dark radiation in the early Universe in the range of Delta N_eff=0.4-1. We anticipate significant improvements in H_0 from upcoming parallax measurements.

  • 15 authors
·
Apr 5, 2016

Efficient Massive Black Hole Binary parameter estimation for LISA using Sequential Neural Likelihood

The inspiral, merger, and ringdown of Massive Black Hole Binaries (MBHBs) is one the main sources of Gravitational Waves (GWs) for the future Laser Interferometer Space Antenna (LISA), an ESA-led mission in the implementation phase. It is expected that LISA will detect these systems throughout the entire observable universe. Robust and efficient data analysis algorithms are necessary to detect and estimate physical parameters for these systems. In this work, we explore the application of Sequential Neural Likelihood, a simulation-based inference algorithm, to detect and characterize MBHB GW signals in synthetic LISA data. We describe in detail the different elements of the method, their performance and possible alternatives that can be used to enhance the performance. Instead of sampling from the conventional likelihood function, which requires a forward simulation for each evaluation, this method constructs a surrogate likelihood that is ultimately described by a neural network trained from a dataset of simulations of the MBHB signals and noise. One important advantage of this method is that, given that the likelihood is independent of the priors, we can iteratively train models that target specific observations in a fraction of the time and computational cost that other traditional and machine learning-based strategies would require. Because of the iterative nature of the method, we are able to train models to obtain qualitatively similar posteriors with less than 2\% of the simulator calls that Markov Chain Monte Carlo methods would require. We compare these posteriors with those obtained from Markov Chain Monte Carlo techniques and discuss the differences that appear, in particular in relation with the important role that data compression has in the modular implementation of the method that we present. We also discuss different strategies to improve the performance of the algorithms.

  • 2 authors
·
Jun 1, 2024

Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter

Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5-40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of sim15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a sim3times more significant measurement of the extended gas compared to the technique's proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m=1) and quadrupole (m=2) at 8-10sigma, as well as evidence for m=4 signal at up to 6sigma, indicating sensitivity to late-time non-Gaussianity. We compare to the Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.

  • 76 authors
·
Sep 6, 2024

Digital Discovery of interferometric Gravitational Wave Detectors

Gravitational waves, detected a century after they were first theorized, are spacetime distortions caused by some of the most cataclysmic events in the universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations remains largely unexplored, offering an exciting territory potentially rich in innovative and unconventional detection strategies. Here, we demonstrate the application of artificial intelligence (AI) to systematically explore this enormous space, revealing novel topologies for gravitational wave (GW) detectors that outperform current next-generation designs under realistic experimental constraints. Our results span a broad range of astrophysical targets, such as black hole and neutron star mergers, supernovae, and primordial GW sources. Moreover, we are able to conceptualize the initially unorthodox discovered designs, emphasizing the potential of using AI algorithms not only in discovering but also in understanding these novel topologies. We've assembled more than 50 superior solutions in a publicly available Gravitational Wave Detector Zoo which could lead to many new surprising techniques. At a bigger picture, our approach is not limited to gravitational wave detectors and can be extended to AI-driven design of experiments across diverse domains of fundamental physics.

  • 3 authors
·
Dec 5, 2023 1

Unveiling two deeply embedded young protostars in the S68N Class 0 protostellar core with JWST/NIRSpec

The near-infrared (NIR) emission of the youngest protostars still needs to be characterized to better understand the evolution of their accretion and ejection activity. We analyze James Webb Space Telescope NIRSpec 1.7 -- 5.3 mum observations of two deeply embedded sources in the S68N protostellar core in Serpens. The North Central (NC) source exhibits a highly obscured spectrum (A_K ~ 4.8 mag) that is modeled with a pre-main-sequence photosphere and a hot disk component. The photospheric parameters are consistent with a young, low-mass photosphere, as suggested by the low surface gravity, log g of 1.95 pm 0.15 cm s^{-2}. The hot disk suggests that accretion onto the central protostellar embryo is ongoing, although prototypical accretion-tracing emission lines HI are not detected. The South Central (SC) source, which is even more embedded (A_K ~ 8 mag; no continuum is detected shortward of 3.6 mum) appears to be driving the large-scale S68N protostellar outflow, and launches a collimated hot molecular jet detected in \Ht and CO ro-vibrational lines. Shock modeling of the \Ht (ro)vibrational lines establishes that fast C-type shocks (geq 30 km s^{-1}), with high pre-shock density (geq 10^7 cm^{-3}), and strong magnetic field (b ~ 3--10, where B = b,times,textrm{n_{H} (cm^{-3})},muG) best match the data. The bright CO fundamental line forest suggests energetic excitation, with the contribution of non-LTE effects, ie irradiation pumping. Detected OH and CH^{+} ro-vibrational lines support this hypothesis. These two Class 0 protostars seem to be in very young evolutionary stages and still have to acquire the bulk of their final stellar masses. These results demonstrate that JWST enables unprecedented diagnostics of these first stages of the protostellar evolutionary phase.

