new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 12

MixLLM: LLM Quantization with Global Mixed-precision between Output-features and Highly-efficient System Design

Quantization has become one of the most effective methodologies to compress LLMs into smaller size. However, the existing quantization solutions still show limitations of either non-negligible accuracy drop or system inefficiency. In this paper, we make a comprehensive analysis of the general quantization principles on their effect to the triangle of accuracy, memory consumption and system efficiency. We propose MixLLM that explores the new optimization space of mixed-precision quantization between output features based on the insight that different output features matter differently in the model. MixLLM identifies the output features with high salience in the global view rather than within each single layer, effectively assigning the larger bit-width to output features that need it most to achieve good accuracy with low memory consumption. We present the sweet spot of quantization configuration of algorithm-system co-design that leads to high accuracy and system efficiency. To address the system challenge, we design the two-step dequantization to make use of the int8 Tensor Core easily and fast data type conversion to reduce dequantization overhead significantly, and present the software pipeline to overlap the memory access, dequantization and the MatMul to the best. Extensive experiments show that with only 10% more bits, the PPL increasement can be reduced from about 0.5 in SOTA to within 0.2 for Llama 3.1 70B, while on average MMLU-Pro improves by 0.93 over the SOTA of three popular models. In addition to its superior accuracy, MixLLM also achieves state-of-the-art system efficiency.

  • 3 authors
·
Dec 19, 2024 5

MixPE: Quantization and Hardware Co-design for Efficient LLM Inference

Transformer-based large language models (LLMs) have achieved remarkable success as model sizes continue to grow, yet their deployment remains challenging due to significant computational and memory demands. Quantization has emerged as a promising solution, and state-of-the-art quantization algorithms for LLMs introduce the need for mixed-precision matrix multiplication (mpGEMM), where lower-precision weights are multiplied with higher-precision activations. Despite its benefits, current hardware accelerators such as GPUs and TPUs lack native support for efficient mpGEMM, leading to inefficient dequantization operations in the main sequential loop. To address this limitation, we introduce MixPE, a specialized mixed-precision processing element designed for efficient low-bit quantization in LLM inference. MixPE leverages two key innovations to minimize dequantization overhead and unlock the full potential of low-bit quantization. First, recognizing that scale and zero point are shared within each quantization group, we propose performing dequantization after per-group mpGEMM, significantly reducing dequantization overhead. Second, instead of relying on conventional multipliers, MixPE utilizes efficient shift\&add operations for multiplication, optimizing both computation and energy efficiency. Our experimental results demonstrate that MixPE surpasses the state-of-the-art quantization accelerators by 2.6times speedup and 1.4times energy reduction.

  • 7 authors
·
Nov 25, 2024

VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers

The Diffusion Transformers Models (DiTs) have transitioned the network architecture from traditional UNets to transformers, demonstrating exceptional capabilities in image generation. Although DiTs have been widely applied to high-definition video generation tasks, their large parameter size hinders inference on edge devices. Vector quantization (VQ) can decompose model weight into a codebook and assignments, allowing extreme weight quantization and significantly reducing memory usage. In this paper, we propose VQ4DiT, a fast post-training vector quantization method for DiTs. We found that traditional VQ methods calibrate only the codebook without calibrating the assignments. This leads to weight sub-vectors being incorrectly assigned to the same assignment, providing inconsistent gradients to the codebook and resulting in a suboptimal result. To address this challenge, VQ4DiT calculates the candidate assignment set for each weight sub-vector based on Euclidean distance and reconstructs the sub-vector based on the weighted average. Then, using the zero-data and block-wise calibration method, the optimal assignment from the set is efficiently selected while calibrating the codebook. VQ4DiT quantizes a DiT XL/2 model on a single NVIDIA A100 GPU within 20 minutes to 5 hours depending on the different quantization settings. Experiments show that VQ4DiT establishes a new state-of-the-art in model size and performance trade-offs, quantizing weights to 2-bit precision while retaining acceptable image generation quality.

