Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2times speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.
AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
Recent advances in agent systems have demonstrated remarkable capabilities in solving both general-purpose and highly complex tasks. However, most current models lack mechanisms for coordinating specialized agents and have limited ability to generalize to new or diverse domains. To this end, we introduce AgentOrchestra, a hierarchical multi-agent framework for general-purpose task solving that integrates high-level planning with modular agent collaboration. Drawing inspiration from a conductor orchestrating a symphony, and grounded in the principles of extensibility, multimodality, modularity, and coordination, it features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents. Each sub-agent is equipped with general programming tools, as well as abilities to tackle a wide range of real-world specific tasks, including data analysis, file operations, web navigation, and interactive reasoning in dynamic multimodal environments. Notably, AgentOrchestra introduces an MCP Manager Agent that enables intelligent evolution through dynamic tool creation, retrieval, and reuse mechanisms, significantly enhancing the system's adaptability and scalability. AgentOrchestra supports flexible orchestration through explicit sub-goal formulation, inter-agent communication, and adaptive role allocation. We evaluate the framework on three widely used benchmarks for assessing LLM-based agent systems. Experimental results show that AgentOrchestra consistently outperforms flat-agent and monolithic baselines in terms of task success rate and adaptability. On the GAIA benchmark testing dataset, AgentOrchestra achieves an average score of 83.39\%, ranking among the top general-purpose agents. These results highlight the effectiveness of hierarchical organization and role specialization in building scalable and general-purpose LLM-based agent systems.
PIPA: A Unified Evaluation Protocol for Diagnosing Interactive Planning Agents
The growing capabilities of large language models (LLMs) in instruction-following and context-understanding lead to the era of agents with numerous applications. Among these, task planning agents have become especially prominent in realistic scenarios involving complex internal pipelines, such as context understanding, tool management, and response generation. However, existing benchmarks predominantly evaluate agent performance based on task completion as a proxy for overall effectiveness. We hypothesize that merely improving task completion is misaligned with maximizing user satisfaction, as users interact with the entire agentic process and not only the end result. To address this gap, we propose PIPA, a unified evaluation protocol that conceptualizes the behavioral process of interactive task planning agents within a partially observable Markov Decision Process (POMDP) paradigm. The proposed protocol offers a comprehensive assessment of agent performance through a set of atomic evaluation criteria, allowing researchers and practitioners to diagnose specific strengths and weaknesses within the agent's decision-making pipeline. Our analyses show that agents excel in different behavioral stages, with user satisfaction shaped by both outcomes and intermediate behaviors. We also highlight future directions, including systems that leverage multiple agents and the limitations of user simulators in task planning.
SMARTAPS: Tool-augmented LLMs for Operations Management
Large language models (LLMs) present intriguing opportunities to enhance user interaction with traditional algorithms and tools in real-world applications. An advanced planning system (APS) is a sophisticated software that leverages optimization to help operations planners create, interpret, and modify an operational plan. While highly beneficial, many customers are priced out of using an APS due to the ongoing costs of consultants responsible for customization and maintenance. To address the need for a more accessible APS expressed by supply chain planners, we present SmartAPS, a conversational system built on a tool-augmented LLM. Our system provides operations planners with an intuitive natural language chat interface, allowing them to query information, perform counterfactual reasoning, receive recommendations, and execute scenario analysis to better manage their operation. A short video demonstrating the system has been released: https://youtu.be/KtIrJjlDbyw
Can a Single Model Master Both Multi-turn Conversations and Tool Use? CALM: A Unified Conversational Agentic Language Model
Large Language Models (LLMs) with API-calling capabilities enabled building effective Language Agents (LA), while also revolutionizing the conventional task-oriented dialogue (TOD) paradigm. However, current approaches face a critical dilemma: TOD systems are often trained on a limited set of target APIs, requiring new data to maintain their quality when interfacing with new services, while LAs are not trained to maintain user intent over multi-turn conversations. Because both robust multi-turn management and advanced function calling are crucial for effective conversational agents, we evaluate these skills on three popular benchmarks: MultiWOZ 2.4 (TOD), BFCL V3 (LA), and API-Bank (LA), and our analyses reveal that specialized approaches excel in one domain but underperform in the other. To bridge this chasm, we introduce CALM (Conversational Agentic Language Model), a unified approach that integrates both conversational and agentic capabilities. We created CALM-IT, a carefully constructed multi-task dataset that interleave multi-turn ReAct reasoning with complex API usage. Using CALM-IT, we train three models CALM 8B, CALM 70B, and CALM 405B, which outperform top domain-specific models, including GPT-4o, across all three benchmarks.
NoteBar: An AI-Assisted Note-Taking System for Personal Knowledge Management
Note-taking is a critical practice for capturing, organizing, and reflecting on information in both academic and professional settings. The recent success of large language models has accelerated the development of AI-assisted tools, yet existing solutions often struggle with efficiency. We present NoteBar, an AI-assisted note-taking tool that leverages persona information and efficient language models to automatically organize notes into multiple categories and better support user workflows. To support research and evaluation in this space, we further introduce a novel persona-conditioned dataset of 3,173 notes and 8,494 annotated concepts across 16 MBTI personas, offering both diversity and semantic richness for downstream tasks. Finally, we demonstrate that NoteBar can be deployed in a practical and cost-effective manner, enabling interactive use without reliance on heavy infrastructure. Together, NoteBar and its accompanying dataset provide a scalable and extensible foundation for advancing AI-assisted personal knowledge management.
KubeIntellect: A Modular LLM-Orchestrated Agent Framework for End-to-End Kubernetes Management
Kubernetes has become the foundation of modern cloud-native infrastructure, yet its management remains complex and fragmented. Administrators must navigate a vast API surface, manage heterogeneous workloads, and coordinate tasks across disconnected tools - often requiring precise commands, YAML configuration, and contextual expertise. This paper presents KubeIntellect, a Large Language Model (LLM)-powered system for intelligent, end-to-end Kubernetes control. Unlike existing tools that focus on observability or static automation, KubeIntellect supports natural language interaction across the full spectrum of Kubernetes API operations, including read, write, delete, exec, access control, lifecycle, and advanced verbs. The system uses modular agents aligned with functional domains (e.g., logs, metrics, RBAC), orchestrated by a supervisor that interprets user queries, maintains workflow memory, invokes reusable tools, or synthesizes new ones via a secure Code Generator Agent. KubeIntellect integrates memory checkpoints, human-in-the-loop clarification, and dynamic task sequencing into a structured orchestration framework. Evaluation results show a 93% tool synthesis success rate and 100% reliability across 200 natural language queries, demonstrating the system's ability to operate efficiently under diverse workloads. An automated demo environment is provided on Azure, with additional support for local testing via kind. This work introduces a new class of interpretable, extensible, and LLM-driven systems for managing complex infrastructure.
Scaling LLM Multi-turn RL with End-to-end Summarization-based Context Management
We study reinforcement learning (RL) fine-tuning of large language model (LLM) agents for long-horizon multi-turn tool use, where context length quickly becomes a fundamental bottleneck. Existing RL pipelines can suffer from degraded instruction following, excessive rollout costs, and most importantly, strict context limits. To address these challenges, we introduce summarization-based context management to training. In specific, it periodically compresses the tool using history by LLM-generated summaries that retain task-relevant information to keep a compact context while enabling the agent to scale beyond the fixed context window. Building on this formulation, we derive a policy gradient representation that seamlessly enables standard LLM RL infrastructures to optimize both tool-use behaviors as well as summarization strategies in an end-to-end fashion. We instantiate this framework with SUmmarization augmented Policy Optimization (SUPO), an LLM RL algorithm that enables long-horizon training beyond a fixed context limit. Experiments on interactive function calling and searching tasks demonstrate that SUPO significantly improves the success rate while maintaining the same or even lower working context length compared to baselines. We also demonstrate that for complex searching tasks, SUPO can further improve the evaluation performance when scaling test-time maximum round of summarization beyond that of training time. Our results establish summarization-based context management as a principled and scalable approach for training RL agents beyond a fixed context length limit.
Process-Supervised Reinforcement Learning for Interactive Multimodal Tool-Use Agents
Effective interactive tool use requires agents to master Tool Integrated Reasoning (TIR): a complex process involving multi-turn planning and long-context dialogue management. To train agents for this dynamic process, particularly in multi-modal contexts, we introduce a sandbox environment for reinforcement learning (RL) that supports interleaved speech-text rollouts. Our core strategy, Turn-level Adjudicated Reinforcement Learning (TARL), addresses the challenge of credit assignment in long-horizon tasks by employing a Large Language Model (LLM) as a judge to provide turn-level evaluation. To enhance exploration, we integrate a mixed-task training curriculum with mathematical reasoning problems. This unified approach boosts the task pass rate on the text-based τ-bench by over 6% compared to strong RL baselines. Crucially, we demonstrate our framework's suitability for fine-tuning a multi-modal foundation model for agentic tasks. By training a base multi-modal LLM on interleaved speech-text rollouts, we equip it with tool-use abilities, paving the way for more natural, voice-driven interactive agents.
Small LLMs Are Weak Tool Learners: A Multi-LLM Agent
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete complex tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers but also excel in task planning, memory management, tool invocation, and result summarization. While traditional approaches focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. Moreover, the entire LLM may require retraining when tools are updated. To overcome these challenges, we propose a novel strategy that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with other components to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.
Agentic Troubleshooting Guide Automation for Incident Management
Effective incident management in large-scale IT systems relies on troubleshooting guides (TSGs), but their manual execution is slow and error-prone. While recent advances in LLMs offer promise for automating incident management tasks, existing LLM-based solutions lack specialized support for several key challenges, including managing TSG quality issues, interpreting complex control flow, handling data-intensive queries, and exploiting execution parallelism. We first conducted an empirical study on 92 real-world TSGs, and, guided by our findings, we present StepFly, a novel end-to-end agentic framework for troubleshooting guide automation. Our approach features a three-stage workflow: the first stage provides a comprehensive guide together with a tool, TSG Mentor, to assist SREs in improving TSG quality; the second stage performs offline preprocessing using LLMs to extract structured execution DAGs from unstructured TSGs and to create dedicated Query Preparation Plugins (QPPs); and the third stage executes online using a DAG-guided scheduler-executor framework with a memory system to guarantee correct workflow and support parallel execution of independent steps. Our empirical evaluation on a collection of real-world TSGs and incidents demonstrates that StepFly achieves a ~94% success rate on GPT-4.1, outperforming baselines with less time and token consumption. Furthermore, it achieves a remarkable execution time reduction of 32.9% to 70.4% for parallelizable TSGs.
ROS Based Visual Programming Tool for Mobile Robot Education and Applications
Visual programming languages (VPLs) provide coding without typing texts. VPL makes coding easy to programmers with automatically adding usually used some code structure. Beginners in coding have generally two main challenges; transforming ideas into logical expressions and syntax errors. Syntax errors are impossible with VPLs because of there is no forgotten parentheses and semicolons. VPLs provide to focus on algorithm for programmers. VPL is a new trend for educational robotic environments. In this study, Robot Operating System (ROS) compatible web based visual programming system has been developed for evarobot. ROS provides libraries and tools to help software developers create robot applications. It provides hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, and more. Blockly has been used as VPL for the study and to generate / use blocks (commucation, sensing etc.). Some applications were generated like teleoperation, SLAM and wander etc. In this system, communication between server and client is supported by rosbridge package. Web page connected to ROS which runs on server using roslibjs library. Rosbridge provides a JSON API to ROS functionality for non-ROS programs.
Sculptor: Empowering LLMs with Cognitive Agency via Active Context Management
Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference, where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation, (2) summary, hide, and restore, and (3) intelligent search. Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks-PI-LLM (proactive interference) and NeedleBench Multi-Needle Reasoning-demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.
The Complexity Trap: Simple Observation Masking Is as Efficient as LLM Summarization for Agent Context Management
Large Language Model (LLM)-based agents solve complex tasks through iterative reasoning, exploration, and tool-use, a process that can result in long, expensive context histories. While state-of-the-art Software Engineering ( SE) agents like OpenHands or Cursor use LLM-based summarization to tackle this issue, it is unclear whether the increased complexity offers tangible performance benefits compared to simply omitting older observations. We present a systematic comparison of these strategies within SWE-agent on SWE-bench Verified across five diverse model configurations. We find that a simple observation-masking strategy halves cost relative to a raw agent while matching, and sometimes slightly exceeding, the solve rate of LLM summarization. For example, with Qwen3-Coder 480B, masking improves solve rate from 53.8% (raw agent) to 54.8%, while remaining competitive with summarization at a lower cost. These results suggest that, at least within SWE-agent on SWE-bench Verified, the most effective and efficient context management can be the simplest. We release code and data for reproducibility
TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems
Agentic AI systems, built on large language models (LLMs) and deployed in multi-agent configurations, are redefining intelligent autonomy, collaboration and decision-making across enterprise and societal domains. This review presents a structured analysis of Trust, Risk, and Security Management (TRiSM) in the context of LLM-based agentic multi-agent systems (AMAS). We begin by examining the conceptual foundations of agentic AI, its architectural differences from traditional AI agents, and the emerging system designs that enable scalable, tool-using autonomy. The TRiSM in the agentic AI framework is then detailed through four pillars governance, explainability, ModelOps, and privacy/security each contextualized for agentic LLMs. We identify unique threat vectors and introduce a comprehensive risk taxonomy for the agentic AI applications, supported by case studies illustrating real-world vulnerabilities. Furthermore, the paper also surveys trust-building mechanisms, transparency and oversight techniques, and state-of-the-art explainability strategies in distributed LLM agent systems. Additionally, metrics for evaluating trust, interpretability, and human-centered performance are reviewed alongside open benchmarking challenges. Security and privacy are addressed through encryption, adversarial defense, and compliance with evolving AI regulations. The paper concludes with a roadmap for responsible agentic AI, proposing research directions to align emerging multi-agent systems with robust TRiSM principles for safe, accountable, and transparent deployment.
FLAME: A small language model for spreadsheet formulas
Spreadsheets are a vital tool for end-user data management. Using large language models for formula authoring assistance in these environments can be difficult, as these models are expensive to train and challenging to deploy due to their size (up to billions of parameters). We present FLAME, a transformer-based model trained exclusively on Excel formulas that leverages domain insights to achieve competitive performance while being substantially smaller (60M parameters) and training on two orders of magnitude less data. We curate a training dataset using sketch deduplication, introduce an Excel-specific formula tokenizer, and use domain-specific versions of masked span prediction and noisy auto-encoding as pre-training objectives. We evaluate FLAME on formula repair, formula completion, and similarity-based formula retrieval. FLAME can outperform much larger models, such as the Davinci (175B) and Cushman (12B) variants of Codex and CodeT5 (220M), in 10 of 14 evaluation settings for the repair and completion tasks. For formula retrieval, FLAME outperforms CodeT5, CodeBERT, and GraphCodeBERT.
FireRedChat: A Pluggable, Full-Duplex Voice Interaction System with Cascaded and Semi-Cascaded Implementations
Full-duplex voice interaction allows users and agents to speak simultaneously with controllable barge-in, enabling lifelike assistants and customer service. Existing solutions are either end-to-end, difficult to design and hard to control, or modular pipelines governed by turn-taking controllers that ease upgrades and per-module optimization; however, prior modular frameworks depend on non-open components and external providers, limiting holistic optimization. In this work, we present a complete, practical full-duplex voice interaction system comprising a turn-taking controller, an interaction module, and a dialogue manager. The controller integrates streaming personalized VAD (pVAD) to suppress false barge-ins from noise and non-primary speakers, precisely timestamp primary-speaker segments, and explicitly enable primary-speaker barge-ins; a semantic end-of-turn detector improves stop decisions. It upgrades heterogeneous half-duplex pipelines, cascaded, semi-cascaded, and speech-to-speech, to full duplex. Using internal models, we implement cascaded and semi-cascaded variants; the semi-cascaded one captures emotional and paralinguistic cues, yields more coherent responses, lowers latency and error propagation, and improves robustness. A dialogue manager extends capabilities via tool invocation and context management. We also propose three system-level metrics, barge-in, end-of-turn detection accuracy, and end-to-end latency, to assess naturalness, control accuracy, and efficiency. Experiments show fewer false interruptions, more accurate semantic ends, and lower latency approaching industrial systems, enabling robust, natural, real-time full-duplex interaction. Demos: https://fireredteam.github.io/demos/firered_chat.