  • 14 authors
·
Oct 14, 2024

Inflationary Attractors Predictions for Static Neutron Stars in the Mass-Gap Region

In this work we study static neutron stars in the context of several inflationary models which are popular in cosmology. These inflationary models are non-minimally coupled scalar theories which yield a viable inflationary phenomenology in both Jordan and Einstein frames. By considering the constraints from inflationary theories, which basically determine the values of the potential strength, usually considered as a free parameter in astrophysical neutron star works, we construct and solve the Tolman-Oppenheimer-Volkoff equations using a solid python-3 LSODA integrator. For our study we consider several popular inflationary models, such as the universal attractors, the R^p attractors (three distinct model values), the induced inflation, the quadratic inflation, the Higgs inflation and the a-attractors (two distinct model values) and for the following popular equations of state the WFF1, the SLy, the APR, the MS1, the AP3, the AP4, the ENG, the MPA1 and the MS1b. We construct the M-R diagram and we confront the resulting theory with theoretical and observational constraints. As we demonstrate, remarkably, all the neutron stars produced by all the inflationary models we considered are compatible with all the constraints for the MPA1 equation of state. It is notable that for this particular equation of state, the maximum masses of the neutron stars are in the mass-gap region with M>2.5M_{odot}, but lower than the 3 solar masses causal limit. We also make the observation that as the NICER constraints are pushed towards larger radii, as for example in the case of the black widow pulsar PSR J0952-0607, it seems that equations of state that produce neutron stars with maximum masses in the mass gap region, with M>2.5M_{odot}, but lower than the 3 solar masses causal limit, are favored and are compatible with the modified NICER constraints.

  • 2 authors
·
May 9, 2023

Flashlights: An Off-Caustic Lensed Star at Redshift z = 1.26 in Abell 370

We report the discovery of a transient seen in a strongly lensed arc at redshift z_{rm s}=1.2567 in Hubble Space Telescope imaging of the Abell 370 galaxy cluster. The transient is detected at 29.51pm0.14 AB mag in a WFC3/UVIS F200LP difference image made using observations from two different epochs, obtained in the framework of the Flashlights program, and is also visible in the F350LP band (m_{rm F350LP} approx 30.53pm0.76 AB mag). The transient is observed on the negative-parity side of the critical curve at a distance of sim 0.6" from it, greater than previous examples of lensed stars. The large distance from the critical curve yields a significantly smaller macromagnification, but our simulations show that bright, O/B-type supergiants can reach sufficiently high magnifications to be seen at the observed position and magnitude. In addition, the observed transient image is a trailing image with an observer-frame time delay of sim+0.8 days from its expected counterpart, so that any transient lasting for longer than that should have also been seen on the minima side and is thus excluded. This, together with the blue colour we measure for the transient (m_{rm F200LP} - m_{rm F350LP} approx [-0.3,-1.6] AB), rules out most other transient candidates such as (kilo)novae, for example, and makes a lensed star the prime candidate. Assuming the transient is indeed a lensed star as suggested, many more such events should be detected in the near future in cluster surveys with the Hubble Space Telescope and James Webb Space Telescope.

  • 13 authors
·
Nov 2, 2022

Signatures of the Shock Interaction as an Additional Power Source in the Nebular Spectra of SN 2023ixf

Red supergiants may lose significant mass through steady winds and episodic eruptions in the final 100-1000 years before the core collapses, shaping their circumstellar environment. Interaction between supernova (SN) ejecta and distant circumstellar material (CSM) can generate shocks, which can energize the ejecta and serve as a key power source during the nebular phase of the SN. In the present work, we investigate the nebular spectrum of SN 2023ixf, observed one year post-explosion (at +363 d) with the recently commissioned WEAVE instrument on the 4.2m William Herschel Telescope. This marks the first supernova spectrum captured with WEAVE. In this spectrum, Halpha exhibits a peculiar evolution, flanked by blueward and redward broad components centred at simpm 5650,km,s^{-1} from the rest velocity of Halpha, which are seen for only a few SNe to date. These features indicate energy deposition from shocks generated by the interaction of ejecta with a CSM expelled nearly 350 - 640 years pre-explosion. Comparisons of the +363 d spectrum with model spectra from the literature, that include varying shock powers, suggest a shock power of at least sim 5 times 10 ^{40},erg,s^{-1} at this epoch. Additionally, analysis of the [O I] doublet, along with other prominent emission lines, provides evidence for clumpiness, dust formation, and asymmetry within the ejecta and/or the surrounding CSM. These emission lines also helped to constrain the oxygen mass (approx0.19^{scriptscriptstyle +0.08}_{scriptscriptstyle -0.04} M_odot), He-core mass (<3 M_odot) and the zero-age main sequence mass (lesssim 12 M_odot) of the progenitor of SN 2023ixf. The comparison with other Type II SNe highlights SN 2023ixf's unique shock interaction signatures and evidence of dust formation, setting it apart in terms of evolution and dynamics.

