1 Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pretrained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis. 5 authors · Apr 24, 2023
- A Text-to-Speech Pipeline, Evaluation Methodology, and Initial Fine-Tuning Results for Child Speech Synthesis Speech synthesis has come a long way as current text-to-speech (TTS) models can now generate natural human-sounding speech. However, most of the TTS research focuses on using adult speech data and there has been very limited work done on child speech synthesis. This study developed and validated a training pipeline for fine-tuning state-of-the-art (SOTA) neural TTS models using child speech datasets. This approach adopts a multi-speaker TTS retuning workflow to provide a transfer-learning pipeline. A publicly available child speech dataset was cleaned to provide a smaller subset of approximately 19 hours, which formed the basis of our fine-tuning experiments. Both subjective and objective evaluations were performed using a pretrained MOSNet for objective evaluation and a novel subjective framework for mean opinion score (MOS) evaluations. Subjective evaluations achieved the MOS of 3.95 for speech intelligibility, 3.89 for voice naturalness, and 3.96 for voice consistency. Objective evaluation using a pretrained MOSNet showed a strong correlation between real and synthetic child voices. Speaker similarity was also verified by calculating the cosine similarity between the embeddings of utterances. An automatic speech recognition (ASR) model is also used to provide a word error rate (WER) comparison between the real and synthetic child voices. The final trained TTS model was able to synthesize child-like speech from reference audio samples as short as 5 seconds. 5 authors · Mar 22, 2022
- Segment Anything in Medical Images and Videos: Benchmark and Deployment Recent advances in segmentation foundation models have enabled accurate and efficient segmentation across a wide range of natural images and videos, but their utility to medical data remains unclear. In this work, we first present a comprehensive benchmarking of the Segment Anything Model 2 (SAM2) across 11 medical image modalities and videos and point out its strengths and weaknesses by comparing it to SAM1 and MedSAM. Then, we develop a transfer learning pipeline and demonstrate SAM2 can be quickly adapted to medical domain by fine-tuning. Furthermore, we implement SAM2 as a 3D slicer plugin and Gradio API for efficient 3D image and video segmentation. The code has been made publicly available at https://github.com/bowang-lab/MedSAM. 7 authors · Aug 6, 2024
- Improved Child Text-to-Speech Synthesis through Fastpitch-based Transfer Learning Speech synthesis technology has witnessed significant advancements in recent years, enabling the creation of natural and expressive synthetic speech. One area of particular interest is the generation of synthetic child speech, which presents unique challenges due to children's distinct vocal characteristics and developmental stages. This paper presents a novel approach that leverages the Fastpitch text-to-speech (TTS) model for generating high-quality synthetic child speech. This study uses the transfer learning training pipeline. The approach involved finetuning a multi-speaker TTS model to work with child speech. We use the cleaned version of the publicly available MyST dataset (55 hours) for our finetuning experiments. We also release a prototype dataset of synthetic speech samples generated from this research together with model code to support further research. By using a pretrained MOSNet, we conducted an objective assessment that showed a significant correlation between real and synthetic child voices. Additionally, to validate the intelligibility of the generated speech, we employed an automatic speech recognition (ASR) model to compare the word error rates (WER) of real and synthetic child voices. The speaker similarity between the real and generated speech is also measured using a pretrained speaker encoder. 2 authors · Nov 7, 2023
4 MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving Solving mathematical problems using computer-verifiable languages like Lean has significantly impacted mathematical and computer science communities. State-of-the-art methods utilize single Large Language Models (LLMs) as agents or provers to either generate complete proof or perform tree searches. However, single-agent methods inherently lack a structured way to combine high-level reasoning in Natural Language (NL) with Formal Language (FL) verification feedback. To solve these issues, we propose MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought framework, (to the best of our knowledge), the first multi-agent framework for Lean4 theorem proving that balance high-level NL reasoning and FL verification in Long CoT. Using this structured interaction, our approach enables deeper insights and long-term coherence in proof generation, with which past methods struggle. We do this by leveraging emergent formal reasoning ability in Long CoT using our novel LoT-Transfer Learning training-inference pipeline. Extensive experiments show that our framework achieves 54.51% accuracy rate on the Lean4 version of MiniF2F-Test dataset, largely outperforming GPT-4 (22.95%), single-agent tree search (InternLM-Step-Prover, 50.70%), and whole-proof generation (DeepSeek-Prover-v1.5, 48.36%) baselines. Furthermore, our findings highlight the potential of combining Long CoT with formal verification for a more insightful generation in a broader perspective. 9 authors · Mar 5
- GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery Gravitational lensing offers a powerful probe into the properties of dark matter and is crucial to infer cosmological parameters. The Legacy Survey of Space and Time (LSST) is predicted to find O(10^5) gravitational lenses over the next decade, demanding automated classifiers. In this work, we introduce GraViT, a PyTorch pipeline for gravitational lens detection that leverages extensive pretraining of state-of-the-art Vision Transformer (ViT) models and MLP-Mixer. We assess the impact of transfer learning on classification performance by examining data quality (source and sample size), model architecture (selection and fine-tuning), training strategies (augmentation, normalization, and optimization), and ensemble predictions. This study reproduces the experiments in a previous systematic comparison of neural networks and provides insights into the detectability of strong gravitational lenses on that common test sample. We fine-tune ten architectures using datasets from HOLISMOKES VI and SuGOHI X, and benchmark them against convolutional baselines, discussing complexity and inference-time analysis. 7 authors · Aug 29
- Universal Embedding Function for Traffic Classification via QUIC Domain Recognition Pretraining: A Transfer Learning Success Encrypted traffic classification (TC) methods must adapt to new protocols and extensions as well as to advancements in other machine learning fields. In this paper, we follow a transfer learning setup best known from computer vision. We first pretrain an embedding model on a complex task with a large number of classes and then transfer it to five well-known TC datasets. The pretraining task is recognition of SNI domains in encrypted QUIC traffic, which in itself is a problem for network monitoring due to the growing adoption of TLS Encrypted Client Hello. Our training pipeline -- featuring a disjoint class setup, ArcFace loss function, and a modern deep learning architecture -- aims to produce universal embeddings applicable across tasks. The proposed solution, based on nearest neighbors search in the embedding space, surpasses SOTA performance on four of the five TC datasets. A comparison with a baseline method utilizing raw packet sequences revealed unexpected findings with potential implications for the broader TC field. We published the model architecture, trained weights, and transfer learning experiments. 4 authors · Feb 18
- Spanish TrOCR: Leveraging Transfer Learning for Language Adaptation This study explores the transfer learning capabilities of the TrOCR architecture to Spanish. TrOCR is a transformer-based Optical Character Recognition (OCR) model renowned for its state-of-the-art performance in English benchmarks. Inspired by Li et al. assertion regarding its adaptability to multilingual text recognition, we investigate two distinct approaches to adapt the model to a new language: integrating an English TrOCR encoder with a language specific decoder and train the model on this specific language, and fine-tuning the English base TrOCR model on a new language data. Due to the scarcity of publicly available datasets, we present a resource-efficient pipeline for creating OCR datasets in any language, along with a comprehensive benchmark of the different image generation methods employed with a focus on Visual Rich Documents (VRDs). Additionally, we offer a comparative analysis of the two approaches for the Spanish language, demonstrating that fine-tuning the English TrOCR on Spanish yields superior recognition than the language specific decoder for a fixed dataset size. We evaluate our model employing character and word error rate metrics on a public available printed dataset, comparing the performance against other open-source and cloud OCR spanish models. As far as we know, these resources represent the best open-source model for OCR in Spanish. The Spanish TrOCR models are publicly available on HuggingFace [20] and the code to generate the dataset is available on Github [25]. 2 authors · Jul 9, 2024
- Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference Few-shot learning (FSL) is an important and topical problem in computer vision that has motivated extensive research into numerous methods spanning from sophisticated meta-learning methods to simple transfer learning baselines. We seek to push the limits of a simple-but-effective pipeline for more realistic and practical settings of few-shot image classification. To this end, we explore few-shot learning from the perspective of neural network architecture, as well as a three stage pipeline of network updates under different data supplies, where unsupervised external data is considered for pre-training, base categories are used to simulate few-shot tasks for meta-training, and the scarcely labelled data of an novel task is taken for fine-tuning. We investigate questions such as: (1) How pre-training on external data benefits FSL? (2) How state-of-the-art transformer architectures can be exploited? and (3) How fine-tuning mitigates domain shift? Ultimately, we show that a simple transformer-based pipeline yields surprisingly good performance on standard benchmarks such as Mini-ImageNet, CIFAR-FS, CDFSL and Meta-Dataset. Our code and demo are available at https://hushell.github.io/pmf. 5 authors · Apr 14, 2022