  • 6 authors
·
Aug 30, 2024 2

Scalable Training for Vector-Quantized Networks with 100% Codebook Utilization

Vector quantization (VQ) is a key component in discrete tokenizers for image generation, but its training is often unstable due to straight-through estimation bias, one-step-behind updates, and sparse codebook gradients, which lead to suboptimal reconstruction performance and low codebook usage. In this work, we analyze these fundamental challenges and provide a simple yet effective solution. To maintain high codebook usage in VQ networks (VQN) during learning annealing and codebook size expansion, we propose VQBridge, a robust, scalable, and efficient projector based on the map function method. VQBridge optimizes code vectors through a compress-process-recover pipeline, enabling stable and effective codebook training. By combining VQBridge with learning annealing, our VQN achieves full (100%) codebook usage across diverse codebook configurations, which we refer to as FVQ (FullVQ). Through extensive experiments, we demonstrate that FVQ is effective, scalable, and generalizable: it attains 100% codebook usage even with a 262k-codebook, achieves state-of-the-art reconstruction performance, consistently improves with larger codebooks, higher vector channels, or longer training, and remains effective across different VQ variants. Moreover, when integrated with LlamaGen, FVQ significantly enhances image generation performance, surpassing visual autoregressive models (VAR) by 0.5 and diffusion models (DiT) by 0.2 rFID, highlighting the importance of high-quality tokenizers for strong autoregressive image generation.

  • 7 authors
·
Sep 12

Addressing Representation Collapse in Vector Quantized Models with One Linear Layer

Vector Quantization (VQ) is a widely used method for converting continuous representations into discrete codes, which has become fundamental in unsupervised representation learning and latent generative models. However, VQ models are often hindered by the problem of representation collapse in the latent space, which leads to low codebook utilization and limits the scalability of the codebook for large-scale training. Existing methods designed to mitigate representation collapse typically reduce the dimensionality of latent space at the expense of model capacity, which do not fully resolve the core issue. In this study, we conduct a theoretical analysis of representation collapse in VQ models and identify its primary cause as the disjoint optimization of the codebook, where only a small subset of code vectors are updated through gradient descent. To address this issue, we propose SimVQ, a novel method which reparameterizes the code vectors through a linear transformation layer based on a learnable latent basis. This transformation optimizes the entire linear space spanned by the codebook, rather than merely updating the code vector selected by the nearest-neighbor search in vanilla VQ models. Although it is commonly understood that the multiplication of two linear matrices is equivalent to applying a single linear layer, our approach works surprisingly well in resolving the collapse issue in VQ models with just one linear layer. We validate the efficacy of SimVQ through extensive experiments across various modalities, including image and audio data with different model architectures. Our code is available at https://github.com/youngsheen/SimVQ.

  • 4 authors
·
Nov 4, 2024

SAQ: Pushing the Limits of Vector Quantization through Code Adjustment and Dimension Segmentation

Approximate Nearest Neighbor Search (ANNS) plays a critical role in applications such as search engines, recommender systems, and RAG for LLMs. Vector quantization (VQ), a crucial technique for ANNS, is commonly used to reduce space overhead and accelerate distance computations. However, despite significant research advances, state-of-the-art VQ methods still face challenges in balancing encoding efficiency and quantization accuracy. To address these limitations, we propose a novel VQ method called SAQ. To improve accuracy, SAQ employs a new dimension segmentation technique to strategically partition PCA-projected vectors into segments along their dimensions. By prioritizing leading dimension segments with larger magnitudes, SAQ allocates more bits to high-impact segments, optimizing the use of the available space quota. An efficient dynamic programming algorithm is developed to optimize dimension segmentation and bit allocation, ensuring minimal quantization error. To speed up vector encoding, SAQ devises a code adjustment technique to first quantize each dimension independently and then progressively refine quantized vectors using a coordinate-descent-like approach to avoid exhaustive enumeration. Extensive experiments demonstrate SAQ's superiority over classical methods (e.g., PQ, PCA) and recent state-of-the-art approaches (e.g., LVQ, Extended RabitQ). SAQ achieves up to 80% reduction in quantization error and accelerates encoding speed by over 80x compared to Extended RabitQ.