  • 5 authors
·
Dec 4, 2024

A comprehensive grid of massive binary evolution models for the Galaxy - Surface properties of post-mass transfer stars

Massive stars often evolve in binary systems, in which binary interactions significantly affect their evolution. Massive stars in the Galaxy serve as valuable testbeds for this due to their proximity. We computed the evolution of more than 38000 galactic binary systems with initial primary star masses of 5...100 Msun. In this paper, we aim to investigate the surface properties of post-mass transfer mass donor and mass gainer stars through core hydrogen burning, core helium burning, and for the pre-supernova stage. The models are computed with MESA, incorporating detailed stellar and binary physics, including internal differential rotation, magnetic angular momentum transport, mass-dependent overshooting, stellar wind mass-loss, mass and angular momentum transfer and tidal interaction. They incorporate a new extensive nuclear network for hydrogen burning, which allows us to track the full range of hydrogen burning nucleosynthesis products, from the light elements to aluminum. The widest, non-interacting binary models in our grid effectively serve as single star models. We find that mass gainers and mass donors may evolve through long-lived blue and yellow supergiant stages during core helium burning where single stars of the same mass remain red supergiants. Furthermore, some of our gainers evolve into more luminous yellow and blue supergiants prior to core collapse than single stars, while some donors end their life as red or yellow supergiants, showing a rich diversity in supernova progenitors. We show that the surface elemental and isotopic abundances carry valuable information about a star's evolutionary history and can be used to distinguish binary interaction products from single stars. Our binary model grid may serve as a tool for identifying post-mass transfer stars and supernovae, and holds potential for population studies, supernova modeling, and guidance of future observations.

  • 4 authors
·
Oct 22

A UV to X-ray view of soft excess in type 1 AGNs: I. sample selection and spectral profile

A core sample of 59 unobscured type 1 AGNs with simultaneous XMM-Newton X-ray and UV observations is compiled from archive to probe the nature of soft X-ray excess (SE). In the first paper of this series, our focus centers on scrutinizing the spectral profile of the soft excess. Of the sources, approx 71% (42/59) exhibit powerlaw-like (po-like) soft excess, while approx 29% (17/59) exhibit blackbody-like (bb-like) soft excess. We show a cut-off powerlaw could uniformly characterize both types of soft excesses, with median Ecut of 1.40 keV for po-like and 0.14 keV for bb-like. For the first time, we report a robust and quantitative correlation between the SE profile and SE strength (the ratio of SE luminosity to that of the primary powerlaw continuum in 0.5 - 2.0 keV), indicating that stronger soft excess is more likely to be po-like, or effectively has a higher Ecut. This correlation cannot be explained by ionized disk reflection alone, which produces mostly bb-like soft excess (Ecut sim 0.1 keV) as revealed by relxilllp simulation. Remarkably, we show with simulations that a toy hybrid scenario, where both ionized disk reflection (relxilllp, with all reflection parameters fixed at default values except for ionization of the disk) and warm corona (compTT, with temperature fixed at 1 keV) contribute to the observed soft excess, can successfully reproduce the observed correlation. This highlights the ubiquitous hybrid nature of the soft X-ray excess in AGNs, and underscores the importance of considering both components while fitting the spectra of soft excess.

  • 8 authors
·
Dec 15, 2024

JAGB 2.0: Improved Constraints on the J-region Asymptotic Giant Branch-based Hubble Constant from an Expanded Sample of JWST Observations

The J-region Asymptotic Giant Branch (JAGB) is an overdensity of stars in the near-infrared, attributed to carbon-rich asymptotic giant branch stars, and recently used as a standard candle for measuring extragalactic distances and the Hubble constant. Using JWST in Cycle 2, we extend JAGB measurements to 6 hosts of 9 Type Ia supernovae (SNe Ia) (NGC 2525, NGC 3147, NGC 3370, NGC 3447, NGC 5468, and NGC 5861), with two at D sim 40 Mpc, all calibrated by the maser host NGC 4258. We investigate the effects of incompleteness and find that we are unable to recover a robust JAGB measurement in one of the two most distant hosts at R sim 40 Mpc, NGC 3147. We compile all JWST JAGB observations in SNe Ia hosts, 15 galaxies hosting 18 SNe Ia, from the SH0ES and CCHP programs and employ all literature measures (mode, mean, median, model). We find no significant mean difference between these distances and those from HST Cepheids, -0.03pm0.02 (stat) pm 0.05 (sys) mag. We find a difference of 0.11 pm 0.02 mag between JAGB mode measurements in the CCHP analyses of two fields in NGC 4258, a feature also seen in two SH0ES fields (see field-to-field variations in Li et al. 2024a), indicating significant field-to-field variation of JAGB measurements in NGC 4258 which produce a large absolute calibration uncertainty. Variations are also seen in the shape of the JAGB LF across galaxies so that different measures produce different values of the Hubble constant. We look for but do not (yet) find a standardizing relation between JAGB LF skew or color dependence and the apparent variation. Using the middle result of all JAGB measures to calibrate SNe Ia yields a Hubble constant of H_0 = 73.3 pm 1.4 (stat) pm 2.0 (sys) km/s/Mpc with the systematic dominated by apparent differences across NGC 4258 calibrating fields or their measures.