AgriPotential: A Novel Multi-Spectral and Multi-Temporal Remote Sensing Dataset for Agricultural Potentials
Remote sensing has emerged as a critical tool for large-scale Earth monitoring and land management. In this paper, we introduce AgriPotential, a novel benchmark dataset composed of Sentinel-2 satellite imagery spanning multiple months. The dataset provides pixel-level annotations of agricultural potentials for three major crop types - viticulture, market gardening, and field crops - across five ordinal classes. AgriPotential supports a broad range of machine learning tasks, including ordinal regression, multi-label classification, and spatio-temporal modeling. The data covers diverse areas in Southern France, offering rich spectral information. AgriPotential is the first public dataset designed specifically for agricultural potential prediction, aiming to improve data-driven approaches to sustainable land use planning. The dataset and the code are freely accessible at: https://zenodo.org/records/15556484
Continuum: Efficient and Robust Multi-Turn LLM Agent Scheduling with KV Cache Time-to-Live
Agentic LLM applications interleave LLM generation requests with tool calls. These tool calls break the continuity of the workflow by creating pauses between LLM requests, bringing many challenges for the serving system, especially under multi-turn scenarios. Each pause potentially causes KV cache eviction and extra waiting time before entering the continuous batch for the following LLM request. Since these pauses happen for each call, this problem becomes increasingly severe as turn number grow for agentic programs. Previous works either fail to incorporate information from the tool call, evicting KV cache that leads to repetitive prefill or loading, or ignore the continuity of a multi-turn program, creating waiting time between turns that increases per-request latency. We present Continuum, a serving system to optimize job completion time for multi-turn agent workloads by combining tool-aware KV cache timeout with program-level scheduling. By predicting tool call durations in agentic workflows, Continuum selectively pins the KV cache in GPU memory with a time-to-live value based on total turn number. When combined with program-level first-come-first-serve, Continuum prevents scheduling bubbles, preserves multi-turn continuity, and optimizes for throughput for complex agentic workflows. By modeling the variability of tool call and agent program continuity, Continuum outperforms state-of-the-art baselines. Our evaluation on real-world agentic workloads (SWE-Bench and BFCL) with Llama-3.1 8B/70B models shows that Continuum significantly improves the average job completion times, and remains performant across different hardware setups and DRAM offloading schemes. Preview code is available at: https://github.com/Hanchenli/vllm-continuum
A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer
The non-invasive assessment of increasingly incidentally discovered renal masses is a critical challenge in urologic oncology, where diagnostic uncertainty frequently leads to the overtreatment of benign or indolent tumors. In this study, we developed and validated RenalCLIP using a dataset of 27,866 CT scans from 8,809 patients across nine Chinese medical centers and the public TCIA cohort, a visual-language foundation model for characterization, diagnosis and prognosis of renal mass. The model was developed via a two-stage pre-training strategy that first enhances the image and text encoders with domain-specific knowledge before aligning them through a contrastive learning objective, to create robust representations for superior generalization and diagnostic precision. RenalCLIP achieved better performance and superior generalizability across 10 core tasks spanning the full clinical workflow of kidney cancer, including anatomical assessment, diagnostic classification, and survival prediction, compared with other state-of-the-art general-purpose CT foundation models. Especially, for complicated task like recurrence-free survival prediction in the TCIA cohort, RenalCLIP achieved a C-index of 0.726, representing a substantial improvement of approximately 20% over the leading baselines. Furthermore, RenalCLIP's pre-training imparted remarkable data efficiency; in the diagnostic classification task, it only needs 20% training data to achieve the peak performance of all baseline models even after they were fully fine-tuned on 100% of the data. Additionally, it achieved superior performance in report generation, image-text retrieval and zero-shot diagnosis tasks. Our findings establish that RenalCLIP provides a robust tool with the potential to enhance diagnostic accuracy, refine prognostic stratification, and personalize the management of patients with kidney cancer.
Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal
The rapid integration of Large Language Models (LLMs) across diverse sectors has marked a transformative era, showcasing remarkable capabilities in text generation and problem-solving tasks. However, this technological advancement is accompanied by significant risks and vulnerabilities. Despite ongoing security enhancements, attackers persistently exploit these weaknesses, casting doubts on the overall trustworthiness of LLMs. Compounding the issue, organisations are deploying LLM-integrated systems without understanding the severity of potential consequences. Existing studies by OWASP and MITRE offer a general overview of threats and vulnerabilities but lack a method for directly and succinctly analysing the risks for security practitioners, developers, and key decision-makers who are working with this novel technology. To address this gap, we propose a risk assessment process using tools like the OWASP risk rating methodology which is used for traditional systems. We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors. Through this analysis, we assess the likelihood of a cyberattack. Subsequently, we conduct a thorough impact analysis to derive a comprehensive threat matrix. We also map threats against three key stakeholder groups: developers engaged in model fine-tuning, application developers utilizing third-party APIs, and end users. The proposed threat matrix provides a holistic evaluation of LLM-related risks, enabling stakeholders to make informed decisions for effective mitigation strategies. Our outlined process serves as an actionable and comprehensive tool for security practitioners, offering insights for resource management and enhancing the overall system security.
PyTorchFire: A GPU-Accelerated Wildfire Simulator with Differentiable Cellular Automata
Accurate and rapid prediction of wildfire trends is crucial for effective management and mitigation. However, the stochastic nature of fire propagation poses significant challenges in developing reliable simulators. In this paper, we introduce PyTorchFire, an open-access, PyTorch-based software that leverages GPU acceleration. With our redesigned differentiable wildfire Cellular Automata (CA) model, we achieve millisecond-level computational efficiency, significantly outperforming traditional CPU-based wildfire simulators on real-world-scale fires at high resolution. Real-time parameter calibration is made possible through gradient descent on our model, aligning simulations closely with observed wildfire behavior both temporally and spatially, thereby enhancing the realism of the simulations. Our PyTorchFire simulator, combined with real-world environmental data, demonstrates superior generalizability compared to supervised learning surrogate models. Its ability to predict and calibrate wildfire behavior in real-time ensures accuracy, stability, and efficiency. PyTorchFire has the potential to revolutionize wildfire simulation, serving as a powerful tool for wildfire prediction and management.
AgentFly: Extensible and Scalable Reinforcement Learning for LM Agents
Language model (LM) agents have gained significant attention for their ability to autonomously complete tasks through interactions with environments, tools, and APIs. LM agents are primarily built with prompt engineering or supervised finetuning. At the same time, reinforcement learning (RL) has been explored to enhance LM's capabilities, such as reasoning and factuality. However, the combination of the LM agents and reinforcement learning (Agent-RL) remains underexplored and lacks systematic study. To this end, we built AgentFly, a scalable and extensible Agent-RL framework designed to empower LM agents with a variety of RL algorithms. Our framework supports multi-turn interactions by adapting traditional RL methods with token-level masking. It features a decorator-based interface for defining tools and reward functions, enabling seamless extension and ease of use. To support high-throughput training, we implement asynchronous execution of tool calls and reward computations, and design a centralized resource management system for scalable environment coordination. We also provide a suite of prebuilt tools and environments, demonstrating the framework's effectiveness through successful agent training across multiple tasks.
HASHIRU: Hierarchical Agent System for Hybrid Intelligent Resource Utilization
Rapid Large Language Model (LLM) advancements are fueling autonomous Multi-Agent System (MAS) development. However, current frameworks often lack flexibility, resource awareness, model diversity, and autonomous tool creation. This paper introduces HASHIRU (Hierarchical Agent System for Hybrid Intelligent Resource Utilization), a novel MAS framework enhancing flexibility, resource efficiency, and adaptability. HASHIRU features a "CEO" agent dynamically managing specialized "employee" agents, instantiated based on task needs and resource constraints (cost, memory). Its hybrid intelligence prioritizes smaller, local LLMs (via Ollama) while flexibly using external APIs and larger models when necessary. An economic model with hiring/firing costs promotes team stability and efficient resource allocation. The system also includes autonomous API tool creation and a memory function. Evaluations on tasks like academic paper review (58% success), safety assessments (100% on a JailbreakBench subset), and complex reasoning (outperforming Gemini 2.0 Flash on GSM8K: 96% vs. 61%; JEEBench: 80% vs. 68.3%; SVAMP: 92% vs. 84%) demonstrate HASHIRU's capabilities. Case studies illustrate its self-improvement via autonomous cost model generation, tool integration, and budget management. HASHIRU offers a promising approach for more robust, efficient, and adaptable MAS through dynamic hierarchical control, resource-aware hybrid intelligence, and autonomous functional extension. Source code and benchmarks are available at https://github.com/HASHIRU-AI/HASHIRU and https://github.com/HASHIRU-AI/HASHIRUBench respectively, and a live demo is available at https://hashiruagentx-hashiruai.hf.space upon request.
AI Agentic Programming: A Survey of Techniques, Challenges, and Opportunities
AI agentic programming is an emerging paradigm in which large language models (LLMs) autonomously plan, execute, and interact with external tools like compilers, debuggers, and version control systems to iteratively perform complex software development tasks. Unlike conventional code generation tools, agentic systems are capable of decomposing high-level goals, coordinating multi-step processes, and adapting their behavior based on intermediate feedback. These capabilities are transforming the software development practice. As this emerging field evolves rapidly, there is a need to define its scope, consolidate its technical foundations, and identify open research challenges. This survey provides a comprehensive and timely review of AI agentic programming. We introduce a taxonomy of agent behaviors and system architectures, and examine core techniques including planning, memory and context management, tool integration, and execution monitoring. We also analyze existing benchmarks and evaluation methodologies used to assess coding agent performance. Our study identifies several key challenges, including limitations in handling long context, a lack of persistent memory across tasks, and concerns around safety, alignment with user intent, and collaboration with human developers. We discuss emerging opportunities to improve the reliability, adaptability, and transparency of agentic systems. By synthesizing recent advances and outlining future directions, this survey aims to provide a foundation for research and development in building the next generation of intelligent and trustworthy AI coding agents.
OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation
Large Language Model (LLM)-based multi-agent systems show promise for automating real-world tasks but struggle to transfer across domains due to their domain-specific nature. Current approaches face two critical shortcomings: they require complete architectural redesign and full retraining of all components when applied to new domains. We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution through a modular architecture comprising: (i) a domain-agnostic Planner for task decomposition, (ii) a Coordinator for subtask management, and (iii) specialized Workers with domain-specific tool-calling capabilities. This decoupling enables cross-domain transferability during both inference and training phases: During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents; For training, we introduce Optimized Workforce Learning (OWL), which improves generalization across domains by optimizing a domain-agnostic planner with reinforcement learning from real-world feedback. To validate our approach, we evaluate Workforce on the GAIA benchmark, covering various realistic, multi-domain agentic tasks. Experimental results demonstrate Workforce achieves open-source state-of-the-art performance (69.70%), outperforming commercial systems like OpenAI's Deep Research by 2.34%. More notably, our OWL-trained 32B model achieves 52.73% accuracy (+16.37%) and demonstrates performance comparable to GPT-4o on challenging tasks. To summarize, by enabling scalable generalization and modular domain transfer, our work establishes a foundation for the next generation of general-purpose AI assistants.
UltraHorizon: Benchmarking Agent Capabilities in Ultra Long-Horizon Scenarios
Autonomous agents have recently achieved remarkable progress across diverse domains, yet most evaluations focus on short-horizon, fully observable tasks. In contrast, many critical real-world tasks, such as large-scale software development, commercial investment, and scientific discovery, unfold in long-horizon and partially observable scenarios where success hinges on sustained reasoning, planning, memory management, and tool use. Existing benchmarks rarely capture these long-horizon challenges, leaving a gap in systematic evaluation. To bridge this gap, we introduce UltraHorizon a novel benchmark that measures the foundational capabilities essential for complex real-world challenges. We use exploration as a unifying task across three distinct environments to validate these core competencies. Agents are designed in long-horizon discovery tasks where they must iteratively uncover hidden rules through sustained reasoning, planning, memory and tools management, and interaction with environments. Under the heaviest scale setting, trajectories average 200k+ tokens and 400+ tool calls, whereas in standard configurations they still exceed 35k tokens and involve more than 60 tool calls on average. Our extensive experiments reveal that LLM-agents consistently underperform in these settings, whereas human participants achieve higher scores, underscoring a persistent gap in agents' long-horizon abilities. We also observe that simple scaling fails in our task. To better illustrate the failure of agents, we conduct an in-depth analysis of collected trajectories. We identify eight types of errors and attribute them to two primary causes: in-context locking and functional fundamental capability gaps. https://github.com/StarDewXXX/UltraHorizon{Our code will be available here.}
MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use
Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities. Recently, many studies have focused on the tool utilization ability of LLMs. They primarily investigated how LLMs effectively collaborate with given specific tools. However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests. Therefore, in this paper, we introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools. Specifically, we create a dataset called ToolE within the benchmark. This dataset contains various types of user queries in the form of prompts that trigger LLMs to use tools, including both single-tool and multi-tool scenarios. Subsequently, we set the tasks for both tool usage awareness and tool selection. We define four subtasks from different perspectives in tool selection, including tool selection with similar choices, tool selection in specific scenarios, tool selection with possible reliability issues, and multi-tool selection. We conduct experiments involving nine popular LLMs and find that the majority of them still struggle to effectively select tools, highlighting the existing gaps between LLMs and genuine intelligent agents. However, through the error analysis, we found there is still significant room for improvement. Finally, we conclude with insights for tool developers that follow ChatGPT to provide detailed descriptions that can enhance the tool selection performance of LLMs.
Enhancing Tool Retrieval with Iterative Feedback from Large Language Models
Tool learning aims to enhance and expand large language models' (LLMs) capabilities with external tools, which has gained significant attention recently. Current methods have shown that LLMs can effectively handle a certain amount of tools through in-context learning or fine-tuning. However, in real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component. Tool retrieval is nontrivial due to the following challenges: 1) complex user instructions and tool descriptions; 2) misalignment between tool retrieval and tool usage models. To address the above issues, we propose to enhance tool retrieval with iterative feedback from the large language model. Specifically, we prompt the tool usage model, i.e., the LLM, to provide feedback for the tool retriever model in multi-round, which could progressively improve the tool retriever's understanding of instructions and tools and reduce the gap between the two standalone components. We build a unified and comprehensive benchmark to evaluate tool retrieval models. The extensive experiments indicate that our proposed approach achieves advanced performance in both in-domain evaluation and out-of-domain evaluation.
What Are Tools Anyway? A Survey from the Language Model Perspective
Language models (LMs) are powerful yet mostly for text generation tasks. Tools have substantially enhanced their performance for tasks that require complex skills. However, many works adopt the term "tool" in different ways, raising the question: What is a tool anyway? Subsequently, where and how do tools help LMs? In this survey, we provide a unified definition of tools as external programs used by LMs, and perform a systematic review of LM tooling scenarios and approaches. Grounded on this review, we empirically study the efficiency of various tooling methods by measuring their required compute and performance gains on various benchmarks, and highlight some challenges and potential future research in the field.
Large Language Models as Tool Makers
Recent research shows the potential of enhancing the problem-solving ability of large language models (LLMs) through the use of external tools. However, prior work along this line depends on the availability of existing tools. In this work, we take an initial step towards removing this dependency by proposing a closed-loop framework, referred to as LLMs As Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving. Our approach consists of two key phases: 1) tool making: an LLM acts as the tool maker that crafts tools for given tasks, where a tool is implemented as a Python utility function. 2) tool using: an LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving. The tool user can be either the same or a different LLM from the tool maker. Tool-making enables an LLM to continually generate tools that can be applied to different requests so that future requests can call the corresponding APIs when beneficial for solving the tasks. Furthermore, the division of labor among LLMs for tool-making and tool-using phases introduces the opportunity to achieve cost effectiveness without degrading the quality of generated tools and problem solutions. For example, recognizing that tool-making demands more sophisticated capabilities than tool-using, we can apply a powerful yet resource-intensive model as the tool maker, and a lightweight while cost-effective model as the tool user. We validate the effectiveness of our approach across a variety of complex reasoning tasks, including Big-Bench tasks. With GPT-4 as the tool maker and GPT-3.5 as the tool user, LATM can achieve performance that is on par with using GPT-4 for both tool making and tool using, while the inference cost is significantly reduced.
Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases
Recent advancements in tool-equipped Agents (LLMs) have enabled complex tasks like secure database interactions and multi-agent code development. However, scaling tool capacity beyond agent reasoning or model limits remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases, a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool selection for large-scale tool-equipped Agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval, intra-retrieval, and post-retrieval phases, without requiring model fine-tuning. During pre-retrieval, tool documents are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool documents and enables self-reflection. Furthermore, by varying both the total number of tools (tool-M) an Agent has access to and the tool selection threshold (top-k), we address trade-offs between retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmark datasets, respectively (Recall@5).
ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of Large Language Models in Real-world Scenarios
Existing evaluations of tool learning primarily focus on validating the alignment of selected tools for large language models (LLMs) with expected outcomes. However, these approaches rely on a limited set of scenarios where answers can be pre-determined, diverging from genuine needs. Furthermore, a sole emphasis on outcomes disregards the intricate capabilities essential for LLMs to effectively utilize tools. To tackle this issue, we propose ToolEyes, a fine-grained system tailored for the evaluation of the LLMs' tool learning capabilities in authentic scenarios. The system meticulously examines seven real-world scenarios, analyzing five dimensions crucial to LLMs in tool learning: format alignment, intent comprehension, behavior planning, tool selection, and answer organization. Additionally, ToolEyes incorporates a tool library boasting approximately 600 tools, serving as an intermediary between LLMs and the physical world. Evaluations involving ten LLMs across three categories reveal a preference for specific scenarios and limited cognitive abilities in tool learning. Intriguingly, expanding the model size even exacerbates the hindrance to tool learning. These findings offer instructive insights aimed at advancing the field of tool learning. The data is available att https://github.com/Junjie-Ye/ToolEyes.
Can Tool-augmented Large Language Models be Aware of Incomplete Conditions?
Recent advancements in integrating large language models (LLMs) with tools have allowed the models to interact with real-world environments. However, these tool-augmented LLMs often encounter incomplete scenarios when users provide partial information or the necessary tools are unavailable. Recognizing and managing such scenarios is crucial for LLMs to ensure their reliability, but this exploration remains understudied. This study examines whether LLMs can identify incomplete conditions and appropriately determine when to refrain from using tools. To this end, we address a dataset by manipulating instances from two datasets by removing necessary tools or essential information for tool invocation. We confirm that most LLMs are challenged to identify the additional information required to utilize specific tools and the absence of appropriate tools. Our research can contribute to advancing reliable LLMs by addressing scenarios that commonly arise during interactions between humans and LLMs.
Tool-Planner: Dynamic Solution Tree Planning for Large Language Model with Tool Clustering
Large language models (LLMs) have demonstrated exceptional reasoning capabilities, enabling them to solve various complex problems. Recently, this ability has been applied to the paradigm of tool learning. Tool learning involves providing examples of tool usage and their corresponding functions, allowing LLMs to formulate plans and demonstrate the process of invoking and executing each tool. LLMs can address tasks that they cannot complete independently, thereby enhancing their potential across different tasks. However, this approach faces two key challenges. First, redundant error correction leads to unstable planning and long execution time. Additionally, designing a correct plan among multiple tools is also a challenge in tool learning. To address these issues, we propose Tool-Planner, a task-processing framework based on toolkits. Tool-Planner groups tools based on the API functions with the same function into a toolkit and allows LLMs to implement planning across the various toolkits. When a tool error occurs, the language model can reselect and adjust tools based on the toolkit. Experiments show that our approach demonstrates a high pass and win rate across different datasets and optimizes the planning scheme for tool learning in models such as GPT-4 and Claude 3, showcasing the potential of our method.