  • 5 authors
·
Sep 15

Learning Low-Rank Representations for Model Compression

Vector Quantization (VQ) is an appealing model compression method to obtain a tiny model with less accuracy loss. While methods to obtain better codebooks and codes under fixed clustering dimensionality have been extensively studied, optimizations of the vectors in favour of clustering performance are not carefully considered, especially via the reduction of vector dimensionality. This paper reports our recent progress on the combination of dimensionality compression and vector quantization, proposing a Low-Rank Representation Vector Quantization (LR^2VQ) method that outperforms previous VQ algorithms in various tasks and architectures. LR^2VQ joins low-rank representation with subvector clustering to construct a new kind of building block that is directly optimized through end-to-end training over the task loss. Our proposed design pattern introduces three hyper-parameters, the number of clusters k, the size of subvectors m and the clustering dimensionality d. In our method, the compression ratio could be directly controlled by m, and the final accuracy is solely determined by d. We recognize d as a trade-off between low-rank approximation error and clustering error and carry out both theoretical analysis and experimental observations that empower the estimation of the proper d before fine-tunning. With a proper d, we evaluate LR^2VQ with ResNet-18/ResNet-50 on ImageNet classification datasets, achieving 2.8\%/1.0\% top-1 accuracy improvements over the current state-of-the-art VQ-based compression algorithms with 43times/31times compression factor.

  • 3 authors
·
Nov 21, 2022

Enabling Fast 2-bit LLM on GPUs: Memory Alignment and Asynchronous Dequantization

Large language models (LLMs) have demonstrated impressive abilities in various domains while the inference cost is expensive. The state-of-the-art methods use 2-bit quantization for mainstream LLMs. However, challenges still exist: (1) Nonnegligible accuracy loss for 2-bit quantization. Weights are quantized by groups, while the ranges of weights are large in some groups, resulting in large quantization errors and nonnegligible accuracy loss (e.g. >3% for Llama2-7b with 2-bit quantization in GPTQ and Greenbit). (2) Limited accuracy improvement by adding 4-bit weights. Increasing 10% extra average bit more 4-bit weights only leads to <0.5% accuracy improvement on a quantized Llama2-7b. (3) Time-consuming dequantization operations on GPUs. The dequantization operations lead to >50% execution time, hindering the potential of reducing LLM inference cost. To tackle these challenges, we propose the following techniques: (1) We only quantize a small fraction of groups with the larger range using 4-bit with memory alignment consideration on GPUs.(2) We design the asynchronous dequantization on GPUs, leading to up to 3.92X speedup. We conduct extensive experiments on different model sizes. We achieve 2.85-bit for each weight and the end-to-end speedup for Llama2-7b is 1.74X over the original model, and we reduce both runtime cost and hardware cost by up to 2.70X and 2.81X with less GPU requirements.

  • 8 authors
·
Nov 27, 2023

Towards Accurate Image Coding: Improved Autoregressive Image Generation with Dynamic Vector Quantization

Existing vector quantization (VQ) based autoregressive models follow a two-stage generation paradigm that first learns a codebook to encode images as discrete codes, and then completes generation based on the learned codebook. However, they encode fixed-size image regions into fixed-length codes and ignore their naturally different information densities, which results in insufficiency in important regions and redundancy in unimportant ones, and finally degrades the generation quality and speed. Moreover, the fixed-length coding leads to an unnatural raster-scan autoregressive generation. To address the problem, we propose a novel two-stage framework: (1) Dynamic-Quantization VAE (DQ-VAE) which encodes image regions into variable-length codes based on their information densities for an accurate and compact code representation. (2) DQ-Transformer which thereby generates images autoregressively from coarse-grained (smooth regions with fewer codes) to fine-grained (details regions with more codes) by modeling the position and content of codes in each granularity alternately, through a novel stacked-transformer architecture and shared-content, non-shared position input layers designs. Comprehensive experiments on various generation tasks validate our superiorities in both effectiveness and efficiency. Code will be released at https://github.com/CrossmodalGroup/DynamicVectorQuantization.