- Disengagement Cause-and-Effect Relationships Extraction Using an NLP Pipeline The advancement in machine learning and artificial intelligence is promoting the testing and deployment of autonomous vehicles (AVs) on public roads. The California Department of Motor Vehicles (CA DMV) has launched the Autonomous Vehicle Tester Program, which collects and releases reports related to Autonomous Vehicle Disengagement (AVD) from autonomous driving. Understanding the causes of AVD is critical to improving the safety and stability of the AV system and provide guidance for AV testing and deployment. In this work, a scalable end-to-end pipeline is constructed to collect, process, model, and analyze the disengagement reports released from 2014 to 2020 using natural language processing deep transfer learning. The analysis of disengagement data using taxonomy, visualization and statistical tests revealed the trends of AV testing, categorized cause frequency, and significant relationships between causes and effects of AVD. We found that (1) manufacturers tested AVs intensively during the Spring and/or Winter, (2) test drivers initiated more than 80% of the disengagement while more than 75% of the disengagement were led by errors in perception, localization & mapping, planning and control of the AV system itself, and (3) there was a significant relationship between the initiator of AVD and the cause category. This study serves as a successful practice of deep transfer learning using pre-trained models and generates a consolidated disengagement database allowing further investigation for other researchers. 3 authors · Nov 5, 2021
- Multi-Type-TD-TSR -- Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition: from OCR to Structured Table Representations As global trends are shifting towards data-driven industries, the demand for automated algorithms that can convert digital images of scanned documents into machine readable information is rapidly growing. Besides the opportunity of data digitization for the application of data analytic tools, there is also a massive improvement towards automation of processes, which previously would require manual inspection of the documents. Although the introduction of optical character recognition technologies mostly solved the task of converting human-readable characters from images into machine-readable characters, the task of extracting table semantics has been less focused on over the years. The recognition of tables consists of two main tasks, namely table detection and table structure recognition. Most prior work on this problem focuses on either task without offering an end-to-end solution or paying attention to real application conditions like rotated images or noise artefacts inside the document image. Recent work shows a clear trend towards deep learning approaches coupled with the use of transfer learning for the task of table structure recognition due to the lack of sufficiently large datasets. In this paper we present a multistage pipeline named Multi-Type-TD-TSR, which offers an end-to-end solution for the problem of table recognition. It utilizes state-of-the-art deep learning models for table detection and differentiates between 3 different types of tables based on the tables' borders. For the table structure recognition we use a deterministic non-data driven algorithm, which works on all table types. We additionally present two algorithms. One for unbordered tables and one for bordered tables, which are the base of the used table structure recognition algorithm. We evaluate Multi-Type-TD-TSR on the ICDAR 2019 table structure recognition dataset and achieve a new state-of-the-art. 4 authors · May 23, 2021
- Unsupervised Paraphrasing with Pretrained Language Models Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled data that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning. 6 authors · Oct 24, 2020
1 AI-Generated Lecture Slides for Improving Slide Element Detection and Retrieval Lecture slide element detection and retrieval are key problems in slide understanding. Training effective models for these tasks often depends on extensive manual annotation. However, annotating large volumes of lecture slides for supervised training is labor intensive and requires domain expertise. To address this, we propose a large language model (LLM)-guided synthetic lecture slide generation pipeline, SynLecSlideGen, which produces high-quality, coherent and realistic slides. We also create an evaluation benchmark, namely RealSlide by manually annotating 1,050 real lecture slides. To assess the utility of our synthetic slides, we perform few-shot transfer learning on real data using models pre-trained on them. Experimental results show that few-shot transfer learning with pretraining on synthetic slides significantly improves performance compared to training only on real data. This demonstrates that synthetic data can effectively compensate for limited labeled lecture slides. The code and resources of our work are publicly available on our project website: https://synslidegen.github.io/. 5 authors · Jun 30