ScaleMCP: Dynamic and Auto-Synchronizing Model Context Protocol Tools for LLM Agents
Recent advancements in Large Language Models (LLMs) and the introduction of the Model Context Protocol (MCP) have significantly expanded LLM agents' capability to interact dynamically with external tools and APIs. However, existing tool selection frameworks do not integrate MCP servers, instead relying heavily on error-prone manual updates to monolithic local tool repositories, leading to duplication, inconsistencies, and inefficiencies. Additionally, current approaches abstract tool selection before the LLM agent is invoked, limiting its autonomy and hindering dynamic re-querying capabilities during multi-turn interactions. To address these issues, we introduce ScaleMCP, a novel tool selection approach that dynamically equips LLM agents with a MCP tool retriever, giving agents the autonomy to add tools into their memory, as well as an auto-synchronizing tool storage system pipeline through CRUD (create, read, update, delete) operations with MCP servers as the single source of truth. We also propose a novel embedding strategy, Tool Document Weighted Average (TDWA), designed to selectively emphasize critical components of tool documents (e.g. tool name or synthetic questions) during the embedding process. Comprehensive evaluations conducted on a created dataset of 5,000 financial metric MCP servers, across 10 LLM models, 5 embedding models, and 5 retriever types, demonstrate substantial improvements in tool retrieval and agent invocation performance, emphasizing ScaleMCP's effectiveness in scalable, dynamic tool selection and invocation.
ToolTalk: Evaluating Tool-Usage in a Conversational Setting
Large language models (LLMs) have displayed massive improvements in reason- ing and decision-making skills and can hold natural conversations with users. Many recent works seek to augment LLM-based assistants with external tools so they can access private or up-to-date information and carry out actions on behalf of users. To better measure the performance of these assistants, this paper introduces ToolTalk, a benchmark consisting of complex user intents re- quiring multi-step tool usage specified through dialogue. ToolTalk contains 28 tools grouped into 7 plugins, and includes a complete simulated implementa- tion of each tool, allowing for fully automated evaluation of assistants that rely on execution feedback. ToolTalk also emphasizes tools that externally affect the world rather than only tools for referencing or searching information. We evaluate GPT-3.5 and GPT-4 on ToolTalk resulting in success rates of 26% and 50% respectively. Our analysis of the errors reveals three major categories and suggests some future directions for improvement. We release ToolTalk at https://github.com/microsoft/ToolTalk.
Tool Learning with Foundation Models
Humans possess an extraordinary ability to create and utilize tools, allowing them to overcome physical limitations and explore new frontiers. With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans. This paradigm, i.e., tool learning with foundation models, combines the strengths of specialized tools and foundation models to achieve enhanced accuracy, efficiency, and automation in problem-solving. Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field. To this end, we present a systematic investigation of tool learning in this paper. We first introduce the background of tool learning, including its cognitive origins, the paradigm shift of foundation models, and the complementary roles of tools and models. Then we recapitulate existing tool learning research into tool-augmented and tool-oriented learning. We formulate a general tool learning framework: starting from understanding the user instruction, models should learn to decompose a complex task into several subtasks, dynamically adjust their plan through reasoning, and effectively conquer each sub-task by selecting appropriate tools. We also discuss how to train models for improved tool-use capabilities and facilitate the generalization in tool learning. Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 18 representative tools and show the potential of current foundation models in skillfully utilizing tools. Finally, we discuss several open problems that require further investigation for tool learning. In general, we hope this paper could inspire future research in integrating tools with foundation models.
Graph RAG-Tool Fusion
Recent developments in retrieval-augmented generation (RAG) for selecting relevant tools from a tool knowledge base enable LLM agents to scale their complex tool calling capabilities to hundreds or thousands of external tools, APIs, or agents-as-tools. However, traditional RAG-based tool retrieval fails to capture structured dependencies between tools, limiting the retrieval accuracy of a retrieved tool's dependencies. For example, among a vector database of tools, a "get stock price" API requires a "stock ticker" parameter from a "get stock ticker" API, and both depend on OS-level internet connectivity tools. In this paper, we address this limitation by introducing Graph RAG-Tool Fusion, a novel plug-and-play approach that combines the strengths of vector-based retrieval with efficient graph traversal to capture all relevant tools (nodes) along with any nested dependencies (edges) within the predefined tool knowledge graph. We also present ToolLinkOS, a new tool selection benchmark of 573 fictional tools, spanning over 15 industries, each with an average of 6.3 tool dependencies. We demonstrate that Graph RAG-Tool Fusion achieves absolute improvements of 71.7% and 22.1% over na\"ive RAG on ToolLinkOS and ToolSandbox benchmarks, respectively (mAP@10). ToolLinkOS dataset is available at https://github.com/EliasLumer/Graph-RAG-Tool-Fusion-ToolLinkOS
ToolGen: Unified Tool Retrieval and Calling via Generation
As large language models (LLMs) advance, their inability to autonomously execute tasks by directly interacting with external tools remains a critical limitation. Traditional methods rely on inputting tool descriptions as context, which is constrained by context length and requires separate, often inefficient, retrieval mechanisms. We introduce ToolGen, a paradigm shift that integrates tool knowledge directly into the LLM's parameters by representing each tool as a unique token. This enables the LLM to generate tool calls and arguments as part of its next token prediction capabilities, seamlessly blending tool invocation with language generation. Our framework allows the LLM to access and utilize a vast amount of tools with no additional retrieval step, significantly enhancing both performance and scalability. Experimental results with over 47,000 tools show that ToolGen not only achieves superior results in both tool retrieval and autonomous task completion but also sets the stage for a new era of AI agents that can adapt to tools across diverse domains. By fundamentally transforming tool retrieval into a generative process, ToolGen paves the way for more versatile, efficient, and autonomous AI systems. ToolGen enables end-to-end tool learning and opens opportunities for integration with other advanced techniques such as chain-of-thought and reinforcement learning, thereby expanding the practical capabilities of LLMs.
Learning Evolving Tools for Large Language Models
Tool learning enables large language models (LLMs) to interact with external tools and APIs, greatly expanding the application scope of LLMs. However, due to the dynamic nature of external environments, these tools and APIs may become outdated over time, preventing LLMs from correctly invoking tools. Existing research primarily focuses on static environments and overlooks this issue, limiting the adaptability of LLMs in real-world applications. In this paper, we propose ToolEVO, a novel framework designed to enhance the adaptive and reflective capabilities of LLMs against tool variability. By leveraging Monte Carlo Tree Search, ToolEVO facilitates active exploration and interaction of LLMs within dynamic environments, allowing for autonomous self-reflection and self-updating of tool usage based on environmental feedback. Additionally, we introduce ToolQA-D, a benchmark specifically designed to evaluate the impact of tool variability. Extensive experiments demonstrate the effectiveness and stability of our approach, highlighting the importance of adaptability to tool variability for effective tool learning.
EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction
To address intricate real-world tasks, there has been a rising interest in tool utilization in applications of large language models (LLMs). To develop LLM-based agents, it usually requires LLMs to understand many tool functions from different tool documentation. But these documentations could be diverse, redundant or incomplete, which immensely affects the capability of LLMs in using tools. To solve this, we introduce EASYTOOL, a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction for easier tool usage. EasyTool purifies essential information from extensive tool documentation of different sources, and elaborates a unified interface (i.e., tool instruction) to offer standardized tool descriptions and functionalities for LLM-based agents. Extensive experiments on multiple different tasks demonstrate that EasyTool can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios. Our code will be available at https://github.com/microsoft/JARVIS/ in the future.
ToolACE-DEV: Self-Improving Tool Learning via Decomposition and EVolution
The tool-using capability of large language models (LLMs) enables them to access up-to-date external information and handle complex tasks. Current approaches to enhancing this capability primarily rely on distilling advanced models by data synthesis. However, this method incurs significant costs associated with advanced model usage and often results in data compatibility issues, led by the high discrepancy in the knowledge scope between the advanced model and the target model. To address these challenges, we propose ToolACE-DEV, a self-improving framework for tool learning. First, we decompose the tool-learning objective into sub-tasks that enhance basic tool-making and tool-using abilities. Then, we introduce a self-evolving paradigm that allows lightweight models to self-improve, reducing reliance on advanced LLMs. Extensive experiments validate the effectiveness of our approach across models of varying scales and architectures.
Seal-Tools: Self-Instruct Tool Learning Dataset for Agent Tuning and Detailed Benchmark
This paper presents a new tool learning dataset Seal-Tools, which contains self-instruct API-like tools. Seal-Tools not only offers a large number of tools, but also includes instances which demonstrate the practical application of tools. Seeking to generate data on a large scale while ensuring reliability, we propose a self-instruct method to generate tools and instances, allowing precise control over the process. Moreover, our Seal-Tools contains hard instances that call multiple tools to complete the job, among which some are nested tool callings. For precise and comprehensive evaluation, we use strict format control and design three metrics from different dimensions. Therefore, Seal-Tools can serve as a new benchmark to evaluate the tool-calling ability of LLMs. Finally, we evaluate several prevalent LLMs and our finetuned model on Seal-Tools. The results show that current systems are far from perfect. The code, data and experiment results are available at https://github.com/fairyshine/Seal-Tools .
Re-Invoke: Tool Invocation Rewriting for Zero-Shot Tool Retrieval
Recent advances in large language models (LLMs) have enabled autonomous agents with complex reasoning and task-fulfillment capabilities using a wide range of tools. However, effectively identifying the most relevant tools for a given task becomes a key bottleneck as the toolset size grows, hindering reliable tool utilization. To address this, we introduce Re-Invoke, an unsupervised tool retrieval method designed to scale effectively to large toolsets without training. Specifically, we first generate a diverse set of synthetic queries that comprehensively cover different aspects of the query space associated with each tool document during the tool indexing phase. Second, we leverage LLM's query understanding capabilities to extract key tool-related context and underlying intents from user queries during the inference phase. Finally, we employ a novel multi-view similarity ranking strategy based on intents to pinpoint the most relevant tools for each query. Our evaluation demonstrates that Re-Invoke significantly outperforms state-of-the-art alternatives in both single-tool and multi-tool scenarios, all within a fully unsupervised setting. Notably, on the ToolE datasets, we achieve a 20% relative improvement in nDCG@5 for single-tool retrieval and a 39% improvement for multi-tool retrieval.
Making Language Models Better Tool Learners with Execution Feedback
Tools serve as pivotal interfaces that enable humans to understand and reshape the world. With the advent of foundational models, AI systems can utilize tools to expand their capabilities and interact with the world. Existing tool learning methodologies, encompassing supervised fine-tuning and prompt engineering approaches, often induce language models to utilize tools indiscriminately, as complex problems often exceed their own competencies. However, introducing tools for simple tasks, which the models themselves can readily resolve, can inadvertently propagate errors rather than enhance performance. This leads to the research question: can we teach language models when and how to use tools? To meet this need, we propose Tool leaRning wIth exeCution fEedback (TRICE), a two-stage end-to-end framework that enables the model to continually learn through feedback derived from tool execution, thereby learning when and how to use tools effectively. Experimental results, backed by further analysis, show that TRICE can make the language model to selectively use tools by decreasing the model's dependency on tools while enhancing the performance. Code and datasets will be available in https://github.com/zjunlp/trice.
From Allies to Adversaries: Manipulating LLM Tool-Calling through Adversarial Injection
Tool-calling has changed Large Language Model (LLM) applications by integrating external tools, significantly enhancing their functionality across diverse tasks. However, this integration also introduces new security vulnerabilities, particularly in the tool scheduling mechanisms of LLM, which have not been extensively studied. To fill this gap, we present ToolCommander, a novel framework designed to exploit vulnerabilities in LLM tool-calling systems through adversarial tool injection. Our framework employs a well-designed two-stage attack strategy. Firstly, it injects malicious tools to collect user queries, then dynamically updates the injected tools based on the stolen information to enhance subsequent attacks. These stages enable ToolCommander to execute privacy theft, launch denial-of-service attacks, and even manipulate business competition by triggering unscheduled tool-calling. Notably, the ASR reaches 91.67% for privacy theft and hits 100% for denial-of-service and unscheduled tool calling in certain cases. Our work demonstrates that these vulnerabilities can lead to severe consequences beyond simple misuse of tool-calling systems, underscoring the urgent need for robust defensive strategies to secure LLM Tool-calling systems.
Gaming Tool Preferences in Agentic LLMs
Large language models (LLMs) can now access a wide range of external tools, thanks to the Model Context Protocol (MCP). This greatly expands their abilities as various agents. However, LLMs rely entirely on the text descriptions of tools to decide which ones to use--a process that is surprisingly fragile. In this work, we expose a vulnerability in prevalent tool/function-calling protocols by investigating a series of edits to tool descriptions, some of which can drastically increase a tool's usage from LLMs when competing with alternatives. Through controlled experiments, we show that tools with properly edited descriptions receive over 10 times more usage from GPT-4.1 and Qwen2.5-7B than tools with original descriptions. We further evaluate how various edits to tool descriptions perform when competing directly with one another and how these trends generalize or differ across a broader set of 10 different models. These phenomenons, while giving developers a powerful way to promote their tools, underscore the need for a more reliable foundation for agentic LLMs to select and utilize tools and resources.
On the Tool Manipulation Capability of Open-source Large Language Models
Recent studies on software tool manipulation with large language models (LLMs) mostly rely on closed model APIs. The industrial adoption of these models is substantially constrained due to the security and robustness risks in exposing information to closed LLM API services. In this paper, we ask can we enhance open-source LLMs to be competitive to leading closed LLM APIs in tool manipulation, with practical amount of human supervision. By analyzing common tool manipulation failures, we first demonstrate that open-source LLMs may require training with usage examples, in-context demonstration and generation style regulation to resolve failures. These insights motivate us to revisit classical methods in LLM literature, and demonstrate that we can adapt them as model alignment with programmatic data generation, system prompts and in-context demonstration retrievers to enhance open-source LLMs for tool manipulation. To evaluate these techniques, we create the ToolBench, a tool manipulation benchmark consisting of diverse software tools for real-world tasks. We demonstrate that our techniques can boost leading open-source LLMs by up to 90% success rate, showing capabilities competitive to OpenAI GPT-4 in 4 out of 8 ToolBench tasks. We show that such enhancement typically requires about one developer day to curate data for each tool, rendering a recipe with practical amount of human supervision.
API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs
Recent research has demonstrated that Large Language Models (LLMs) can enhance their capabilities by utilizing external tools. However, three pivotal questions remain unanswered: (1) How effective are current LLMs in utilizing tools? (2) How can we enhance LLMs' ability to utilize tools? (3) What obstacles need to be overcome to leverage tools? To address these questions, we introduce API-Bank, a groundbreaking benchmark, specifically designed for tool-augmented LLMs. For the first question, we develop a runnable evaluation system consisting of 73 API tools. We annotate 314 tool-use dialogues with 753 API calls to assess the existing LLMs' capabilities in planning, retrieving, and calling APIs. For the second question, we construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains. Using this dataset, we train Lynx, a tool-augmented LLM initialized from Alpaca. Experimental results demonstrate that GPT-3.5 exhibits improved tool utilization compared to GPT-3, while GPT-4 excels in planning. However, there is still significant potential for further improvement. Moreover, Lynx surpasses Alpaca's tool utilization performance by more than 26 pts and approaches the effectiveness of GPT-3.5. Through error analysis, we highlight the key challenges for future research in this field to answer the third question.
From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions
Tool learning enables Large Language Models (LLMs) to interact with external environments by invoking tools, serving as an effective strategy to mitigate the limitations inherent in their pre-training data. In this process, tool documentation plays a crucial role by providing usage instructions for LLMs, thereby facilitating effective tool utilization. This paper concentrates on the critical challenge of bridging the comprehension gap between LLMs and external tools due to the inadequacies and inaccuracies inherent in existing human-centric tool documentation. We propose a novel framework, DRAFT, aimed at Dynamically Refining tool documentation through the Analysis of Feedback and Trails emanating from LLMs' interactions with external tools. This methodology pivots on an innovative trial-and-error approach, consisting of three distinct learning phases: experience gathering, learning from experience, and documentation rewriting, to iteratively enhance the tool documentation. This process is further optimized by implementing a diversity-promoting exploration strategy to ensure explorative diversity and a tool-adaptive termination mechanism to prevent overfitting while enhancing efficiency. Extensive experiments on multiple datasets demonstrate that DRAFT's iterative, feedback-based refinement significantly ameliorates documentation quality, fostering a deeper comprehension and more effective utilization of tools by LLMs. Notably, our analysis reveals that the tool documentation refined via our approach demonstrates robust cross-model generalization capabilities.
Syntax Error-Free and Generalizable Tool Use for LLMs via Finite-State Decoding
Large language models (LLMs) have shown promising capabilities in using external tools to solve complex problems. However, existing approaches either involve fine-tuning on tool demonstrations, which do not generalize to new tools without additional training, or providing tool documentation in context, limiting the number of tools. Both approaches often generate syntactically invalid tool calls. In this paper, we propose ToolDec, a finite-state machine-guided decoding algorithm for tool-augmented LLMs. ToolDec eliminates tool-related errors for any tool-augmented LLMs by ensuring valid tool names and type-conforming arguments. Furthermore, ToolDec enables LLM to effectively select tools using only the information contained in their names, with no need for fine-tuning or in-context documentation. We evaluated multiple prior methods and their ToolDec-enhanced versions on a variety of tasks involving tools like math functions, knowledge graph relations, and complex real-world RESTful APIs. Our experiments show that ToolDec reduces syntactic errors to zero, consequently achieving significantly better performance and as much as a 2x speedup. We also show that ToolDec achieves superior generalization performance on unseen tools, performing up to 8x better than the baselines.