  • 4 authors
·
May 19, 2023

VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models

Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits). It reduces memory requirements, optimizes storage costs, and decreases memory bandwidth needs during inference. However, due to numerical representation limitations, traditional scalar-based weight quantization struggles to achieve such extreme low-bit. Recent research on Vector Quantization (VQ) for LLMs has demonstrated the potential for extremely low-bit model quantization by compressing vectors into indices using lookup tables. In this paper, we introduce Vector Post-Training Quantization (VPTQ) for extremely low-bit quantization of LLMs. We use Second-Order Optimization to formulate the LLM VQ problem and guide our quantization algorithm design by solving the optimization. We further refine the weights using Channel-Independent Second-Order Optimization for a granular VQ. In addition, by decomposing the optimization problem, we propose a brief and effective codebook initialization algorithm. We also extend VPTQ to support residual and outlier quantization, which enhances model accuracy and further compresses the model. Our experimental results show that VPTQ reduces model quantization perplexity by 0.01-0.34 on LLaMA-2, 0.38-0.68 on Mistral-7B, 4.41-7.34 on LLaMA-3 over SOTA at 2-bit, with an average accuracy improvement of 0.79-1.5% on LLaMA-2, 1% on Mistral-7B, 11-22% on LLaMA-3 on QA tasks on average. We only utilize 10.4-18.6% of the quantization algorithm execution time, resulting in a 1.6-1.8times increase in inference throughput compared to SOTA.

  • 8 authors
·
Sep 25, 2024 4

OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting

Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and accelerating Large Language Models (LLMs). The major challenge in LLM quantization is that uneven and heavy-tailed data distributions can expand the quantization range, thereby reducing bit precision for most values. Recent methods attempt to eliminate outliers and balance inter-channel differences by employing linear transformations; however, they remain heuristic and are often overlook optimizing the data distribution across the entire quantization space.In this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel metric that effectively assesses the quantizability of transformed data by measuring the space utilization of the data in the quantization space. We complement QSUR with mathematical derivations that examine the effects and limitations of various transformations, guiding our development of Orthogonal and Scaling Transformation-based Quantization (OSTQuant). OSQuant employs a learnable equivalent transformation, consisting of an orthogonal transformation and a scaling transformation, to optimize the distributions of weights and activations across the entire quantization space. Futhermore, we propose the KL-Top loss function, designed to mitigate noise during optimization while retaining richer semantic information within the limited calibration data imposed by PTQ. OSTQuant outperforms existing work on various LLMs and benchmarks. In the W4-only setting, it retains 99.5\% of the floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the performance gap by 32\% on the LLaMA-3-8B model compared to state-of-the-art methods. https://github.com/BrotherHappy/OSTQuant{https://github.com/BrotherHappy/OSTQuant}.

  • 9 authors
·
Jan 23

Pyramid Vector Quantization for LLMs

Recent works on compression of large language models (LLM) using quantization considered reparameterizing the architecture such that weights are distributed on the sphere. This demonstratively improves the ability to quantize by increasing the mathematical notion of coherence, resulting in fewer weight outliers without affecting the network output. In this work, we aim to further exploit this spherical geometry of the weights when performing quantization by considering Pyramid Vector Quantization (PVQ) for large language models. Arranging points evenly on the sphere is notoriously difficult, especially in high dimensions, and in case approximate solutions exists, representing points explicitly in a codebook is typically not feasible due to its additional memory cost. Instead, PVQ uses a fixed integer lattice on the sphere by projecting points onto the 1-sphere, which allows for efficient encoding and decoding without requiring an explicit codebook in memory. To obtain a practical algorithm, we propose to combine PVQ with scale quantization for which we derive theoretically optimal quantizations, under empirically verified assumptions. Further, we extend pyramid vector quantization to use Hessian information to minimize quantization error under expected feature activations, instead of only relying on weight magnitudes. Experimentally, we achieves state-of-the-art quantization performance with pareto-optimal trade-off between performance and bits per weight and bits per activation, compared to compared methods. On weight-only, we find that we can quantize a Llama-3 70B model to 3.25 bits per weight and retain 98\% accuracy on downstream tasks.