1 LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and concepts, lifelong learning in decision-making (LLDM) also necessitates the transfer of procedural knowledge, such as actions and behaviors. To advance research in LLDM, we introduce LIBERO, a novel benchmark of lifelong learning for robot manipulation. Specifically, LIBERO highlights five key research topics in LLDM: 1) how to efficiently transfer declarative knowledge, procedural knowledge, or the mixture of both; 2) how to design effective policy architectures and 3) effective algorithms for LLDM; 4) the robustness of a lifelong learner with respect to task ordering; and 5) the effect of model pretraining for LLDM. We develop an extendible procedural generation pipeline that can in principle generate infinitely many tasks. For benchmarking purpose, we create four task suites (130 tasks in total) that we use to investigate the above-mentioned research topics. To support sample-efficient learning, we provide high-quality human-teleoperated demonstration data for all tasks. Our extensive experiments present several insightful or even unexpected discoveries: sequential finetuning outperforms existing lifelong learning methods in forward transfer, no single visual encoder architecture excels at all types of knowledge transfer, and naive supervised pretraining can hinder agents' performance in the subsequent LLDM. Check the website at https://libero-project.github.io for the code and the datasets. 7 authors · Jun 5, 2023
- General-to-Specific Transfer Labeling for Domain Adaptable Keyphrase Generation Training keyphrase generation (KPG) models require a large amount of annotated data, which can be prohibitively expensive and often limited to specific domains. In this study, we first demonstrate that large distribution shifts among different domains severely hinder the transferability of KPG models. We then propose a three-stage pipeline, which gradually guides KPG models' learning focus from general syntactical features to domain-related semantics, in a data-efficient manner. With Domain-general Phrase pre-training, we pre-train Sequence-to-Sequence models with generic phrase annotations that are widely available on the web, which enables the models to generate phrases in a wide range of domains. The resulting model is then applied in the Transfer Labeling stage to produce domain-specific pseudo keyphrases, which help adapt models to a new domain. Finally, we fine-tune the model with limited data with true labels to fully adapt it to the target domain. Our experiment results show that the proposed process can produce good-quality keyphrases in new domains and achieve consistent improvements after adaptation with limited in-domain annotated data. All code and datasets are available at https://github.com/memray/OpenNMT-kpg-release. 5 authors · Aug 20, 2022
- Learning Audio-Video Modalities from Image Captions A major challenge in text-video and text-audio retrieval is the lack of large-scale training data. This is unlike image-captioning, where datasets are in the order of millions of samples. To close this gap we propose a new video mining pipeline which involves transferring captions from image captioning datasets to video clips with no additional manual effort. Using this pipeline, we create a new large-scale, weakly labelled audio-video captioning dataset consisting of millions of paired clips and captions. We show that training a multimodal transformed based model on this data achieves competitive performance on video retrieval and video captioning, matching or even outperforming HowTo100M pretraining with 20x fewer clips. We also show that our mined clips are suitable for text-audio pretraining, and achieve state of the art results for the task of audio retrieval. 7 authors · Apr 1, 2022
- Few-Shot Font Generation by Learning Fine-Grained Local Styles Few-shot font generation (FFG), which aims to generate a new font with a few examples, is gaining increasing attention due to the significant reduction in labor cost. A typical FFG pipeline considers characters in a standard font library as content glyphs and transfers them to a new target font by extracting style information from the reference glyphs. Most existing solutions explicitly disentangle content and style of reference glyphs globally or component-wisely. However, the style of glyphs mainly lies in the local details, i.e. the styles of radicals, components, and strokes together depict the style of a glyph. Therefore, even a single character can contain different styles distributed over spatial locations. In this paper, we propose a new font generation approach by learning 1) the fine-grained local styles from references, and 2) the spatial correspondence between the content and reference glyphs. Therefore, each spatial location in the content glyph can be assigned with the right fine-grained style. To this end, we adopt cross-attention over the representation of the content glyphs as the queries and the representations of the reference glyphs as the keys and values. Instead of explicitly disentangling global or component-wise modeling, the cross-attention mechanism can attend to the right local styles in the reference glyphs and aggregate the reference styles into a fine-grained style representation for the given content glyphs. The experiments show that the proposed method outperforms the state-of-the-art methods in FFG. In particular, the user studies also demonstrate the style consistency of our approach significantly outperforms previous methods. 10 authors · May 20, 2022