Efficient and Scalable Estimation of Tool Representations in Vector Space
Recent advancements in function calling and tool use have significantly enhanced the capabilities of large language models (LLMs) by enabling them to interact with external information sources and execute complex tasks. However, the limited context window of LLMs presents challenges when a large number of tools are available, necessitating efficient methods to manage prompt length and maintain accuracy. Existing approaches, such as fine-tuning LLMs or leveraging their reasoning capabilities, either require frequent retraining or incur significant latency overhead. A more efficient solution involves training smaller models to retrieve the most relevant tools for a given query, although this requires high quality, domain-specific data. To address those challenges, we present a novel framework for generating synthetic data for tool retrieval applications and an efficient data-driven tool retrieval strategy using small encoder models. Empowered by LLMs, we create ToolBank, a new tool retrieval dataset that reflects real human user usages. For tool retrieval methodologies, we propose novel approaches: (1) Tool2Vec: usage-driven tool embedding generation for tool retrieval, (2) ToolRefiner: a staged retrieval method that iteratively improves the quality of retrieved tools, and (3) MLC: framing tool retrieval as a multi-label classification problem. With these new methods, we achieve improvements of up to 27.28 in Recall@K on the ToolBench dataset and 30.5 in Recall@K on ToolBank. Additionally, we present further experimental results to rigorously validate our methods. Our code is available at https://github.com/SqueezeAILab/Tool2Vec
Chain of Tools: Large Language Model is an Automatic Multi-tool Learner
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks. Existing work typically empowers LLMs as tool users with a manually designed workflow, where the LLM plans a series of tools in a step-by-step manner, and sequentially executes each tool to obtain intermediate results until deriving the final answer. However, they suffer from two challenges in realistic scenarios: (1) The handcrafted control flow is often ad-hoc and constraints the LLM to local planning; (2) The LLM is instructed to use only manually demonstrated tools or well-trained Python functions, which limits its generalization to new tools. In this work, we first propose Automatic Tool Chain (ATC), a framework that enables the LLM to act as a multi-tool user, which directly utilizes a chain of tools through programming. To scale up the scope of the tools, we next propose a black-box probing method. This further empowers the LLM as a tool learner that can actively discover and document tool usages, teaching themselves to properly master new tools. For a comprehensive evaluation, we build a challenging benchmark named ToolFlow, which diverges from previous benchmarks by its long-term planning scenarios and complex toolset. Experiments on both existing datasets and ToolFlow illustrate the superiority of our framework. Analysis on different settings also validates the effectiveness and the utility of our black-box probing algorithm.
Retrieval Models Aren't Tool-Savvy: Benchmarking Tool Retrieval for Large Language Models
Tool learning aims to augment large language models (LLMs) with diverse tools, enabling them to act as agents for solving practical tasks. Due to the limited context length of tool-using LLMs, adopting information retrieval (IR) models to select useful tools from large toolsets is a critical initial step. However, the performance of IR models in tool retrieval tasks remains underexplored and unclear. Most tool-use benchmarks simplify this step by manually pre-annotating a small set of relevant tools for each task, which is far from the real-world scenarios. In this paper, we propose ToolRet, a heterogeneous tool retrieval benchmark comprising 7.6k diverse retrieval tasks, and a corpus of 43k tools, collected from existing datasets. We benchmark six types of models on ToolRet. Surprisingly, even the models with strong performance in conventional IR benchmarks, exhibit poor performance on ToolRet. This low retrieval quality degrades the task pass rate of tool-use LLMs. As a further step, we contribute a large-scale training dataset with over 200k instances, which substantially optimizes the tool retrieval ability of IR models.
PhysToolBench: Benchmarking Physical Tool Understanding for MLLMs
The ability to use, understand, and create tools is a hallmark of human intelligence, enabling sophisticated interaction with the physical world. For any general-purpose intelligent agent to achieve true versatility, it must also master these fundamental skills. While modern Multimodal Large Language Models (MLLMs) leverage their extensive common knowledge for high-level planning in embodied AI and in downstream Vision-Language-Action (VLA) models, the extent of their true understanding of physical tools remains unquantified. To bridge this gap, we present PhysToolBench, the first benchmark dedicated to evaluating the comprehension of physical tools by MLLMs. Our benchmark is structured as a Visual Question Answering (VQA) dataset comprising over 1,000 image-text pairs. It assesses capabilities across three distinct difficulty levels: (1) Tool Recognition: Requiring the recognition of a tool's primary function. (2) Tool Understanding: Testing the ability to grasp the underlying principles of a tool's operation. (3) Tool Creation: Challenging the model to fashion a new tool from surrounding objects when conventional options are unavailable. Our comprehensive evaluation of 32 MLLMs-spanning proprietary, open-source, specialized embodied, and backbones in VLAs-reveals a significant deficiency in tool understanding. Furthermore, we provide an in-depth analysis and propose preliminary solutions. Code and dataset are publicly available.
ToLeaP: Rethinking Development of Tool Learning with Large Language Models
Tool learning, which enables large language models (LLMs) to utilize external tools effectively, has garnered increasing attention for its potential to revolutionize productivity across industries. Despite rapid development in tool learning, key challenges and opportunities remain understudied, limiting deeper insights and future advancements. In this paper, we investigate the tool learning ability of 41 prevalent LLMs by reproducing 33 benchmarks and enabling one-click evaluation for seven of them, forming a Tool Learning Platform named ToLeaP. We also collect 21 out of 33 potential training datasets to facilitate future exploration. After analyzing over 3,000 bad cases of 41 LLMs based on ToLeaP, we identify four main critical challenges: (1) benchmark limitations induce both the neglect and lack of (2) autonomous learning, (3) generalization, and (4) long-horizon task-solving capabilities of LLMs. To aid future advancements, we take a step further toward exploring potential directions, namely (1) real-world benchmark construction, (2) compatibility-aware autonomous learning, (3) rationale learning by thinking, and (4) identifying and recalling key clues. The preliminary experiments demonstrate their effectiveness, highlighting the need for further research and exploration.
Data-Efficient Massive Tool Retrieval: A Reinforcement Learning Approach for Query-Tool Alignment with Language Models
Recent advancements in large language models (LLMs) integrated with external tools and APIs have successfully addressed complex tasks by using in-context learning or fine-tuning. Despite this progress, the vast scale of tool retrieval remains challenging due to stringent input length constraints. In response, we propose a pre-retrieval strategy from an extensive repository, effectively framing the problem as the massive tool retrieval (MTR) task. We introduce the MTRB (massive tool retrieval benchmark) to evaluate real-world tool-augmented LLM scenarios with a large number of tools. This benchmark is designed for low-resource scenarios and includes a diverse collection of tools with descriptions refined for consistency and clarity. It consists of three subsets, each containing 90 test samples and 10 training samples. To handle the low-resource MTR task, we raise a new query-tool alignment (QTA) framework leverages LLMs to enhance query-tool alignment by rewriting user queries through ranking functions and the direct preference optimization (DPO) method. This approach consistently outperforms existing state-of-the-art models in top-5 and top-10 retrieval tasks across the MTRB benchmark, with improvements up to 93.28% based on the metric Sufficiency@k, which measures the adequacy of tool retrieval within the first k results. Furthermore, ablation studies validate the efficacy of our framework, highlighting its capacity to optimize performance even with limited annotated samples. Specifically, our framework achieves up to 78.53% performance improvement in Sufficiency@k with just a single annotated sample. Additionally, QTA exhibits strong cross-dataset generalizability, emphasizing its potential for real-world applications.
TheMCPCompany: Creating General-purpose Agents with Task-specific Tools
Since the introduction of the Model Context Protocol (MCP), the number of available tools for Large Language Models (LLMs) has increased significantly. These task-specific tool sets offer an alternative to general-purpose tools such as web browsers, while being easier to develop and maintain than GUIs. However, current general-purpose agents predominantly rely on web browsers for interacting with the environment. Here, we introduce TheMCPCompany, a benchmark for evaluating tool-calling agents on tasks that involve interacting with various real-world services. We use the REST APIs of these services to create MCP servers, which include over 18,000 tools. We also provide manually annotated ground-truth tools for each task. In our experiments, we use the ground truth tools to show the potential of tool-calling agents for both improving performance and reducing costs assuming perfect tool retrieval. Next, we explore agent performance using tool retrieval to study the real-world practicality of tool-based agents. While all models with tool retrieval perform similarly or better than browser-based agents, smaller models cannot take full advantage of the available tools through retrieval. On the other hand, GPT-5's performance with tool retrieval is very close to its performance with ground-truth tools. Overall, our work shows that the most advanced reasoning models are effective at discovering tools in simpler environments, but seriously struggle with navigating complex enterprise environments. TheMCPCompany reveals that navigating tens of thousands of tools and combining them in non-trivial ways to solve complex problems is still a challenging task for current models and requires both better reasoning and better retrieval models.
Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models
Tool-augmented large language models (LLMs) are attracting widespread attention when accessing up-to-date knowledge and alleviating hallucination issues. Nowadays, advanced closed-source LLMs (e.g., ChatGPT) have demonstrated surprising tool-usage capabilities through prompting and in-context learning techniques. To empower the capabilities of open-source LLMs (e.g., LLaMA) in manipulating tools, current efforts focus on either template-driven or token-triggered tool-usage. However, the former hampers LLMs' flexibility to address diverse user's queries due to constrained tool interactions, while the latter limits the generalizability when engaging with new tools, since tool-usage learning is based on task- and tool-specific datasets. To alleviate these concerns, in this paper, we propose a decision-aware and generalizable tool-usage framework (DEER). Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline, thereby inspiring the decision-making awareness of LLMs under diverse scenarios. Meanwhile, we propose a novel tool sampling strategy to enhance the generalizability of LLMs over unseen tools. Extensive experiments demonstrate that our proposed DEER is effective and significantly outperforms baselines across various datasets.
Leveraging Language for Accelerated Learning of Tool Manipulation
Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering.
TRAJECT-Bench:A Trajectory-Aware Benchmark for Evaluating Agentic Tool Use
Large language model (LLM)-based agents increasingly rely on tool use to complete real-world tasks. While existing works evaluate the LLMs' tool use capability, they largely focus on the final answers yet overlook the detailed tool usage trajectory, i.e., whether tools are selected, parameterized, and ordered correctly. We introduce TRAJECT-Bench, a trajectory-aware benchmark to comprehensively evaluate LLMs' tool use capability through diverse tasks with fine-grained evaluation metrics. TRAJECT-Bench pairs high-fidelity, executable tools across practical domains with tasks grounded in production-style APIs, and synthesizes trajectories that vary in breadth (parallel calls) and depth (interdependent chains). Besides final accuracy, TRAJECT-Bench also reports trajectory-level diagnostics, including tool selection and argument correctness, and dependency/order satisfaction. Analyses reveal failure modes such as similar tool confusion and parameter-blind selection, and scaling behavior with tool diversity and trajectory length where the bottleneck of transiting from short to mid-length trajectories is revealed, offering actionable guidance for LLMs' tool use.
Surgical tool classification and localization: results and methods from the MICCAI 2022 SurgToolLoc challenge
The ability to automatically detect and track surgical instruments in endoscopic videos can enable transformational interventions. Assessing surgical performance and efficiency, identifying skilled tool use and choreography, and planning operational and logistical aspects of OR resources are just a few of the applications that could benefit. Unfortunately, obtaining the annotations needed to train machine learning models to identify and localize surgical tools is a difficult task. Annotating bounding boxes frame-by-frame is tedious and time-consuming, yet large amounts of data with a wide variety of surgical tools and surgeries must be captured for robust training. Moreover, ongoing annotator training is needed to stay up to date with surgical instrument innovation. In robotic-assisted surgery, however, potentially informative data like timestamps of instrument installation and removal can be programmatically harvested. The ability to rely on tool installation data alone would significantly reduce the workload to train robust tool-tracking models. With this motivation in mind we invited the surgical data science community to participate in the challenge, SurgToolLoc 2022. The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools and localize them in video frames with bounding boxes. We present the results of this challenge along with many of the team's efforts. We conclude by discussing these results in the broader context of machine learning and surgical data science. The training data used for this challenge consisting of 24,695 video clips with tool presence labels is also being released publicly and can be accessed at https://console.cloud.google.com/storage/browser/isi-surgtoolloc-2022.
ProTIP: Progressive Tool Retrieval Improves Planning
Large language models (LLMs) are increasingly employed for complex multi-step planning tasks, where the tool retrieval (TR) step is crucial for achieving successful outcomes. Two prevalent approaches for TR are single-step retrieval, which utilizes the complete query, and sequential retrieval using task decomposition (TD), where a full query is segmented into discrete atomic subtasks. While single-step retrieval lacks the flexibility to handle "inter-tool dependency," the TD approach necessitates maintaining "subtask-tool atomicity alignment," as the toolbox can evolve dynamically. To address these limitations, we introduce the Progressive Tool retrieval to Improve Planning (ProTIP) framework. ProTIP is a lightweight, contrastive learning-based framework that implicitly performs TD without the explicit requirement of subtask labels, while simultaneously maintaining subtask-tool atomicity. On the ToolBench dataset, ProTIP outperforms the ChatGPT task decomposition-based approach by a remarkable margin, achieving a 24% improvement in Recall@K=10 for TR and a 41% enhancement in tool accuracy for plan generation.
ToolSandbox: A Stateful, Conversational, Interactive Evaluation Benchmark for LLM Tool Use Capabilities
Recent large language models (LLMs) advancements sparked a growing research interest in tool assisted LLMs solving real-world challenges, which calls for comprehensive evaluation of tool-use capabilities. While previous works focused on either evaluating over stateless web services (RESTful API), based on a single turn user prompt, or an off-policy dialog trajectory, ToolSandbox includes stateful tool execution, implicit state dependencies between tools, a built-in user simulator supporting on-policy conversational evaluation and a dynamic evaluation strategy for intermediate and final milestones over an arbitrary trajectory. We show that open source and proprietary models have a significant performance gap, and complex tasks like State Dependency, Canonicalization and Insufficient Information defined in ToolSandbox are challenging even the most capable SOTA LLMs, providing brand-new insights into tool-use LLM capabilities. ToolSandbox evaluation framework is released at https://github.com/apple/ToolSandbox
LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error
Tools are essential for large language models (LLMs) to acquire up-to-date information and take consequential actions in external environments. Existing work on tool-augmented LLMs primarily focuses on the broad coverage of tools and the flexibility of adding new tools. However, a critical aspect that has surprisingly been understudied is simply how accurately an LLM uses tools for which it has been trained. We find that existing LLMs, including GPT-4 and open-source LLMs specifically fine-tuned for tool use, only reach a correctness rate in the range of 30% to 60%, far from reliable use in practice. We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE), that orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory. Specifically, STE leverages an LLM's 'imagination' to simulate plausible scenarios for using a tool, after which the LLM interacts with the tool to learn from its execution feedback. Both short-term and long-term memory are employed to improve the depth and breadth of the exploration, respectively. Comprehensive experiments on ToolBench show that STE substantially improves tool learning for LLMs under both in-context learning and fine-tuning settings, bringing a boost of 46.7% to Mistral-Instruct-7B and enabling it to outperform GPT-4. We also show effective continual learning of tools via a simple experience replay strategy.
PEToolLLM: Towards Personalized Tool Learning in Large Language Models
Tool learning has emerged as a promising direction by extending Large Language Models' (LLMs) capabilities with external tools. Existing tool learning studies primarily focus on the general-purpose tool-use capability, which addresses explicit user requirements in instructions. However, they overlook the importance of personalized tool-use capability, leading to an inability to handle implicit user preferences. To address the limitation, we first formulate the task of personalized tool learning, which integrates user's interaction history towards personalized tool usage. To fill the gap of missing benchmarks, we construct PEToolBench, featuring diverse user preferences reflected in interaction history under three distinct personalized settings, and encompassing a wide range of tool-use scenarios. Moreover, we propose a framework PEToolLLaMA to adapt LLMs to the personalized tool learning task, which is trained through supervised fine-tuning and direct preference optimization. Extensive experiments on PEToolBench demonstrate the superiority of PEToolLLaMA over existing LLMs.
T-Eval: Evaluating the Tool Utilization Capability Step by Step
Large language models (LLM) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool-utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available at https://github.com/open-compass/T-Eval.
CRITICTOOL: Evaluating Self-Critique Capabilities of Large Language Models in Tool-Calling Error Scenarios
The ability of large language models (LLMs) to utilize external tools has enabled them to tackle an increasingly diverse range of tasks. However, as the tasks become more complex and long-horizon, the intricate tool utilization process may trigger various unexpected errors. Therefore, how to effectively handle such errors, including identifying, diagnosing, and recovering from them, has emerged as a key research direction for advancing tool learning. In this work, we first extensively analyze the types of errors encountered during the function-calling process on several competitive tool evaluation benchmarks. Based on it, we introduce CRITICTOOL, a comprehensive critique evaluation benchmark specialized for tool learning. Building upon a novel evolutionary strategy for dataset construction, CRITICTOOL holds diverse tool-use errors with varying complexities, which better reflects real-world scenarios. We conduct extensive experiments on CRITICTOOL, and validate the generalization and effectiveness of our constructed benchmark strategy. We also provide an in-depth analysis of the tool reflection ability on various LLMs, offering a new perspective on the field of tool learning in LLMs. The code is available at https://github.com/Shellorley0513/CriticTool{https://github.com/Shellorley0513/CriticTool}.
Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning
Conventional recommender systems (RSs) face challenges in precisely capturing users' fine-grained preferences. Large language models (LLMs) have shown capabilities in commonsense reasoning and leveraging external tools that may help address these challenges. However, existing LLM-based RSs suffer from hallucinations, misalignment between the semantic space of items and the behavior space of users, or overly simplistic control strategies (e.g., whether to rank or directly present existing results). To bridge these gap, we introduce ToolRec, a framework for LLM-empowered recommendations via tool learning that uses LLMs as surrogate users, thereby guiding the recommendation process and invoking external tools to generate a recommendation list that aligns closely with users' nuanced preferences. We formulate the recommendation process as a process aimed at exploring user interests in attribute granularity. The process factors in the nuances of the context and user preferences. The LLM then invokes external tools based on a user's attribute instructions and probes different segments of the item pool. We consider two types of attribute-oriented tools: rank tools and retrieval tools. Through the integration of LLMs, ToolRec enables conventional recommender systems to become external tools with a natural language interface. Extensive experiments verify the effectiveness of ToolRec, particularly in scenarios that are rich in semantic content.
PORTool: Tool-Use LLM Training with Rewarded Tree
Current tool-use large language models (LLMs) are trained on static datasets, enabling them to interact with external tools and perform multi-step, tool-integrated reasoning, which produces tool-call trajectories. However, these models imitate how a query is resolved in a generic tool-call routine, thereby failing to explore possible solutions and demonstrating limited performance in an evolved, dynamic tool-call environment. In this work, we propose PORTool, a reinforcement learning (RL) method that encourages a tool-use LLM to explore various trajectories yielding the correct answer. Specifically, this method starts with generating multiple rollouts for a given query, and some of them share the first few tool-call steps, thereby forming a tree-like structure. Next, we assign rewards to each step, based on its ability to produce a correct answer and make successful tool calls. A shared step across different trajectories receives the same reward, while different steps under the same fork receive different rewards. Finally, these step-wise rewards are used to calculate fork-relative advantages, blended with trajectory-relative advantages, to train the LLM for tool use. The experiments utilize 17 tools to address user queries, covering both time-sensitive and time-invariant topics. We conduct ablation studies to systematically justify the necessity and the design robustness of step-wise rewards. Furthermore, we compare the proposed PORTool with other training approaches and demonstrate significant improvements in final accuracy and the number of tool-call steps.
ToolDreamer: Instilling LLM Reasoning Into Tool Retrievers
Tool calling has become increasingly popular for Large Language Models (LLMs). However, for large tool sets, the resulting tokens would exceed the LLM's context window limit, making it impossible to include every tool. Hence, an external retriever is used to provide LLMs with the most relevant tools for a query. Existing retrieval models rank tools based on the similarity between a user query and a tool description (TD). This leads to suboptimal retrieval as user requests are often poorly aligned with the language of TD. To remedy the issue, we propose ToolDreamer, a framework to condition retriever models to fetch tools based on hypothetical (synthetic) TD generated using an LLM, i.e., description of tools that the LLM feels will be potentially useful for the query. The framework enables a more natural alignment between queries and tools within the language space of TD's. We apply ToolDreamer on the ToolRet dataset and show that our method improves the performance of sparse and dense retrievers with and without training, thus showcasing its flexibility. Through our proposed framework, our aim is to offload a portion of the reasoning burden to the retriever so that the LLM may effectively handle a large collection of tools without inundating its context window.
ToolPlanner: A Tool Augmented LLM for Multi Granularity Instructions with Path Planning and Feedback
Recently, tool-augmented LLMs have gained increasing attention. Given an instruction, tool-augmented LLMs can interact with various external tools in multiple rounds and provide a final answer. However, previous LLMs were trained on overly detailed instructions, which included API names or parameters, while real users would not explicitly mention these API details. This leads to a gap between trained LLMs and real-world scenarios. In addition, most works ignore whether the interaction process follows the instruction. To address these issues, we constructed a training dataset called MGToolBench, which contains statement and category-level instructions to better reflect real-world scenarios. In addition, we propose ToolPlanner, a two-stage reinforcement learning framework that utilizes path planning and two feedback mechanisms to enhance the LLM's task completion and instruction-following capabilities. Experimental results show that ToolPlanner significantly improves the Match Rate, Pass Rate and Win Rate by 26.8%, 20.2%, and 5.6% compared to the SOTA model. Human evaluation verifies that the multi-granularity instructions can better align with users' usage habits. Our data and code will be released upon acceptance.
SwissNYF: Tool Grounded LLM Agents for Black Box Setting
While Large Language Models (LLMs) have demonstrated enhanced capabilities in function-calling, these advancements primarily rely on accessing the functions' responses. This methodology is practical for simpler APIs but faces scalability issues with irreversible APIs that significantly impact the system, such as a database deletion API. Similarly, processes requiring extensive time for each API call and those necessitating forward planning, like automated action pipelines, present complex challenges. Furthermore, scenarios often arise where a generalized approach is needed because algorithms lack direct access to the specific implementations of these functions or secrets to use them. Traditional tool planning methods are inadequate in these cases, compelling the need to operate within black-box environments. Unlike their performance in tool manipulation, LLMs excel in black-box tasks, such as program synthesis. Therefore, we harness the program synthesis capabilities of LLMs to strategize tool usage in black-box settings, ensuring solutions are verified prior to implementation. We introduce TOPGUN, an ingeniously crafted approach leveraging program synthesis for black box tool planning. Accompanied by SwissNYF, a comprehensive suite that integrates black-box algorithms for planning and verification tasks, addressing the aforementioned challenges and enhancing the versatility and effectiveness of LLMs in complex API interactions. The public code for SwissNYF is available at https://github.com/iclr-dummy-user/SwissNYF.
ToolHop: A Query-Driven Benchmark for Evaluating Large Language Models in Multi-Hop Tool Use
Effective evaluation of multi-hop tool use is critical for analyzing the understanding, reasoning, and function-calling capabilities of large language models (LLMs). However, progress has been hindered by a lack of reliable evaluation datasets. To address this, we present ToolHop, a dataset comprising 995 user queries and 3,912 associated tools, specifically designed for rigorous evaluation of multi-hop tool use. ToolHop ensures diverse queries, meaningful interdependencies, locally executable tools, detailed feedback, and verifiable answers through a novel query-driven data construction approach that includes tool creation, document refinement, and code generation. We evaluate 14 LLMs across five model families (i.e., LLaMA3.1, Qwen2.5, Gemini1.5, Claude3.5, and GPT), uncovering significant challenges in handling multi-hop tool-use scenarios. The leading model, GPT-4o, achieves an accuracy of 49.04%, underscoring substantial room for improvement. Further analysis reveals variations in tool-use strategies for various families, offering actionable insights to guide the development of more effective approaches. Code and data can be found in https://huggingface.co/bytedance-research/ToolHop.
ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs
Despite the advancements of open-source large language models (LLMs) and their variants, e.g., LLaMA and Vicuna, they remain significantly limited in performing higher-level tasks, such as following human instructions to use external tools (APIs). This is because current instruction tuning largely focuses on basic language tasks instead of the tool-use domain. This is in contrast to state-of-the-art (SOTA) LLMs, e.g., ChatGPT, which have demonstrated excellent tool-use capabilities but are unfortunately closed source. To facilitate tool-use capabilities within open-source LLMs, we introduce ToolLLM, a general tool-use framework of data construction, model training and evaluation. We first present ToolBench, an instruction-tuning dataset for tool use, which is created automatically using ChatGPT. Specifically, we collect 16,464 real-world RESTful APIs spanning 49 categories from RapidAPI Hub, then prompt ChatGPT to generate diverse human instructions involving these APIs, covering both single-tool and multi-tool scenarios. Finally, we use ChatGPT to search for a valid solution path (chain of API calls) for each instruction. To make the searching process more efficient, we develop a novel depth-first search-based decision tree (DFSDT), enabling LLMs to evaluate multiple reasoning traces and expand the search space. We show that DFSDT significantly enhances the planning and reasoning capabilities of LLMs. For efficient tool-use assessment, we develop an automatic evaluator: ToolEval. We fine-tune LLaMA on ToolBench and obtain ToolLLaMA. Our ToolEval reveals that ToolLLaMA demonstrates a remarkable ability to execute complex instructions and generalize to unseen APIs, and exhibits comparable performance to ChatGPT. To make the pipeline more practical, we devise a neural API retriever to recommend appropriate APIs for each instruction, negating the need for manual API selection.
Conveyor: Efficient Tool-aware LLM Serving with Tool Partial Execution
The complexity of large language model (LLM) serving workloads has substantially increased due to the integration with external tool invocations, such as ChatGPT plugins. In this paper, we identify a new opportunity for efficient LLM serving for requests that trigger tools: tool partial execution alongside LLM decoding. To this end, we design Conveyor, an efficient LLM serving system optimized for handling requests involving external tools. We introduce a novel interface for tool developers to expose partial execution opportunities to the LLM serving system and a request scheduler that facilitates partial tool execution. Our results demonstrate that tool partial execution can improve request completion latency by up to 38.8%.
RE-GAINS & EnChAnT: Intelligent Tool Manipulation Systems For Enhanced Query Responses
Large Language Models (LLMs) currently struggle with tool invocation and chaining, as they often hallucinate or miss essential steps in a sequence. We propose RE-GAINS and EnChAnT, two novel frameworks that empower LLMs to tackle complex user queries by making API calls to external tools based on tool descriptions and argument lists. Tools are chained based on the expected output, without receiving the actual results from each individual call. EnChAnT, an open-source solution, leverages an LLM format enforcer, OpenChat 3.5 (an LLM), and ToolBench's API Retriever. RE-GAINS utilizes OpenAI models and embeddings with a specialized prompt based on the Reasoning via Planning (RAP) framework. Both frameworks are low cost (0.01\$ per query). Our key contribution is enabling LLMs for tool invocation and chaining using modifiable, externally described tools.
LLM Agents Making Agent Tools
Tool use has turned large language models (LLMs) into powerful agents that can perform complex multi-step tasks by dynamically utilising external software components. However, these tools must be implemented in advance by human developers, hindering the applicability of LLM agents in domains which demand large numbers of highly specialised tools, like in life sciences and medicine. Motivated by the growing trend of scientific studies accompanied by public code repositories, we propose ToolMaker, a novel agentic framework that autonomously transforms papers with code into LLM-compatible tools. Given a short task description and a repository URL, ToolMaker autonomously installs required dependencies and generates code to perform the task, using a closed-loop self-correction mechanism to iteratively diagnose and rectify errors. To evaluate our approach, we introduce a benchmark comprising 15 diverse and complex computational tasks spanning both medical and non-medical domains with over 100 unit tests to objectively assess tool correctness and robustness. ToolMaker correctly implements 80% of the tasks, substantially outperforming current state-of-the-art software engineering agents. ToolMaker therefore is a step towards fully autonomous agent-based scientific workflows.
ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases
Enabling large language models to utilize real-world tools effectively is crucial for achieving embodied intelligence. Existing approaches to tool learning have either primarily relied on extremely large language models, such as GPT-4, to attain generalized tool-use abilities in a zero-shot manner, or utilized supervised learning to train limited scopes of tools on compact models. However, it remains uncertain whether smaller language models can achieve generalized tool-use abilities without tool-specific training. To address this question, this paper introduces ToolAlpaca, a novel framework designed to automatically generate a diverse tool-use corpus and learn generalized tool-use abilities on compact language models with minimal human intervention. Specifically, ToolAlpaca first automatically creates a highly diversified tool-use corpus by building a multi-agent simulation environment. The corpus contains 3938 tool-use instances from more than 400 real-world tool APIs spanning 50 distinct categories. Subsequently, the constructed corpus is employed to fine-tune compact language models, resulting in two models, namely ToolAlpaca-7B and ToolAlpaca-13B, respectively. Finally, we evaluate the ability of these models to utilize previously unseen tools without specific training. Experimental results demonstrate that ToolAlpaca achieves effective generalized tool-use capabilities comparable to those of extremely large language models like GPT-3.5, demonstrating that learning generalized tool-use ability is feasible for compact language models.
Creative Robot Tool Use with Large Language Models
Tool use is a hallmark of advanced intelligence, exemplified in both animal behavior and robotic capabilities. This paper investigates the feasibility of imbuing robots with the ability to creatively use tools in tasks that involve implicit physical constraints and long-term planning. Leveraging Large Language Models (LLMs), we develop RoboTool, a system that accepts natural language instructions and outputs executable code for controlling robots in both simulated and real-world environments. RoboTool incorporates four pivotal components: (i) an "Analyzer" that interprets natural language to discern key task-related concepts, (ii) a "Planner" that generates comprehensive strategies based on the language input and key concepts, (iii) a "Calculator" that computes parameters for each skill, and (iv) a "Coder" that translates these plans into executable Python code. Our results show that RoboTool can not only comprehend explicit or implicit physical constraints and environmental factors but also demonstrate creative tool use. Unlike traditional Task and Motion Planning (TAMP) methods that rely on explicit optimization, our LLM-based system offers a more flexible, efficient, and user-friendly solution for complex robotics tasks. Through extensive experiments, we validate that RoboTool is proficient in handling tasks that would otherwise be infeasible without the creative use of tools, thereby expanding the capabilities of robotic systems. Demos are available on our project page: https://creative-robotool.github.io/.
SMART: Self-Aware Agent for Tool Overuse Mitigation
Current Large Language Model (LLM) agents demonstrate strong reasoning and tool use capabilities, but often lack self-awareness, failing to balance these approaches effectively. This imbalance leads to Tool Overuse, where models unnecessarily rely on external tools for tasks solvable with parametric knowledge, increasing computational overhead. Inspired by human metacognition, we introduce SMART (Strategic Model-Aware Reasoning with Tools), a paradigm that enhances an agent's self-awareness to optimize task handling and reduce tool overuse. To support this paradigm, we introduce SMART-ER, a dataset spanning three domains, where reasoning alternates between parametric knowledge and tool-dependent steps, with each step enriched by rationales explaining when tools are necessary. Through supervised training, we develop SMARTAgent, a family of models that dynamically balance parametric knowledge and tool use. Evaluations show that SMARTAgent reduces tool use by 24% while improving performance by over 37%, enabling 7B-scale models to match its 70B counterpart and GPT-4o. Additionally, SMARTAgent generalizes to out-of-distribution test data like GSM8K and MINTQA, maintaining accuracy with just one-fifth the tool calls. These highlight the potential of strategic tool use to enhance reasoning, mitigate overuse, and bridge the gap between model size and performance, advancing intelligent and resource-efficient agent designs.
ControlLLM: Augment Language Models with Tools by Searching on Graphs
We present ControlLLM, a novel framework that enables large language models (LLMs) to utilize multi-modal tools for solving complex real-world tasks. Despite the remarkable performance of LLMs, they still struggle with tool invocation due to ambiguous user prompts, inaccurate tool selection and parameterization, and inefficient tool scheduling. To overcome these challenges, our framework comprises three key components: (1) a task decomposer that breaks down a complex task into clear subtasks with well-defined inputs and outputs; (2) a Thoughts-on-Graph (ToG) paradigm that searches the optimal solution path on a pre-built tool graph, which specifies the parameter and dependency relations among different tools; and (3) an execution engine with a rich toolbox that interprets the solution path and runs the tools efficiently on different computational devices. We evaluate our framework on diverse tasks involving image, audio, and video processing, demonstrating its superior accuracy, efficiency, and versatility compared to existing methods.
Improving Tool Retrieval by Leveraging Large Language Models for Query Generation
Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.
StepTool: A Step-grained Reinforcement Learning Framework for Tool Learning in LLMs
Despite having powerful reasoning and inference capabilities, Large Language Models (LLMs) still need external tools to acquire real-time information retrieval or domain-specific expertise to solve complex tasks, which is referred to as tool learning. Existing tool learning methods primarily rely on tuning with expert trajectories, focusing on token-sequence learning from a linguistic perspective. However, there are several challenges: 1) imitating static trajectories limits their ability to generalize to new tasks. 2) even expert trajectories can be suboptimal, and better solution paths may exist. In this work, we introduce StepTool, a novel step-grained reinforcement learning framework to improve tool learning in LLMs. It consists of two components: Step-grained Reward Shaping, which assigns rewards at each tool interaction based on tool invocation success and its contribution to the task, and Step-grained Optimization, which uses policy gradient methods to optimize the model in a multi-step manner. Experimental results demonstrate that StepTool significantly outperforms existing methods in multi-step, tool-based tasks, providing a robust solution for complex task environments. Codes are available at https://github.com/yuyq18/StepTool.
Les Dissonances: Cross-Tool Harvesting and Polluting in Multi-Tool Empowered LLM Agents
Large Language Model (LLM) agents are autonomous systems powered by LLMs, capable of reasoning and planning to solve problems by leveraging a set of tools. However, the integration of multi-tool capabilities in LLM agents introduces challenges in securely managing tools, ensuring their compatibility, handling dependency relationships, and protecting control flows within LLM agent workflows. In this paper, we present the first systematic security analysis of task control flows in multi-tool-enabled LLM agents. We identify a novel threat, Cross-Tool Harvesting and Polluting (XTHP), which includes multiple attack vectors to first hijack the normal control flows of agent tasks, and then collect and pollute confidential or private information within LLM agent systems. To understand the impact of this threat, we developed Chord, a dynamic scanning tool designed to automatically detect real-world agent tools susceptible to XTHP attacks. Our evaluation of 66 real-world tools from the repositories of two major LLM agent development frameworks, LangChain and LlamaIndex, revealed a significant security concern: 75\% are vulnerable to XTHP attacks, highlighting the prevalence of this threat.