  • 4 authors
·
Oct 22, 2024

SVDQunat: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models

Diffusion models have been proven highly effective at generating high-quality images. However, as these models grow larger, they require significantly more memory and suffer from higher latency, posing substantial challenges for deployment. In this work, we aim to accelerate diffusion models by quantizing their weights and activations to 4 bits. At such an aggressive level, both weights and activations are highly sensitive, where conventional post-training quantization methods for large language models like smoothing become insufficient. To overcome this limitation, we propose SVDQuant, a new 4-bit quantization paradigm. Different from smoothing which redistributes outliers between weights and activations, our approach absorbs these outliers using a low-rank branch. We first consolidate the outliers by shifting them from activations to weights, then employ a high-precision low-rank branch to take in the weight outliers with Singular Value Decomposition (SVD). This process eases the quantization on both sides. However, na\"{\i}vely running the low-rank branch independently incurs significant overhead due to extra data movement of activations, negating the quantization speedup. To address this, we co-design an inference engine Nunchaku that fuses the kernels of the low-rank branch into those of the low-bit branch to cut off redundant memory access. It can also seamlessly support off-the-shelf low-rank adapters (LoRAs) without the need for re-quantization. Extensive experiments on SDXL, PixArt-Sigma, and FLUX.1 validate the effectiveness of SVDQuant in preserving image quality. We reduce the memory usage for the 12B FLUX.1 models by 3.5times, achieving 3.0times speedup over the 4-bit weight-only quantized baseline on the 16GB laptop 4090 GPU, paving the way for more interactive applications on PCs. Our quantization library and inference engine are open-sourced.

  • 10 authors
·
Nov 7, 2024 3

FlatQuant: Flatness Matters for LLM Quantization

Recently, quantization has been widely used for the compression and acceleration of large language models~(LLMs). Due to the outliers in LLMs, it is crucial to flatten weights and activations to minimize quantization error with the equally spaced quantization points. Prior research explores various pre-quantization transformations to suppress outliers, such as per-channel scaling and Hadamard transformation. However, we observe that these transformed weights and activations can still remain steep and outspread. In this paper, we propose FlatQuant (Fast and Learnable Affine Transformation), a new post-training quantization approach to enhance flatness of weights and activations. Our approach identifies optimal affine transformations tailored to each linear layer, calibrated in hours via a lightweight objective. To reduce runtime overhead, we apply Kronecker decomposition to the transformation matrices, and fuse all operations in FlatQuant into a single kernel. Extensive experiments show that FlatQuant sets up a new state-of-the-art quantization benchmark. For instance, it achieves less than 1% accuracy drop for W4A4 quantization on the LLaMA-3-70B model, surpassing SpinQuant by 7.5%. For inference latency, FlatQuant reduces the slowdown induced by pre-quantization transformation from 0.26x of QuaRot to merely 0.07x, bringing up to 2.3x speedup for prefill and 1.7x speedup for decoding, respectively. Code is available at: https://github.com/ruikangliu/FlatQuant.