  • 5 authors
·
Feb 7

Deep Synoptic Array Science: Searching for Long Duration Radio Transients with the DSA-110

We describe the design and commissioning tests for the DSA-110 Not-So-Fast Radio Burst (NSFRB) search pipeline, a 1.4 GHz image-plane single-pulse search sensitive to 134 ms-160.8 s radio bursts. Extending the pulse width range of the Fast Radio Burst (FRB) search by 3 orders of magnitude, the NSFRB search is sensitive to the recently-discovered Galactic Long Period Radio Transients (LPRTs). The NSFRB search operates in real-time, utilizing a custom GPU-accelerated search code, cerberus, implemented in Python with JAX. We summarize successful commissioning sensitivity tests with continuum sources and pulsar B0329+54, estimating the 6sigma flux (fluence) threshold to be ~290 mJy (~40 Jy ms). Future tests of recovery of longer timescale transients, e.g. CHIME J1634+44, are planned to supplement injection testing and B0329+54 observations. An offline DSA-110 NSFRB Galactic Plane Survey was conducted to search for LPRTs, covering -3.5^circ<b<5.7^circ and 141^circ<l<225^circ (~770 square degrees) in Galactic coordinates. We estimate an upper limit Poissonian burst rate ~1 hr^{-1} per square degree (~7 hr^{-1} per 3^circtimes3^circ survey grid cell) maximized across the inner |b|<0.25^circ of the surveyed region. By imposing the ~290 mJy flux limit on two representative models (the magnetar plastic flow model and the White Dwarf-M Dwarf binary model), we reject with 95% confidence the presence of White Dwarf-M Dwarf binary LPRTs with periods between ~10-70s within ~95% of the surveyed region. Combined with the prevalence of LPRTs in the Galactic Plane, our results motivate further consideration of both White Dwarf-M Dwarf binary models and isolated magnetar models. We will continue to explore novel LPRT search strategies during real-time operations, such as triggered periodicity searches and additional targeted surveys.

  • 13 authors
·
Oct 20

Unveiling the soft X-ray source population towards the inner Galactic disk with XMM-Newton

Across the Galactic disk lies a diverse population of X-ray sources, with the fainter end remaining poorly understood due to past survey sensitivity limits. We aim to classify and characterize faint X-ray sources detected in the eROSITA All-Sky Survey (eRASS1) towards the inner Galactic disk (350^circ < l < 360^circ, -1^circ < b < 1^circ) using deeper XMM-Newton observations (typical exposure of sim 20,ks). We analyzed 189 eRASS1 sources, combining X-ray spectral fitting (0.2--10,keV) with Gaia astrometric and photometric data for robust classification. Our results show that the eRASS1 catalog towards the Galactic disk is overwhelmingly dominated by coronal sources (sim 74%), primarily active stars and binaries, with sim 8% being wind-powered massive stars and sim 18% being accreting compact objects. We propose an empirical hardness-ratio cut (HR > -0.2) to efficiently isolate these non-coronal sources. By stacking the classified population and comparing with the Galactic Ridge X-ray Emission (GRXE), we estimate that sim 6% of the GRXE flux in the 0.5--2.0,keV band is resolved into point sources above the eRASS1 flux limit (sim 5times 10^{-14},erg,cm^{-2},s^{-1}). This resolved soft-band emission is dominated by active stars, while hard-band flux originates primarily from X-ray binaries. We conclude that the eRASS1 catalog retains a non-negligible population of compact objects that can be effectively distinguished using X-ray color selection.