ToolACE-R: Tool Learning with Adaptive Self-Refinement
Tool learning, which allows Large Language Models (LLMs) to leverage external tools for solving complex user tasks, has emerged as a promising avenue for extending model capabilities. However, current approaches primarily focus on data synthesis for fine-tuning LLMs to invoke tools effectively, largely ignoring how to fully stimulate the potential of the model. In this paper, we propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations. Our approach features a model-aware iterative training procedure that progressively incorporates more training samples based on the model's evolving capabilities. Additionally, it allows LLMs to iteratively refine their tool calls, optimizing performance without requiring external feedback. To further enhance computational efficiency, we integrate an adaptive mechanism when scaling the inference time, enabling the model to autonomously determine when to stop the refinement process. We conduct extensive experiments across several benchmark datasets, showing that ToolACE-R achieves competitive performance compared to advanced API-based models, even without any refinement. Furthermore, its performance can be further improved efficiently through adaptive self-refinement. Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes, offering a promising direction for more efficient tool learning.
Chain-of-Tools: Utilizing Massive Unseen Tools in the CoT Reasoning of Frozen Language Models
Tool learning can further broaden the usage scenarios of large language models (LLMs). However most of the existing methods either need to finetune that the model can only use tools seen in the training data, or add tool demonstrations into the prompt with lower efficiency. In this paper, we present a new Tool Learning method Chain-of-Tools. It makes full use of the powerful semantic representation capability of frozen LLMs to finish tool calling in CoT reasoning with a huge and flexible tool pool which may contain unseen tools. Especially, to validate the effectiveness of our approach in the massive unseen tool scenario, we construct a new dataset SimpleToolQuestions. We conduct experiments on two numerical reasoning benchmarks (GSM8K-XL and FuncQA) and two knowledge-based question answering benchmarks (KAMEL and SimpleToolQuestions). Experimental results show that our approach performs better than the baseline. We also identify dimensions of the model output that are critical in tool selection, enhancing the model interpretability. Our code and data are available at: https://github.com/fairyshine/Chain-of-Tools .
GEAR: Augmenting Language Models with Generalizable and Efficient Tool Resolution
Augmenting large language models (LLM) to use external tools enhances their performance across a variety of tasks. However, prior works over-rely on task-specific demonstration of tool use that limits their generalizability and computational cost due to making many calls to large-scale LLMs. We introduce GEAR, a computationally efficient query-tool grounding algorithm that is generalizable to various tasks that require tool use while not relying on task-specific demonstrations. GEAR achieves better efficiency by delegating tool grounding and execution to small language models (SLM) and LLM, respectively; while leveraging semantic and pattern-based evaluation at both question and answer levels for generalizable tool grounding. We evaluate GEAR on 14 datasets across 6 downstream tasks, demonstrating its strong generalizability to novel tasks, tools and different SLMs. Despite offering more efficiency, GEAR achieves higher precision in tool grounding compared to prior strategies using LLM prompting, thus improving downstream accuracy at a reduced computational cost. For example, we demonstrate that GEAR-augmented GPT-J and GPT-3 outperform counterpart tool-augmented baselines because of better tool use.
Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios
The recent trend of using Large Language Models (LLMs) as intelligent agents in real-world applications underscores the necessity for comprehensive evaluations of their capabilities, particularly in complex scenarios involving planning, creating, and using tools. However, existing benchmarks typically focus on simple synthesized queries that do not reflect real-world complexity, thereby offering limited perspectives in evaluating tool utilization. To address this issue, we present UltraTool, a novel benchmark designed to improve and evaluate LLMs' ability in tool utilization within real-world scenarios. UltraTool focuses on the entire process of using tools - from planning and creating to applying them in complex tasks. It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving. A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage and simplifies the task solving by mapping out the intermediate steps. Thus, unlike previous work, it eliminates the restriction of pre-defined toolset during planning. Through extensive experiments on various LLMs, we offer novel insights into the evaluation of capabilities of LLMs in tool utilization, thereby contributing a fresh perspective to this rapidly evolving field. The benchmark is publicly available at https://github.com/JoeYing1019/UltraTool.
Control Plane as a Tool: A Scalable Design Pattern for Agentic AI Systems
Agentic AI systems represent a new frontier in artificial intelligence, where agents often based on large language models(LLMs) interact with tools, environments, and other agents to accomplish tasks with a degree of autonomy. These systems show promise across a range of domains, but their architectural underpinnings remain immature. This paper conducts a comprehensive review of the types of agents, their modes of interaction with the environment, and the infrastructural and architectural challenges that emerge. We identify a gap in how these systems manage tool orchestration at scale and propose a reusable design abstraction: the "Control Plane as a Tool" pattern. This pattern allows developers to expose a single tool interface to an agent while encapsulating modular tool routing logic behind it. We position this pattern within the broader context of agent design and argue that it addresses several key challenges in scaling, safety, and extensibility.
RAG-MCP: Mitigating Prompt Bloat in LLM Tool Selection via Retrieval-Augmented Generation
Large language models (LLMs) struggle to effectively utilize a growing number of external tools, such as those defined by the Model Context Protocol (MCP)IntroducingMCP, due to prompt bloat and selection complexity. We introduce RAG-MCP, a Retrieval-Augmented Generation framework that overcomes this challenge by offloading tool discovery. RAG-MCP uses semantic retrieval to identify the most relevant MCP(s) for a given query from an external index before engaging the LLM. Only the selected tool descriptions are passed to the model, drastically reducing prompt size and simplifying decision-making. Experiments, including an MCP stress test, demonstrate RAG-MCP significantly cuts prompt tokens (e.g., by over 50%) and more than triples tool selection accuracy (43.13% vs 13.62% baseline) on benchmark tasks. RAG-MCP enables scalable and accurate tool integration for LLMs.
Large Language Models can accomplish Business Process Management Tasks
Business Process Management (BPM) aims to improve organizational activities and their outcomes by managing the underlying processes. To achieve this, it is often necessary to consider information from various sources, including unstructured textual documents. Therefore, researchers have developed several BPM-specific solutions that extract information from textual documents using Natural Language Processing techniques. These solutions are specific to their respective tasks and cannot accomplish multiple process-related problems as a general-purpose instrument. However, in light of the recent emergence of Large Language Models (LLMs) with remarkable reasoning capabilities, such a general-purpose instrument with multiple applications now appears attainable. In this paper, we illustrate how LLMs can accomplish text-related BPM tasks by applying a specific LLM to three exemplary tasks: mining imperative process models from textual descriptions, mining declarative process models from textual descriptions, and assessing the suitability of process tasks from textual descriptions for robotic process automation. We show that, without extensive configuration or prompt engineering, LLMs perform comparably to or better than existing solutions and discuss implications for future BPM research as well as practical usage.
Tool-R1: Sample-Efficient Reinforcement Learning for Agentic Tool Use
Large language models (LLMs) have demonstrated strong capabilities in language understanding and reasoning, yet they remain limited when tackling real-world tasks that require up-to-date knowledge, precise operations, or specialized tool use. To address this, we propose Tool-R1, a reinforcement learning framework that enables LLMs to perform general, compositional, and multi-step tool use by generating executable Python code. Tool-R1 supports integration of user-defined tools and standard libraries, with variable sharing across steps to construct coherent workflows. An outcome-based reward function, combining LLM-based answer judgment and code execution success, guides policy optimization. To improve training efficiency, we maintain a dynamic sample queue to cache and reuse high-quality trajectories, reducing the overhead of costly online sampling. Experiments on the GAIA benchmark show that Tool-R1 substantially improves both accuracy and robustness, achieving about 10\% gain over strong baselines, with larger improvements on complex multi-step tasks. These results highlight the potential of Tool-R1 for enabling reliable and efficient tool-augmented reasoning in real-world applications. Our code will be available at https://github.com/YBYBZhang/Tool-R1.
Learning to Use Tools via Cooperative and Interactive Agents
Tool learning empowers large language models (LLMs) as agents to use external tools to extend their capability. Existing methods employ one single LLM-based agent to iteratively select and execute tools, thereafter incorporating the result into the next action prediction. However, they still suffer from potential performance degradation when addressing complex tasks due to: (1) the limitation of the inherent capability of a single LLM to perform diverse actions, and (2) the struggle to adaptively correct mistakes when the task fails. To mitigate these problems, we propose the ConAgents, a Cooperative and interactive Agents framework, which modularizes the workflow of tool learning into Grounding, Execution, and Observing agents. We also introduce an iterative calibration (IterCali) method, enabling the agents to adapt themselves based on the feedback from the tool environment. Experiments conducted on three datasets demonstrate the superiority of our ConAgents (e.g., 6 point improvement over the SOTA baseline). We further provide fine-granularity analysis for the efficiency and consistency of our framework.
Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning
Recently, large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL). However, leveraging the RL algorithm to empower effective multi-tool collaborative reasoning in LLMs remains an open challenge. In this paper, we introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning. Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training. To address the scarcity of tool-use data, we propose a general tool-integrated reasoning data synthesis pipeline, which combines tool-integrated prompting with hint-based sampling to automatically and scalably generate tool-use trajectories. A subsequent quality normalization and difficulty-aware classification process filters out low-quality samples and organizes the dataset from easy to hard. Furthermore, we propose a two-stage training framework to enhance multi-tool collaborative reasoning by: (1) cold-start fine-tuning, which guides LLMs to explore reasoning patterns via tool-invocation feedback; and (2) a multi-tool self-critic RL algorithm with hierarchical reward design, which reinforces reward understanding and promotes effective tool collaboration. Experimental analyses on over 10 challenging reasoning benchmarks highlight the effectiveness and efficiency of Tool-Star. The code is available at https://github.com/dongguanting/Tool-Star.
LiveMCP-101: Stress Testing and Diagnosing MCP-enabled Agents on Challenging Queries
Tool calling has emerged as a critical capability for AI agents to interact with the real world and solve complex tasks. While the Model Context Protocol (MCP) provides a powerful standardized framework for tool integration, there is a significant gap in benchmarking how well AI agents can effectively solve multi-step tasks using diverse MCP tools in realistic, dynamic scenarios. In this work, we present LiveMCP-101, a benchmark of 101 carefully curated real-world queries, refined through iterative LLM rewriting and manual review, that require coordinated use of multiple MCP tools including web search, file operations, mathematical reasoning, and data analysis. Moreover, we introduce a novel evaluation approach that leverages ground-truth execution plans rather than raw API outputs, better reflecting the evolving nature of real-world environments. Experiments show that even frontier LLMs achieve a success rate below 60\%, highlighting major challenges in tool orchestration. Detailed ablations and error analysis further reveal distinct failure modes and inefficiencies in token usage, pointing to concrete directions for advancing current models. LiveMCP-101 sets a rigorous standard for evaluating real-world agent capabilities, advancing toward autonomous AI systems that reliably execute complex tasks through tool use.
ToolComp: A Multi-Tool Reasoning & Process Supervision Benchmark
Despite recent advances in AI, the development of systems capable of executing complex, multi-step reasoning tasks involving multiple tools remains a significant challenge. Current benchmarks fall short in capturing the real-world complexity of tool-use reasoning, where verifying the correctness of not only the final answer but also the intermediate steps is important for evaluation, development, and identifying failures during inference time. To bridge this gap, we introduce ToolComp, a comprehensive benchmark designed to evaluate multi-step tool-use reasoning. ToolComp is developed through a collaboration between models and human annotators, featuring human-edited/verified prompts, final answers, and process supervision labels, allowing for the evaluation of both final outcomes and intermediate reasoning. Evaluation across six different model families demonstrates the challenging nature of our dataset, with the majority of models achieving less than 50% accuracy. Additionally, we generate synthetic training data to compare the performance of outcome-supervised reward models (ORMs) with process-supervised reward models (PRMs) to assess their ability to improve complex tool-use reasoning as evaluated by ToolComp. Our results show that PRMs generalize significantly better than ORMs, achieving a 19% and 11% improvement in rank@1 accuracy for ranking base and fine-tuned model trajectories, respectively. These findings highlight the critical role of process supervision in both the evaluation and training of AI models, paving the way for more robust and capable systems in complex, multi-step tool-use tasks.
CRAFT: Customizing LLMs by Creating and Retrieving from Specialized Toolsets
Large language models (LLMs) are often augmented with tools to solve complex tasks. By generating code snippets and executing them through task-specific Application Programming Interfaces (APIs), they can offload certain functions to dedicated external modules, such as image encoding and performing calculations. However, most existing approaches to augment LLMs with tools are constrained by general-purpose APIs and lack the flexibility for tailoring them to specific tasks. In this work, we present CRAFT, a general tool creation and retrieval framework for LLMs. It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks. For each task, we collect specific code solutions by prompting GPT-4 to solve the training examples. Following a validation step ensuring the correctness, these solutions are abstracted into code snippets to enhance reusability, and deduplicated for higher quality. At inference time, the language model retrieves snippets from the toolsets and then executes them or generates the output conditioning on the retrieved snippets. Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning. Experiments on vision-language, tabular processing, and mathematical reasoning tasks show that our approach achieves substantial improvements compared to strong baselines. In addition, our in-depth analysis reveals that: (1) consistent performance improvement can be achieved by scaling up the number of tools and the capability of the backbone models; (2) each component of our approach contributes to the performance gains; (3) the created tools are well-structured and reliable with low complexity and atomicity. The code is available at https://github.com/lifan-yuan/CRAFT.
Context Tuning for Retrieval Augmented Generation
Large language models (LLMs) have the remarkable ability to solve new tasks with just a few examples, but they need access to the right tools. Retrieval Augmented Generation (RAG) addresses this problem by retrieving a list of relevant tools for a given task. However, RAG's tool retrieval step requires all the required information to be explicitly present in the query. This is a limitation, as semantic search, the widely adopted tool retrieval method, can fail when the query is incomplete or lacks context. To address this limitation, we propose Context Tuning for RAG, which employs a smart context retrieval system to fetch relevant information that improves both tool retrieval and plan generation. Our lightweight context retrieval model uses numerical, categorical, and habitual usage signals to retrieve and rank context items. Our empirical results demonstrate that context tuning significantly enhances semantic search, achieving a 3.5-fold and 1.5-fold improvement in Recall@K for context retrieval and tool retrieval tasks respectively, and resulting in an 11.6% increase in LLM-based planner accuracy. Additionally, we show that our proposed lightweight model using Reciprocal Rank Fusion (RRF) with LambdaMART outperforms GPT-4 based retrieval. Moreover, we observe context augmentation at plan generation, even after tool retrieval, reduces hallucination.
Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees
Tool-augmented large language models (LLMs) leverage tools, often in the form of APIs, to enhance their reasoning capabilities on complex tasks, thus taking on the role of intelligent agents interacting with the real world. The recently introduced ToolLLaMA model by Qin et al. [2024] utilizes the depth-first search-based decision tree (DFSDT) method for reasoning with 16000+ real-world APIs, which effectively improves the planning and inferencing performance of tool-augmented LLMs compared to traditional chain reasoning approaches. However, their approach only employs successful paths from decision trees (also called inference trees) for supervised fine-tuning (SFT) during training, which does not fully exploit the advantages of the tree of thought. In this study, we propose an inference trajectory optimization framework based on the preference data extracted from decision trees to address this limitation. We first introduce a novel method for constructing preference data from the tree of thought, capitalizing on the failed explorations previously overlooked in the trees. Specifically, we generate an effective step-wise preference dataset, named ToolPreference, for tool use based on the ToolBench dataset. In the subsequent training phase, we first fine-tune the LLM with tool-usage expert trajectories and then use these step-wise preference pairs for direct preference optimization (DPO) to update the policy of the LLM, resulting in our ToolPrefer-LLaMA (TP-LLaMA) model. Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines across almost all test scenarios by a large margin and exhibits better generalization capabilities with unseen APIs. At the same time, TP-LLaMA has also demonstrated superior reasoning efficiency compared to the baselines, making it more suitable for complex tool-usage reasoning tasks.
MCPToolBench++: A Large Scale AI Agent Model Context Protocol MCP Tool Use Benchmark
LLMs' capabilities are enhanced by using function calls to integrate various data sources or API results into the context window. Typical tools include search, web crawlers, maps, financial data, file systems, and browser usage, etc. Integrating these data sources or functions requires a standardized method. The Model Context Protocol (MCP) provides a standardized way to supply context to LLMs. However, the evaluation of LLMs and AI Agents' MCP tool use abilities suffer from several issues. First, there's a lack of comprehensive datasets or benchmarks to evaluate various MCP tools. Second, the diverse formats of response from MCP tool call execution further increase the difficulty of evaluation. Additionally, unlike existing tool-use benchmarks with high success rates in functions like programming and math functions, the success rate of real-world MCP tool is not guaranteed and varies across different MCP servers. Furthermore, the LLMs' context window also limits the number of available tools that can be called in a single run, because the textual descriptions of tool and the parameters have long token length for an LLM to process all at once. To help address the challenges of evaluating LLMs' performance on calling MCP tools, we propose MCPToolBench++, a large-scale, multi-domain AI Agent tool use benchmark. As of July 2025, this benchmark is build upon marketplace of over 4k MCP servers from more than 40 categories, collected from the MCP marketplaces and GitHub communities. The datasets consist of both single-step and multi-step tool calls across different categories. We evaluated SOTA LLMs with agentic abilities on this benchmark and reported the results.
Meta-Reasoning Improves Tool Use in Large Language Models
External tools help large language models succeed at tasks where they would otherwise typically fail. In existing frameworks, choosing tools at test time relies on naive greedy decoding, regardless of whether the model has been fine-tuned on tool-annotated data or prompted with in-context examples. In contrast, we find that gathering and choosing among a suitable set of candidate tools has greater potential to lead to an optimal selection. We present Tool selECTion via meta-reasONing (TECTON), a two-phase system that first reasons over a task and outputs candidate tools using a custom fine-tuned language modelling head. Then, with the custom head disabled, it meta-reasons (i.e., it reasons over the previous reasoning process) to make a final choice. We show that TECTON results in substantial gains--both in-distribution and out-of-distribution--on a range of math reasoning datasets.
AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning
We present AlphaApollo, a self-evolving agentic reasoning system that aims to address two bottlenecks in foundation model (FM) reasoning-limited model-intrinsic capacity and unreliable test-time iteration. AlphaApollo orchestrates multiple models with professional tools to enable deliberate, verifiable reasoning. It couples (i) a computation tool (Python with numerical and symbolic libraries) and (ii) a retrieval tool (task-relevant external information) to execute exact calculations and ground decisions. The system further supports multi-round, multi-model solution evolution via a shared state map that records candidates, executable checks, and feedback for iterative refinement. In evaluations on AIME 2024/2025 across multiple models, AlphaApollo delivers consistent gains: +5.15% Average@32 and +23.34% Pass@32 for Qwen2.5-14B-Instruct, and +8.91% Average@32 with +26.67% Pass@32 for Llama-3.3-70B-Instruct. Tool-use analysis shows that more than 80% of tool calls are successfully executed, with consistent outperformance of non-tool baselines, thereby lifting the capability ceiling of FMs. More empirical results and implementation details will be updated at https://github.com/tmlr-group/AlphaApollo.
DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
ModelScope-Agent: Building Your Customizable Agent System with Open-source Large Language Models
Large language models (LLMs) have recently demonstrated remarkable capabilities to comprehend human intentions, engage in reasoning, and design planning-like behavior. To further unleash the power of LLMs to accomplish complex tasks, there is a growing trend to build agent framework that equips LLMs, such as ChatGPT, with tool-use abilities to connect with massive external APIs. In this work, we introduce ModelScope-Agent, a general and customizable agent framework for real-world applications, based on open-source LLMs as controllers. It provides a user-friendly system library, with customizable engine design to support model training on multiple open-source LLMs, while also enabling seamless integration with both model APIs and common APIs in a unified way. To equip the LLMs with tool-use abilities, a comprehensive framework has been proposed spanning over tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation for practical real-world applications. Finally, we showcase ModelScopeGPT, a real-world intelligent assistant of ModelScope Community based on the ModelScope-Agent framework, which is able to connect open-source LLMs with more than 1000 public AI models and localized community knowledge in ModelScope. The ModelScope-Agent libraryhttps://github.com/modelscope/modelscope-agent and online demohttps://modelscope.cn/studios/damo/ModelScopeGPT/summary are now publicly available.
Tool Documentation Enables Zero-Shot Tool-Usage with Large Language Models
Today, large language models (LLMs) are taught to use new tools by providing a few demonstrations of the tool's usage. Unfortunately, demonstrations are hard to acquire, and can result in undesirable biased usage if the wrong demonstration is chosen. Even in the rare scenario that demonstrations are readily available, there is no principled selection protocol to determine how many and which ones to provide. As tasks grow more complex, the selection search grows combinatorially and invariably becomes intractable. Our work provides an alternative to demonstrations: tool documentation. We advocate the use of tool documentation, descriptions for the individual tool usage, over demonstrations. We substantiate our claim through three main empirical findings on 6 tasks across both vision and language modalities. First, on existing benchmarks, zero-shot prompts with only tool documentation are sufficient for eliciting proper tool usage, achieving performance on par with few-shot prompts. Second, on a newly collected realistic tool-use dataset with hundreds of available tool APIs, we show that tool documentation is significantly more valuable than demonstrations, with zero-shot documentation significantly outperforming few-shot without documentation. Third, we highlight the benefits of tool documentations by tackling image generation and video tracking using just-released unseen state-of-the-art models as tools. Finally, we highlight the possibility of using tool documentation to automatically enable new applications: by using nothing more than the documentation of GroundingDino, Stable Diffusion, XMem, and SAM, LLMs can re-invent the functionalities of the just-released Grounded-SAM and Track Anything models.
TalkPlay-Tools: Conversational Music Recommendation with LLM Tool Calling
While the recent developments in large language models (LLMs) have successfully enabled generative recommenders with natural language interactions, their recommendation behavior is limited, leaving other simpler yet crucial components such as metadata or attribute filtering underutilized in the system. We propose an LLM-based music recommendation system with tool calling to serve as a unified retrieval-reranking pipeline. Our system positions an LLM as an end-to-end recommendation system that interprets user intent, plans tool invocations, and orchestrates specialized components: boolean filters (SQL), sparse retrieval (BM25), dense retrieval (embedding similarity), and generative retrieval (semantic IDs). Through tool planning, the system predicts which types of tools to use, their execution order, and the arguments needed to find music matching user preferences, supporting diverse modalities while seamlessly integrating multiple database filtering methods. We demonstrate that this unified tool-calling framework achieves competitive performance across diverse recommendation scenarios by selectively employing appropriate retrieval methods based on user queries, envisioning a new paradigm for conversational music recommendation systems.
ToolVQA: A Dataset for Multi-step Reasoning VQA with External Tools
Integrating external tools into Large Foundation Models (LFMs) has emerged as a promising approach to enhance their problem-solving capabilities. While existing studies have demonstrated strong performance in tool-augmented Visual Question Answering (VQA), recent benchmarks reveal significant gaps in real-world tool-use proficiency, particularly in functionally diverse multimodal settings requiring multi-step reasoning. In this work, we introduce ToolVQA, a large-scale multimodal dataset comprising 23K instances, designed to bridge this gap. Unlike previous datasets that rely on synthetic scenarios and simplified queries, ToolVQA features real-world visual contexts and challenging implicit multi-step reasoning tasks, better aligning with real user interactions. To construct this dataset, we propose ToolEngine, a novel data generation pipeline that employs Depth-First Search (DFS) with a dynamic in-context example matching mechanism to simulate human-like tool-use reasoning. ToolVQA encompasses 10 multimodal tools across 7 diverse task domains, with an average inference length of 2.78 reasoning steps per instance. The fine-tuned 7B LFMs on ToolVQA not only achieve impressive performance on our test set but also surpass the large close-sourced model GPT-3.5-turbo on various out-of-distribution (OOD) datasets, demonstrating strong generalizability to real-world tool-use scenarios.
RefTool: Enhancing Model Reasoning with Reference-Guided Tool Creation
Tools enhance the reasoning capabilities of large language models (LLMs) in complex problem-solving tasks, but not all tasks have available tools. In the absence of predefined tools, prior works have explored instructing LLMs to generate tools on their own. However, such approaches rely heavily on the models' internal knowledge and would fail in domains beyond the LLMs' knowledge scope. To address this limitation, we propose RefTool, a reference-guided framework for automatic tool creation that leverages structured external materials such as textbooks. RefTool consists of two modules: (1) tool creation, where LLMs generate executable tools from reference content, validate them using illustrative examples, and organize them hierarchically into a toolbox; and (2) tool utilization, where LLMs navigate the toolbox structure to select and apply the appropriate tools to solve problems. Experiments on causality, physics, and chemistry benchmarks demonstrate that RefTool outperforms existing tool-creation and domain-specific reasoning methods by 11.3% on average accuracy, while being cost-efficient and broadly generalizable. Analyses reveal that grounding tool creation in references produces accurate and faithful tools, and that the hierarchical structure facilitates effective tool selection. RefTool enables LLMs to overcome knowledge limitations, demonstrating the value of grounding tool creation in external references for enhanced and generalizable reasoning.
Gorilla: Large Language Model Connected with Massive APIs
Large Language Models (LLMs) have seen an impressive wave of advances recently, with models now excelling in a variety of tasks, such as mathematical reasoning and program synthesis. However, their potential to effectively use tools via API calls remains unfulfilled. This is a challenging task even for today's state-of-the-art LLMs such as GPT-4, largely due to their inability to generate accurate input arguments and their tendency to hallucinate the wrong usage of an API call. We release Gorilla, a finetuned LLaMA-based model that surpasses the performance of GPT-4 on writing API calls. When combined with a document retriever, Gorilla demonstrates a strong capability to adapt to test-time document changes, enabling flexible user updates or version changes. It also substantially mitigates the issue of hallucination, commonly encountered when prompting LLMs directly. To evaluate the model's ability, we introduce APIBench, a comprehensive dataset consisting of HuggingFace, TorchHub, and TensorHub APIs. The successful integration of the retrieval system with Gorilla demonstrates the potential for LLMs to use tools more accurately, keep up with frequently updated documentation, and consequently increase the reliability and applicability of their outputs. Gorilla's code, model, data, and demo are available at https://gorilla.cs.berkeley.edu
OTC: Optimal Tool Calls via Reinforcement Learning
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.
Toolformer: Language Models Can Teach Themselves to Use Tools
Language models (LMs) exhibit remarkable abilities to solve new tasks from just a few examples or textual instructions, especially at scale. They also, paradoxically, struggle with basic functionality, such as arithmetic or factual lookup, where much simpler and smaller models excel. In this paper, we show that LMs can teach themselves to use external tools via simple APIs and achieve the best of both worlds. We introduce Toolformer, a model trained to decide which APIs to call, when to call them, what arguments to pass, and how to best incorporate the results into future token prediction. This is done in a self-supervised way, requiring nothing more than a handful of demonstrations for each API. We incorporate a range of tools, including a calculator, a Q\&A system, two different search engines, a translation system, and a calendar. Toolformer achieves substantially improved zero-shot performance across a variety of downstream tasks, often competitive with much larger models, without sacrificing its core language modeling abilities.
m&m's: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks
Real-world multi-modal problems are rarely solved by a single machine learning model, and often require multi-step computational plans that involve stitching several models. Tool-augmented LLMs hold tremendous promise for automating the generation of such computational plans. However, the lack of standardized benchmarks for evaluating LLMs as planners for multi-step multi-modal tasks has prevented a systematic study of planner design decisions. Should LLMs generate a full plan in a single shot or step-by-step? Should they invoke tools directly with Python code or through structured data formats like JSON? Does feedback improve planning? To answer these questions and more, we introduce m&m's: a benchmark containing 4K+ multi-step multi-modal tasks involving 33 tools that include multi-modal models, (free) public APIs, and image processing modules. For each of these task queries, we provide automatically generated plans using this realistic toolset. We further provide a high-quality subset of 1,565 task plans that are human-verified and correctly executable. With m&m's, we evaluate 6 popular LLMs with 2 planning strategies (multi-step vs. step-by-step planning), 2 plan formats (JSON vs. code), and 3 types of feedback (parsing/verification/execution). Finally, we summarize takeaways from our extensive experiments. Our dataset and code are available on HuggingFace (https://huggingface.co/datasets/zixianma/mnms) and Github (https://github.com/RAIVNLab/mnms).
CREATOR: Disentangling Abstract and Concrete Reasonings of Large Language Models through Tool Creation
Large Language Models (LLMs) have demonstrated significant progress in utilizing external APIs as tools for various tasks. However, their tool-using ability is limited by the availability of suitable APIs and the instability of implicit reasoning, particularly when simultaneously engaging in reasoning about plans and actual calculations. To address these limitations, we propose CREATOR, a novel framework that empowers LLMs to create their own tools through documentation and code realization. CREATOR disentangles the LLM's ability into two distinct phases: abstract tool creation and concrete decision execution, which results in improved LLM performance. We evaluate CREATOR on two established benchmarks: MATH, which consists of challenging math competition problems, and TabMWP, which includes diverse tabular contents for problem-solving. Remarkably, CREATOR significantly outperforms existing chain-of-thought (CoT), program-of-thought (PoT), and tool-using baselines on these two benchmarks. Additionally, we present a new dataset, Creation Challenge, comprising 2K diverse questions, to highlight the necessity and benefits of LLMs' tool creation ability in effectively addressing these problems. Furthermore, our research reveals that leveraging LLMs as tool creators facilitates knowledge transfer, and LLMs exhibit varying levels of tool creation abilities, enabling them to flexibly tackle diverse situations. Our study represents a promising avenue for maximizing the potential of LLMs and advancing toward truly intelligent and adaptable AI systems.
Re-Initialization Token Learning for Tool-Augmented Large Language Models
Large language models have demonstrated exceptional performance, yet struggle with complex tasks such as numerical reasoning, plan generation. Integrating external tools, such as calculators and databases, into large language models (LLMs) is crucial for enhancing problem-solving capabilities. Current methods assign a unique token to each tool, enabling LLMs to call tools through token prediction-similar to word generation. However, this approach fails to account for the relationship between tool and word tokens, limiting adaptability within pre-trained LLMs. To address this issue, we propose a novel token learning method that aligns tool tokens with the existing word embedding space from the perspective of initialization, thereby enhancing model performance. We begin by constructing prior token embeddings for each tool based on the tool's name or description, which are used to initialize and regularize the learnable tool token embeddings. This ensures the learned embeddings are well-aligned with the word token space, improving tool call accuracy. We evaluate the method on tasks such as numerical reasoning, knowledge-based question answering, and embodied plan generation using GSM8K-XL, FuncQA, KAMEL, and VirtualHome datasets. The results demonstrate clear improvements over recent baselines, including CoT, REACT, ICL, and ToolkenGPT, indicating that our approach effectively augments LLMs with tools through relevant tokens across diverse domains.
Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning
Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities. Effectively leveraging this potential for complex tasks hinges crucially on improving their ability to use tools. Synthesizing tool use data by simulating the real world is an effective approach. Nevertheless, our investigation reveals that training gains significantly decay as the scale of these data increases. The primary factor is the model's poor performance (a.k.a deficiency) in complex scenarios, which hinders learning from data using SFT. Driven by this objective, we propose an iterative reinforced fine-tuning strategy to continually guide the model to alleviate it. Specifically, we first identify deficiency-related data based on feedback from the policy model, then perform a Monte Carlo Tree Search to collect fine-grained preference pairs to pinpoint deficiencies. Subsequently, we update the policy model using preference optimization to align with ground truth and misalign with deficiencies. This process can be iterated. Moreover, before the iteration, we propose an easy-to-hard warm-up SFT strategy to facilitate learning from challenging data. The experiments demonstrate our models go beyond the same parametric models, outperforming many larger open-source and closed-source models. Additionally, it has achieved notable training gains in complex tool use scenarios.
Reverse Chain: A Generic-Rule for LLMs to Master Multi-API Planning
While enabling large language models to implement function calling (known as APIs) can greatly enhance the performance of LLMs, function calling is still a challenging task due to the complicated relations between different APIs, especially in a context-learning setting without fine-tuning. This paper proposes a simple yet controllable target-driven approach called Reverse Chain to empower LLMs with capabilities to use external APIs with only prompts. Given that most open-source LLMs have limited tool-use or tool-plan capabilities, LLMs in Reverse Chain are only employed to implement simple tasks, e.g., API selection and argument completion, and a generic rule is employed to implement a controllable multiple functions calling. In this generic rule, after selecting a final API to handle a given task via LLMs, we first ask LLMs to fill the required arguments from user query and context. Some missing arguments could be further completed by letting LLMs select another API based on API description before asking user. This process continues until a given task is completed. Extensive numerical experiments indicate an impressive capability of Reverse Chain on implementing multiple function calling. Interestingly enough, the experiments also reveal that tool-use capabilities of the existing LLMs, e.g., ChatGPT, can be greatly improved via Reverse Chain.
Prompt Design and Engineering: Introduction and Advanced Methods
Prompt design and engineering has become an important discipline in just the past few months. In this paper, we provide an introduction to the main concepts and design approaches. We also provide more advanced techniques all the way to those needed to design LLM-based agents. We finish by providing a list of existing tools for prompt engineering.
Efficient Tool Use with Chain-of-Abstraction Reasoning
To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.
Learning to Ask: When LLMs Meet Unclear Instruction
Equipped with the capability to call functions, modern large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone. However, the effective execution of these tools relies heavily not just on the advanced capabilities of LLMs but also on precise user instructions, which often cannot be ensured in the real world. To evaluate the performance of LLMs tool-use under imperfect instructions, we meticulously examine the real-world instructions queried from users, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench (NoisyToolBench). We find that due to the next-token prediction training objective, LLMs tend to arbitrarily generate the missed argument, which may lead to hallucinations and risks. To address this issue, we propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions. Moreover, to reduce the manual labor involved in user-LLM interaction and assess LLMs performance in tool utilization from both accuracy and efficiency perspectives, we design an automated evaluation tool named ToolEvaluator. Our experiments demonstrate that the AwN significantly outperforms existing frameworks for tool learning in the NoisyToolBench. We will release all related code and datasets to support future research.
Proving the Potential of Skeleton Based Action Recognition to Automate the Analysis of Manual Processes
In manufacturing sectors such as textiles and electronics, manual processes are a fundamental part of production. The analysis and monitoring of the processes is necessary for efficient production design. Traditional methods for analyzing manual processes are complex, expensive, and inflexible. Compared to established approaches such as Methods-Time-Measurement (MTM), machine learning (ML) methods promise: Higher flexibility, self-sufficient & permanent use, lower costs. In this work, based on a video stream, the current motion class in a manual assembly process is detected. With information on the current motion, Key-Performance-Indicators (KPIs) can be derived easily. A skeleton-based action recognition approach is taken, as this field recently shows major success in machine vision tasks. For skeleton-based action recognition in manual assembly, no sufficient pre-work could be found. Therefore, a ML pipeline is developed, to enable extensive research on different (pre-) processing methods and neural nets. Suitable well generalizing approaches are found, proving the potential of ML to enhance analyzation of manual processes. Models detect the current motion, performed by an operator in manual assembly, but the results can be transferred to all kinds of manual processes.