  • 8 authors
·
Oct 27

PRIMER: JWST/MIRI reveals the evolution of star-forming structures in galaxies at z<2.5

The stellar structures of star-forming galaxies (SFGs) undergo significant size growth during their mass assembly and must pass through a compaction phase as they evolve into quiescent galaxies (QGs). To shed light on the mechanisms behind this structural evolution, we study the morphology of the star-forming components of 665 SFGs at 0<z<2.5 measured using JWST/MIRI observation and compare them with the morphology of their stellar components taken from the literature. The stellar and star-forming components of most SFGs (66%) have extended disk-like structures that are aligned with each other and are of the same size. The star-forming components of these galaxies follow a mass-size relation, similar to that followed by their stellar components. At the highest mass, the optical S\'ersic index of these SFGs increases to 2.5, suggesting the presence of a dominant stellar bulge. Because their star-forming components remain disk-like, these bulges cannot have formed by secular in-situ growth. We identify a second population of galaxies lying below the MIR mass-size relation, with compact star-forming components embedded in extended stellar components (EC galaxy). These galaxies are overall rare (15%) but become more dominant (30%) at high mass (>10^{10.5}M_odot). The compact star-forming components of these galaxies are also concentrated and slightly spheroidal, suggesting that this compaction phase can build dense bulge in-situ. Finally, we identify a third population of SFGs (19%), with both compact stellar and star-forming components. The density of their stellar cores resemble those of QGs and are compatible with being the descendants of EC galaxy. Overall, the structural evolution of SFGs is mainly dominated by a secular inside-out growth, which can, however, be interrupted by violent compaction phase(s) that can build dominant stellar bulges like those in massive SFGs or QGs.

  • 12 authors
·
Jun 17, 2024

Soft X-ray line emission from hot gas in intervening galaxy halos and diffuse gas in the cosmic web

Cosmic hot-gas emission is closely related to halo gas acquisition and galactic feedback processes. Their X-ray observations reveal important physical properties and movements of the baryonic cycle of galactic ecosystems. However, the measured emissions toward a target at a cosmological distance would always include contributions from hot gases along the entire line of sight to the target. Observationally, such contaminations are routinely subtracted via different strategies. With this work, we aim to answer an interesting theoretical question regarding the amount of soft X-ray line emissions from intervening hot gases of different origins. We tackled this problem with the aid of the TNG100 simulation. We generated typical wide-field light cones and estimated their impacts on spectral and flux measurements toward X-ray-emitting galaxy-, group- and cluster-halo targets at lower redshifts. We split the intervening hot gases into three categories; that is, the hot gas that is gravitationally bound to either star-forming or quenched galaxy halos, and the diffuse gas, which is more tenuously distributed permeating the cosmic web structures. We find that along a given line of sight, the diffuse gas that permeates the cosmic web structures produces strong oxygen and iron line emissions at different redshifts. The diffuse gas emission in the soft X-ray band can be equal to the emission from hot gases that are gravitationally bound to intervening galaxy halos. The hot-gas emission from the quiescent galaxy halos can be significantly less than that from star-forming halos along the line of sight. The fluxes from all of the line-of-sight emitters as measured in the energy band of 0.4--0.85 keV can reach ~20--200 % of the emission from the target galaxy, group, and cluster halos.

  • 4 authors
·
Jun 17

The Binary Fraction of Red Supergiants in the Magellanic Clouds

Red supergiants (RSGs), as the descendants of OB-type stars and the progenitors of supernovae, provide crucial insights into the evolution of massive stars, particularly in binary systems. Previous studies show that the binary fraction of RSGs (approx 15% - 40%) is significantly lower than that of their predecessors (approx 50% - 70%). In this work, we investigate the binary fraction of RSGs with the recently selected largest samples of 4695 and 2097 RSGs in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), respectively. The binary system with a hot companion (O-, B- and A-type star) is identified by detecting the ultraviolet (UV) excess in the observed spectral energy distribution (SED) ranging from ultraviolet to mid-infrared after subtracting the model SED of RSG since RSGs are very weak in the UV band. It is found that the lower limit of binarity is 30.2% pm 0.7% and 32.2% pm 1% in the LMC and SMC, respectively. If the sample is limited to luminous RSGs with log L/L_{odot} > 4.0, the binary fraction becomes 26.6% pm 1.1% and 26.4% pm 1.7% in the LMC and SMC, respectively. The derived binary fraction is valid in the range of sim 2.3 < log P / [d] < sim 8. Our study suggests that roughly one-third of massive stars host a third companion within sim 30,000 AU. In addition, 15 RSGs are also identified as binary via HST/STIS spectra, and a handful of the binaries identified by the SED fitting are confirmed by their light curve and radial velocity dispersion. The stellar parameters of the companions, i.e. T_{eff}, R, L and log g, are calculated by model fitting.

  • 3 authors
·
Apr 4

Deep Learning solutions to singular ordinary differential equations: from special functions to spherical accretion

Singular regular points often arise in differential equations describing physical phenomena such as fluid dynamics, electromagnetism, and gravitation. Traditional numerical techniques often fail or become unstable near these points, requiring the use of semi-analytical tools, such as series expansions and perturbative methods, in combination with numerical algorithms; or to invoke more sophisticated methods. In this work, we take an alternative route and leverage the power of machine learning to exploit Physics Informed Neural Networks (PINNs) as a modern approach to solving ordinary differential equations with singular points. PINNs utilize deep learning architectures to approximate solutions by embedding the differential equations into the loss function of the neural network. We discuss the advantages of PINNs in handling singularities, particularly their ability to bypass traditional grid-based methods and provide smooth approximations across irregular regions. Techniques for enhancing the accuracy of PINNs near singular points, such as adaptive loss weighting, are used in order to achieve high efficiency in the training of the network. We exemplify our results by studying four differential equations of interest in mathematics and gravitation -- the Legendre equation, the hypergeometric equation, the solution for black hole space-times in theories of Lorentz violating gravity, and the spherical accretion of a perfect fluid in a Schwarzschild geometry.

  • 3 authors
·
Sep 30, 2024

Tracing the Physical Lineage of GRB 211211A: Population Constraints on NS-WD Merger Gamma-Ray Bursts

The peculiar long gamma-ray burst (GRB) event, GRB 211211A, is known for it is association with a kilonova feature. Whereas most long GRBs are thought to originate in the core collapse of massive stars, the presence of kilonova suggests GRB 211211A was instead produced by a merger of a compact object binary. Building on the interpretation put forward by Yang2022Natur.612..232Y--who argue that GRB 211211A was powered by a massive white-dwarf + neutron-star (WD-NS) merger--we adopt this WD-NS scenario as our observationally supported starting point. If the burst truly originates from that channel, its rarity must mirror the formation and merger rate of WD-NS binaries--a rate still largely unexplored in conventional massive-binary population studies. In this letter, we present a qualitative analysis based on binary evolution physics in order to understand the fraction of GRB 211211A in short GRBs (NS-WD/NS-NS fraction). Since the progenitors of massive WD-NS binaries occupy the initial mass function-preferred regime, where the zero-age main-sequence mass range of the assumed WD mass range (1.2-1.4,M_odot) is comparable to that of NSs, the NS-WD/NS-NS fraction emerging from our standard evolutionary path is expected to be sim14--37\%, far higher than the observed fraction (sim5\%). This discrepancy might imply a large, still-unidentified population of GRB 211211A-like events or an unusual origin of the NS-such as being hypernova-born or accretion-induced-collapse-born. Placing these results in a broader compact-binary context, implications for black-hole systems are also discussed.

  • 4 authors
·
Aug 14

1FLAT: a Firmamento-based catalog of AGN in Fermi-LAT high Galactic latitude γ-ray sources

We present a systematic reassessment of 5,062 high-Galactic latitude gamma-ray sources from the Fermi-LAT 4FGL-DR4 catalog using Firmamento, a web-based platform for multi-frequency source discovery and analysis. Our goal is to provide an independent evaluation of LAT gamma-ray source associations through alternative spectral and spatial methods that combine recent and legacy survey data, supplemented by human supervision of spectral energy distributions (SEDs), source morphology, flux variability, and template-based comparisons. Firmamento confirms the 4FGL-DR4 and 4LAC-DR3 counterparts or unassociated sources in 4,493 cases (88.8%), demonstrating the robustness of both approaches. Beyond this general agreement, we identify 421 new blazar counterparts among previously unassociated sources, thereby reducing the fraction of unidentified extragalactic Fermi-LAT sources from 25% to 17%. In addition, in 64 cases we find alternative blazar associations, while in 49 instances we do not confirm the 4FGL-DR4 association. For all confirmed blazar counterparts we provide homogeneous estimates of synchrotron peak frequency and peak flux using machine-learning and template-based methods; these agree with 4LAC-DR3 values in most cases, though significant discrepancies appear for a few dozen sources, often due to improved X-ray coverage. The primary outcome of this work is the 1st Firmamento LAT AGN table (1FLAT), made publicly available through the Firmamento platform (https://firmamento.nyuad.nyu.edu), where all related multi-wavelength data and images are available. The project involved extensive manual validation and benefited from the active participation of graduate and undergraduate students, highlighting the platform's value for both research and education.

  • 18 authors
·
Oct 8

The Duality of Whittaker Potential Theory: Fundamental Representations of Electromagnetism and Gravity, and Their Orthogonality

E. T. Whittaker produced two papers in 1903 and 1904 that, although sometimes considered mere mathematical statements (Barrett, 1993), held important implications for physical theory. The Whittaker 1903 paper united electrostatic and gravitational attraction as resulting from longitudinal waves - waves whose wavefronts propagate parallel to their direction. The Whittaker 1904 paper showed that electromagnetic waves resulted from the interference of two such longitudinal waves or scalar potential functions. Although unexplored, the implications of these papers are profound: gravitational lensing, gravitational waves, the Aharonov-Bohm effect, the existence of a hyperspace above or behind normal space, the elimination of gravitational and point charge singularities, MOND, and the expansion of the universe. This last implication can be related to the recent finding that black holes with posited vacuum energy interior solutions alongside cosmological boundaries have a cosmological coupling constant of k=3, meaning that black holes gain mass-proportional to a3 in a parameterization equation within a Robertson-Walker cosmology and are a cosmological accelerated expansion species (Farrah et al., 2023). This expansion and many features of General Relativity can be explained by the mass-proportionality and preferred direction of the longitudinal waves within the two underlying non-local Whittaker potentials (Titleman, 2022). Whittaker potential theory also offers a simple explanation for expansion of the universe - it is produced as longitudinal motion within the Whittaker potentials only when dynamic electromagnetism is separate from time-static gravity in intergalactic space.