MUA-RL: Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use
With the recent rapid advancement of Agentic Intelligence, agentic tool use in LLMs has become increasingly important. During multi-turn interactions between agents and users, the dynamic, uncertain, and stochastic nature of user demands poses significant challenges to the agent's tool invocation capabilities. Agents are no longer expected to simply call tools to deliver a result; rather, they must iteratively refine their understanding of user needs through communication while simultaneously invoking tools to resolve user queries. Existing reinforcement learning (RL) approaches for tool use lack the integration of genuinely dynamic users during the RL training process. To bridge this gap, we introduce MUA-RL (Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use), a novel reinforcement learning framework that, for the first time in the field of agentic tool use, integrates LLM-simulated users into the reinforcement learning loop. MUA-RL aims to enable autonomous learning of models to communicate with users efficiently and use various tools to solve practical problems in dynamic multi-turn interactions. Evaluations are done on several multi-turn tool-using benchmarks (see Figure 1). Specifically, MUA-RL-32B achieves 67.3 on TAU2 Retail, 45.4 on TAU2 Airline, 28.3 on TAU2 Telecom, 28.4 on BFCL-V3 Multi Turn, and 82.5 on ACEBench Agent -- outperforming or matching the performance of larger open-source models such as DeepSeek-V3-0324 and Qwen3-235B-A22B in non-thinking settings.
StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models
Large Language Models (LLMs) have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluator system.
MeNTi: Bridging Medical Calculator and LLM Agent with Nested Tool Calling
Integrating tools into Large Language Models (LLMs) has facilitated the widespread application. Despite this, in specialized downstream task contexts, reliance solely on tools is insufficient to fully address the complexities of the real world. This particularly restricts the effective deployment of LLMs in fields such as medicine. In this paper, we focus on the downstream tasks of medical calculators, which use standardized tests to assess an individual's health status. We introduce MeNTi, a universal agent architecture for LLMs. MeNTi integrates a specialized medical toolkit and employs meta-tool and nested calling mechanisms to enhance LLM tool utilization. Specifically, it achieves flexible tool selection and nested tool calling to address practical issues faced in intricate medical scenarios, including calculator selection, slot filling, and unit conversion. To assess the capabilities of LLMs for quantitative assessment throughout the clinical process of calculator scenarios, we introduce CalcQA. This benchmark requires LLMs to use medical calculators to perform calculations and assess patient health status. CalcQA is constructed by professional physicians and includes 100 case-calculator pairs, complemented by a toolkit of 281 medical tools. The experimental results demonstrate significant performance improvements with our framework. This research paves new directions for applying LLMs in demanding scenarios of medicine.
EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos
Surgical workflow recognition has numerous potential medical applications, such as the automatic indexing of surgical video databases and the optimization of real-time operating room scheduling, among others. As a result, phase recognition has been studied in the context of several kinds of surgeries, such as cataract, neurological, and laparoscopic surgeries. In the literature, two types of features are typically used to perform this task: visual features and tool usage signals. However, the visual features used are mostly handcrafted. Furthermore, the tool usage signals are usually collected via a manual annotation process or by using additional equipment. In this paper, we propose a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information. In previous studies, it has been shown that the tool signals can provide valuable information in performing the phase recognition task. Thus, we present a novel CNN architecture, called EndoNet, that is designed to carry out the phase recognition and tool presence detection tasks in a multi-task manner. To the best of our knowledge, this is the first work proposing to use a CNN for multiple recognition tasks on laparoscopic videos. Extensive experimental comparisons to other methods show that EndoNet yields state-of-the-art results for both tasks.
Model Context Protocol (MCP) at First Glance: Studying the Security and Maintainability of MCP Servers
Although Foundation Models (FMs), such as GPT-4, are increasingly used in domains like finance and software engineering, reliance on textual interfaces limits these models' real-world interaction. To address this, FM providers introduced tool calling-triggering a proliferation of frameworks with distinct tool interfaces. In late 2024, Anthropic introduced the Model Context Protocol (MCP) to standardize this tool ecosystem, which has become the de facto standard with over eight million weekly SDK downloads. Despite its adoption, MCP's AI-driven, non-deterministic control flow introduces new risks to sustainability, security, and maintainability, warranting closer examination. Towards this end, we present the first large-scale empirical study of MCP servers. Using state-of-the-art health metrics and a hybrid analysis pipeline, combining a general-purpose static analysis tool with an MCP-specific scanner, we evaluate 1,899 open-source MCP servers to assess their health, security, and maintainability. Despite MCP servers demonstrating strong health metrics, we identify eight distinct vulnerabilities - only three overlapping with traditional software vulnerabilities. Additionally, 7.2% of servers contain general vulnerabilities and 5.5% exhibit MCP-specific tool poisoning. Regarding maintainability, while 66% exhibit code smells, 14.4% contain nine bug patterns overlapping with traditional open-source software projects. These findings highlight the need for MCP-specific vulnerability detection techniques while reaffirming the value of traditional analysis and refactoring practices.
T1: A Tool-Oriented Conversational Dataset for Multi-Turn Agentic Planning
Large Language Models (LLMs) have demonstrated impressive capabilities as intelligent agents capable of solving complex problems. However, effective planning in scenarios involving dependencies between API or tool calls-particularly in multi-turn conversations-remains a significant challenge. To address this, we introduce T1, a tool-augmented, multi-domain, multi-turn conversational dataset specifically designed to capture and manage inter-tool dependencies across diverse domains. T1 enables rigorous evaluation of agents' ability to coordinate tool use across nine distinct domains (4 single domain and 5 multi-domain) with the help of an integrated caching mechanism for both short- and long-term memory, while supporting dynamic replanning-such as deciding whether to recompute or reuse cached results. Beyond facilitating research on tool use and planning, T1 also serves as a benchmark for evaluating the performance of open-source language models. We present results powered by T1-Agent, highlighting their ability to plan and reason in complex, tool-dependent scenarios.
ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to solving complex problems. However, traditional methods, which finetune LLMs with tool demonstration data, can be both costly and restricted to a predefined set of tools. Recent in-context learning paradigm alleviates these issues, but the limited context length only allows for a few shots of demonstrations, leading to suboptimal understandings of the tools. Moreover, when there are numerous tools to choose from, in-context learning could completely fail to work. In this paper, we propose an alternative approach, ToolkenGPT, which combines the benefits of both sides. Our approach represents each tool as a token (toolken) and learns an embedding for it, enabling tool calls in the same way as generating a regular word token. Once a toolken is triggered, the LLM is prompted to complete arguments for the tool to execute. ToolkenGPT offers the flexibility to plug in an arbitrary number of tools by expanding the set of toolkens on the fly. In addition, it improves tool use by allowing extensive demonstration data for learning the toolken embeddings. In diverse domains, including numerical reasoning, knowledge-based question answering, and embodied plan generation, our approach effectively augments LLMs with tools and substantially outperforms various latest baselines. ToolkenGPT demonstrates the promising ability to use relevant tools from a large tool set in complex scenarios.
API-BLEND: A Comprehensive Corpora for Training and Benchmarking API LLMs
There is a growing need for Large Language Models (LLMs) to effectively use tools and external Application Programming Interfaces (APIs) to plan and complete tasks. As such, there is tremendous interest in methods that can acquire sufficient quantities of train and test data that involve calls to tools / APIs. Two lines of research have emerged as the predominant strategies for addressing this challenge. The first has focused on synthetic data generation techniques, while the second has involved curating task-adjacent datasets which can be transformed into API / Tool-based tasks. In this paper, we focus on the task of identifying, curating, and transforming existing datasets and, in turn, introduce API-BLEND, a large corpora for training and systematic testing of tool-augmented LLMs. The datasets mimic real-world scenarios involving API-tasks such as API / tool detection, slot filling, and sequencing of the detected APIs. We demonstrate the utility of the API-BLEND dataset for both training and benchmarking purposes.
ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby limiting real-world performance of agentic tasks. In this paper, we propose a novel Non-Autoregressive Iterative Generation framework, called ToolACE-MT, for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
ACEBench: Who Wins the Match Point in Tool Usage?
Large Language Models (LLMs) have demonstrated significant potential in decision-making and reasoning, particularly when integrated with various tools to effectively solve complex problems. However, existing benchmarks for evaluating LLMs' tool usage face several limitations: (1) limited evaluation scenarios, often lacking assessments in real multi-turn dialogue contexts; (2) narrow evaluation dimensions, with insufficient detailed assessments of how LLMs use tools; and (3) reliance on LLMs or real API executions for evaluation, which introduces significant overhead. To address these challenges, we introduce ACEBench, a comprehensive benchmark for assessing tool usage in LLMs. ACEBench categorizes data into three primary types based on evaluation methodology: Normal, Special, and Agent. "Normal" evaluates tool usage in basic scenarios; "Special" evaluates tool usage in situations with ambiguous or incomplete instructions; "Agent" evaluates tool usage through multi-agent interactions to simulate real-world, multi-turn dialogues. We conducted extensive experiments using ACEBench, analyzing various LLMs in-depth and providing a more granular examination of error causes across different data types.
ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search
Large language models (LLMs) have demonstrated powerful decision-making and planning capabilities in solving complicated real-world problems. LLM-based autonomous agents can interact with diverse tools (e.g., functional APIs) and generate solution plans that execute a series of API function calls in a step-by-step manner. The multitude of candidate API function calls significantly expands the action space, amplifying the critical need for efficient action space navigation. However, existing methods either struggle with unidirectional exploration in expansive action spaces, trapped into a locally optimal solution, or suffer from exhaustively traversing all potential actions, causing inefficient navigation. To address these issues, we propose ToolChain*, an efficient tree search-based planning algorithm for LLM-based agents. It formulates the entire action space as a decision tree, where each node represents a possible API function call involved in a solution plan. By incorporating the A* search algorithm with task-specific cost function design, it efficiently prunes high-cost branches that may involve incorrect actions, identifying the most low-cost valid path as the solution. Extensive experiments on multiple tool-use and reasoning tasks demonstrate that ToolChain* efficiently balances exploration and exploitation within an expansive action space. It outperforms state-of-the-art baselines on planning and reasoning tasks by 3.1% and 3.5% on average while requiring 7.35x and 2.31x less time, respectively.
AssetOpsBench: Benchmarking AI Agents for Task Automation in Industrial Asset Operations and Maintenance
AI for Industrial Asset Lifecycle Management aims to automate complex operational workflows -- such as condition monitoring, maintenance planning, and intervention scheduling -- to reduce human workload and minimize system downtime. Traditional AI/ML approaches have primarily tackled these problems in isolation, solving narrow tasks within the broader operational pipeline. In contrast, the emergence of AI agents and large language models (LLMs) introduces a next-generation opportunity: enabling end-to-end automation across the entire asset lifecycle. This paper envisions a future where AI agents autonomously manage tasks that previously required distinct expertise and manual coordination. To this end, we introduce AssetOpsBench -- a unified framework and environment designed to guide the development, orchestration, and evaluation of domain-specific agents tailored for Industry 4.0 applications. We outline the key requirements for such holistic systems and provide actionable insights into building agents that integrate perception, reasoning, and control for real-world industrial operations. The software is available at https://github.com/IBM/AssetOpsBench.
CoSTAast: Cost-Sensitive Toolpath Agent for Multi-turn Image Editing
Text-to-image models like stable diffusion and DALLE-3 still struggle with multi-turn image editing. We decompose such a task as an agentic workflow (path) of tool use that addresses a sequence of subtasks by AI tools of varying costs. Conventional search algorithms require expensive exploration to find tool paths. While large language models (LLMs) possess prior knowledge of subtask planning, they may lack accurate estimations of capabilities and costs of tools to determine which to apply in each subtask. Can we combine the strengths of both LLMs and graph search to find cost-efficient tool paths? We propose a three-stage approach "CoSTA*" that leverages LLMs to create a subtask tree, which helps prune a graph of AI tools for the given task, and then conducts A* search on the small subgraph to find a tool path. To better balance the total cost and quality, CoSTA* combines both metrics of each tool on every subtask to guide the A* search. Each subtask's output is then evaluated by a vision-language model (VLM), where a failure will trigger an update of the tool's cost and quality on the subtask. Hence, the A* search can recover from failures quickly to explore other paths. Moreover, CoSTA* can automatically switch between modalities across subtasks for a better cost-quality trade-off. We build a novel benchmark of challenging multi-turn image editing, on which CoSTA* outperforms state-of-the-art image-editing models or agents in terms of both cost and quality, and performs versatile trade-offs upon user preference.
A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning
The availability of performant pre-trained models has led to a proliferation of fine-tuned expert models that are specialized to a particular domain or task. Model MoErging methods aim to recycle expert models to create an aggregate system with improved performance or generalization. A key component of MoErging methods is the creation of a router that decides which expert model(s) to use for a particular input or application. The promise, effectiveness, and large design space of MoErging has spurred the development of many new methods over the past few years. This rapid pace of development has made it challenging to compare different MoErging methods, which are rarely compared to one another and are often validated in different experimental setups. To remedy such gaps, we present a comprehensive survey of MoErging methods that includes a novel taxonomy for cataloging key design choices and clarifying suitable applications for each method. Apart from surveying MoErging research, we inventory software tools and applications that make use of MoErging. We additionally discuss related fields of study such as model merging, multitask learning, and mixture-of-experts models. Taken as a whole, our survey provides a unified overview of existing MoErging methods and creates a solid foundation for future work in this burgeoning field.
One Model to Critique Them All: Rewarding Agentic Tool-Use via Efficient Reasoning
Reward models (RMs) play a critical role in aligning large language models (LLMs) with human preferences. Yet in the domain of tool learning, the lack of RMs specifically designed for function-calling tasks has limited progress toward more capable agentic AI. We introduce ToolRM, a family of lightweight generative RMs tailored for general tool-use scenarios. To build these models, we propose a novel pipeline that constructs pairwise preference data using rule-based scoring and multidimensional sampling. This yields ToolPref-Pairwise-30K, a diverse, balanced, and challenging dataset of critique tasks that supports reinforcement learning with verifiable feedback. To evaluate tool-use RMs, we also introduce TRBench_{BFCL}, a benchmark built on the agentic evaluation suite BFCL. Trained on our constructed data, models from the Qwen3-4B/8B series achieve up to 14.28% higher accuracy, substantially outperforming frontier models such as Claude 4 and OpenAI o3 in pairwise reward judgments. Beyond training objectives, ToolRM generalizes to broader critique tasks, including Best-of-N sampling and self-correction. Experiments on ACEBench highlight its effectiveness and efficiency, enabling inference-time scaling and reducing output token usage by over 66%. We release data and model checkpoints to facilitate future research.
ToolBridge: An Open-Source Dataset to Equip LLMs with External Tool Capabilities
Through the integration of external tools, large language models (LLMs) such as GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving from elementary conversational agents to general-purpose assistants. We argue that the primary drivers of these advancements are the quality and diversity of the training data. However, the existing LLMs with external tool integration provide only limited transparency regarding their datasets and data collection methods, which has led to the initiation of this research. Specifically, in this paper, our objective is to elucidate the detailed process involved in constructing datasets that empower LLMs to effectively learn how to utilize external tools and make this information available to the public through the introduction of ToolBridge. ToolBridge proposes to employ a collection of general open-access datasets as its raw dataset pool and applies a series of strategies to identify appropriate data entries from the pool for external tool API insertions. By supervised fine-tuning on these curated data entries, LLMs can invoke external tools in appropriate contexts to boost their predictive accuracy, particularly for basic functions including data processing, numerical computation, and factual retrieval. Our experiments rigorously isolates model architectures and training configurations, focusing exclusively on the role of data. The experimental results indicate that LLMs trained on ToolBridge demonstrate consistent performance improvements on both standard benchmarks and custom evaluation datasets. All the associated code and data will be open-source at https://github.com/CharlesPikachu/ToolBridge, promoting transparency and facilitating the broader community to explore approaches for equipping LLMs with external tools capabilities.
ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models
Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications. Due to the lack of benchmarks, the community still needs to fully understand the hallucination issues within these models. To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH. Specifically, we assess the LLM's hallucinations through two perspectives: depth and breadth. In terms of depth, we propose a multi-level diagnostic process, including (1) solvability detection, (2) solution planning, and (3) missing-tool analysis. For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools. Furthermore, we developed seven tasks and collected 700 evaluation samples through multiple rounds of manual annotation. The results show the significant challenges presented by the ToolBH benchmark. The current advanced models Gemini-1.5-Pro and GPT-4o only achieve a total score of 45.3 and 37.0, respectively, on a scale of 100. In this benchmark, larger model parameters do not guarantee better performance; the training data and response strategies also play a crucial role in tool-enhanced LLM scenarios. Our diagnostic analysis indicates that the primary reason for model errors lies in assessing task solvability. Additionally, open-weight models suffer from performance drops with verbose replies, whereas proprietary models excel with longer reasoning.
Teaching Code LLMs to Use Autocompletion Tools in Repository-Level Code Generation
Recent code large language models (LLMs) have shown promising performance in generating standalone functions but face limitations in repository-level code generation due to their lack of awareness of repository-level dependencies (e.g., user-defined attributes), resulting in dependency errors such as undefined-variable and no-member errors. In this work, we introduce ToolGen, an approach that integrates autocompletion tools into the code LLM generation process to address these dependencies. ToolGen comprises two main phases: Trigger Insertion and Model Fine-tuning (Offline), and Tool-integrated Code Generation (Online). During the offline phase, ToolGen augments functions within a given code corpus with a special mark token, indicating positions to trigger autocompletion tools. These augmented functions, along with their corresponding docstrings, are then used to fine-tune a selected code LLM. In the online phase, ToolGen iteratively generates functions by predicting tokens step-by-step using the fine-tuned LLM. Whenever a mark token is encountered, ToolGen invokes the autocompletion tool to suggest code completions and selects the most appropriate one. We conduct comprehensive experiments to evaluate ToolGen's effectiveness in repository-level code generation. To facilitate this evaluation, we create a benchmark comprising 680 real-world code repositories and introduce two new repository-level metrics: Dependency Coverage and Static Validity Rate. The results demonstrate that ToolGen significantly improves Dependency Coverage by 15.2% to 45.8% and Static Validity Rate by 10.9% to 42.2% across three distinct code LLMs, while maintaining competitive performance in widely-recognized similarity metrics. Furthermore, our generalizability evaluation confirms ToolGen's consistent performance when applied to diverse code LLMs, including various model architectures and scales.