  • 1 authors
·
May 13, 2022

The Effect of Minor and Major Mergers on the Evolution of Low Excitation Radio Galaxies

We use deep, mu_{r} lesssim 28,mag,arcsec^{-2}, r-band imaging from the Dark Energy Camera Legacy Survey (DECaLS) to search for past, or ongoing, merger activity in a sample of 282 Low Excitation Radio Galaxies (LERGs) at z<0.07. Our principle aim is to assess the the role of mergers in the evolution of LERGs. Exploiting the imaging depth, we classify tidal remnants around galaxies as both minor and major morphological disturbances for our LERG sample and 1,622 control galaxies matched in redshift, stellar mass, and environment. In groups and in the field, the LERG minor merger fraction is consistent with the control population. In galaxy clusters, 8.8 pm 2.9, % of LERGs show evidence of recent minor mergers in contrast to 23.0pm 2.0, % of controls. This sim 4 sigma deficit of minor mergers in cluster LERGs suggests these events may inhibit this type of nuclear activity for galaxies within the cluster environment. We observe a > 4sigma excess of major mergers in the LERGs with M_{*} lesssim 10^{11},M_{odot}, with 10 pm 1.5, % of these AGN involved in such large-scale interactions compared to 3.2 pm 0.4,% of control galaxies. This excess of major mergers in LERGs decreases with increasing stellar mass, vanishing by M_{*} > 10^{11.3},M_{odot}. These observations show that minor mergers do not fuel LERGs, and are consistent with typical LERGs being powered by accretion of matter from their halo. Where LERGs are associated with major mergers, these objects may evolve into more efficiently accreting active galactic nuclei as the merger progresses and more gas falls on to the central engine.

  • 11 authors
·
Apr 30, 2019

Electric Penrose process and the accretion disk around a 4D charged Einstein-Gauss-Bonnet black hole

In this paper, we aim to examine the electric Penrose process (PP) around a charged black hole in 4D Einstein-Gauss-Bonnet (EGB) gravity and bring out the effect of the Gauss-Bonnet (GB) coupling parameter alpha and black hole charge on the efficiency of the energy extraction from the black hole. This research is motivated by the fact that electrostatic interactions significantly influence the behavior of charged particles in the vicinity of a charged static black hole. Under this interaction, decaying charged particles can have negative energies, causing energy to be released from black holes with no ergosphere. We show that the GB coupling parameter has a significant impact on the energy efficiency of the electric PP, but the efficiency can be strongly enhanced by the black hole charge due to the Coulomb force. Finally, we consider the accretion disk around the black hole and investigate in detail its radiation properties, such as the electromagnetic radiation flux, the temperature, and the differential luminosity. We show that the GB coupling parameter can have a significant impact on the radiation parameters, causing them to increase in the accretion disk in the vicinity of the black hole. Interestingly, it is found that the 4D EGB charged black hole is more efficient and favorable for the accretion disk radiation compared to a charged black hole in Einstein gravity.

  • 2 authors
·
Jul 31, 2024

CAvity DEtection Tool (CADET): Pipeline for automatic detection of X-ray cavities in hot galactic and cluster atmospheres

The study of jet-inflated X-ray cavities provides a powerful insight into the energetics of hot galactic atmospheres and radio-mechanical AGN feedback. By estimating the volumes of X-ray cavities, the total energy and thus also the corresponding mechanical jet power required for their inflation can be derived. Properly estimating their total extent is, however, non-trivial, prone to biases, nearly impossible for poor-quality data, and so far has been done manually by scientists. We present a novel and automated machine-learning pipeline called Cavity Detection Tool (CADET), developed to detect and estimate the sizes of X-ray cavities from raw Chandra images. The pipeline consists of a convolutional neural network trained for producing pixel-wise cavity predictions and a DBSCAN clustering algorithm, which decomposes the predictions into individual cavities. The convolutional network was trained using mock observations of early-type galaxies simulated to resemble real noisy Chandra-like images. The network's performance has been tested on simulated data obtaining an average cavity volume error of 14 % at an 89 % true-positive rate. For simulated images without any X-ray cavities inserted, we obtain a 5 % false-positive rate. When applied to real Chandra images, the pipeline recovered 91 out of 100 previously known X-ray cavities in nearby early-type galaxies and all 14 cavities in chosen galaxy clusters. Besides that, the CADET pipeline discovered 8 new cavity pairs in atmospheres of early-type galaxies and galaxy clusters (IC4765, NGC533, NGC2300, NGC3091, NGC4073, NGC4125, NGC4472, NGC5129) and a number of potential cavity candidates.

  • 4 authors
·
Apr 11, 2023

The effects of AGN feedback on the structural and dynamical properties of Milky Way-mass galaxies in cosmological simulations

Feedback from active galactic nuclei (AGN) has become established as a fundamental process in the evolution of the most massive galaxies. Its impact on Milky Way (MW)-mass systems, however, remains comparatively unexplored. In this work, we use the Auriga simulations to probe the impact of AGN feedback on the dynamical and structural properties of galaxies, focussing on the bar, bulge, and disc. We analyse three galaxies -- two strongly and one unbarred/weakly barred -- using three setups: (i) the fiducial Auriga model, which includes both radio and quasar mode feedback, (ii) a setup with no radio mode, and (iii) one with neither the radio nor the quasar mode. When removing the radio mode, gas in the circumgalactic medium cools more efficiently and subsequently settles in an extended disc, with little effect on the inner disc. Contrary to previous studies, we find that although the removal of the quasar mode results in more massive central components, these are in the form of compact discs, rather than spheroidal bulges. Therefore, galaxies without quasar mode feedback are more baryon-dominated and thus prone to forming stronger and shorter bars, which reveals an anti-correlation between the ejective nature of AGN feedback and bar strength. Hence, we report that the effect of AGN feedback (i.e. ejective or preventive) can significantly alter the dynamical properties of MW-like galaxies. Therefore, the observed dynamical and structural properties of MW-mass galaxies can be used as additional constraints for calibrating the efficiency of AGN feedback models.

  • 9 authors
·
Oct 21, 2021

Dark Matter Subhalos and Higher Order Catastrophes in Gravitational Wave Lensing

Gravitational lensing is an invaluable probe of the nature of dark matter, and the structures it forms. Lensed gravitational waves in particular allow for unparalleled sensitivity to small scale structures within the lenses, due to the precise time resolution in combination with the continuous monitoring of the entire sky. In this work, we show two distinct ways of using strongly lensed gravitational waves to identify the presence of dark matter subhalos: {i)} through higher order caustics generating high relative magnification (mu_r > 2), short time delay image pairs that break the caustic universality relations of single dark matter halos, which occur for sim 1-10 percent of strongly lensed events in our cold dark matter models, and ii) through the presence of more than three highly magnified images, which occur for sim 0.01-1 percent of the same simulated events. We find that these results are highly sensitive to the concentrations of subhalos in our simulations, and more mildly to their number densities. The presence of low-mass subhalos increases the probability of observing wave-optics lensing in lensed gravitational waves, which is studied by solving the diffraction integral with the stationary phase approximation, as well as numerically. We also report distinct quantitative and qualitative differences in the distributions of relative magnifications and time delays for subhalo populations with increased number densities or concentrations. With the upcoming detection of strongly lensed events by ground- and space- based detectors, comparisons against these simulated distributions will provide insight into the nature of dark matter.

  • 5 authors
·
Oct 16

The impact of stellar winds and tidal locking effects on the habitability of Earth-like exoplanets around M dwarf stars

We present an assessment of the effects of stellar wind magnetic and mechanical components on the habitability of Earth-like exoplanets orbiting the inner and outer radii of the habitable zone (HZ) of M dwarfs. We consider stars with masses in the range of 0.09 - 0.75 M_odot and planets with a surface dipolar magnetic field of 0.5 G. We estimate the size of the magnetospheres of such exoplanets using the pressure balance equation including the contribution of magnetic and ram pressures from stellar winds. We explore different scenarios, including fast and slow stellar winds, to assess the relevance of kinetic contribution. Furthermore, the effect of tidal locking and potential deviations from the Parker spiral, typically used to describe the interplanetary magnetic field, are analyzed. We show that for low mass stars (M < 0.15 M_odot), the ram pressure exerted by stellar winds affects the size of the magnetosphere more than the stellar wind magnetic pressure. Interestingly, when the ram pressure is not much stronger than the magnetic pressure, typically for higher mass stars, the inclusion of ram pressure can be beneficial to the magnetosphere due to the magnetopause currents. A magnetosphere with the size of that of modern Earth is difficult to achieve with the current assumptions. However, an early Earth magnetosphere is achieved by roughly half of our hypothetical planets orbiting the outer radius of the HZ in most of the considered cases. We find that deviations from the Parker spiral can affect the results significantly, reducing the magnetosphere by 56% in extreme cases. Most of the hypothetical planets are most likely (or might be) tidally locked, with the notable exception of those orbiting the outer HZ of GJ 846 and V1005 Ori.

  • 3 authors
·
Oct 23