  • 13 authors
·
Oct 12, 2024 2

Equiangular Basis Vectors

We propose Equiangular Basis Vectors (EBVs) for classification tasks. In deep neural networks, models usually end with a k-way fully connected layer with softmax to handle different classification tasks. The learning objective of these methods can be summarized as mapping the learned feature representations to the samples' label space. While in metric learning approaches, the main objective is to learn a transformation function that maps training data points from the original space to a new space where similar points are closer while dissimilar points become farther apart. Different from previous methods, our EBVs generate normalized vector embeddings as "predefined classifiers" which are required to not only be with the equal status between each other, but also be as orthogonal as possible. By minimizing the spherical distance of the embedding of an input between its categorical EBV in training, the predictions can be obtained by identifying the categorical EBV with the smallest distance during inference. Various experiments on the ImageNet-1K dataset and other downstream tasks demonstrate that our method outperforms the general fully connected classifier while it does not introduce huge additional computation compared with classical metric learning methods. Our EBVs won the first place in the 2022 DIGIX Global AI Challenge, and our code is open-source and available at https://github.com/NJUST-VIPGroup/Equiangular-Basis-Vectors.

  • 3 authors
·
Mar 21, 2023

ADDP: Learning General Representations for Image Recognition and Generation with Alternating Denoising Diffusion Process

Image recognition and generation have long been developed independently of each other. With the recent trend towards general-purpose representation learning, the development of general representations for both recognition and generation tasks is also promoted. However, preliminary attempts mainly focus on generation performance, but are still inferior on recognition tasks. These methods are modeled in the vector-quantized (VQ) space, whereas leading recognition methods use pixels as inputs. Our key insights are twofold: (1) pixels as inputs are crucial for recognition tasks; (2) VQ tokens as reconstruction targets are beneficial for generation tasks. These observations motivate us to propose an Alternating Denoising Diffusion Process (ADDP) that integrates these two spaces within a single representation learning framework. In each denoising step, our method first decodes pixels from previous VQ tokens, then generates new VQ tokens from the decoded pixels. The diffusion process gradually masks out a portion of VQ tokens to construct the training samples. The learned representations can be used to generate diverse high-fidelity images and also demonstrate excellent transfer performance on recognition tasks. Extensive experiments show that our method achieves competitive performance on unconditional generation, ImageNet classification, COCO detection, and ADE20k segmentation. Importantly, our method represents the first successful development of general representations applicable to both generation and dense recognition tasks. Code shall be released.

  • 10 authors
·
Jun 8, 2023

VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations

Recent advancements in implicit neural representations have contributed to high-fidelity surface reconstruction and photorealistic novel view synthesis. However, the computational complexity inherent in these methodologies presents a substantial impediment, constraining the attainable frame rates and resolutions in practical applications. In response to this predicament, we propose VQ-NeRF, an effective and efficient pipeline for enhancing implicit neural representations via vector quantization. The essence of our method involves reducing the sampling space of NeRF to a lower resolution and subsequently reinstating it to the original size utilizing a pre-trained VAE decoder, thereby effectively mitigating the sampling time bottleneck encountered during rendering. Although the codebook furnishes representative features, reconstructing fine texture details of the scene remains challenging due to high compression rates. To overcome this constraint, we design an innovative multi-scale NeRF sampling scheme that concurrently optimizes the NeRF model at both compressed and original scales to enhance the network's ability to preserve fine details. Furthermore, we incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions. Extensive experiments demonstrate the effectiveness of our model in achieving the optimal trade-off between rendering quality and efficiency. Evaluation on the DTU, BlendMVS, and H3DS datasets confirms the superior performance of our approach.

  • 7 authors
·
Oct 22, 2023

QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving

Quantization can accelerate large language model (LLM) inference. Going beyond INT8 quantization, the research community is actively exploring even lower precision, such as INT4. Nonetheless, state-of-the-art INT4 quantization techniques only accelerate low-batch, edge LLM inference, failing to deliver performance gains in large-batch, cloud-based LLM serving. We uncover a critical issue: existing INT4 quantization methods suffer from significant runtime overhead (20-90%) when dequantizing either weights or partial sums on GPUs. To address this challenge, we introduce QoQ, a W4A8KV4 quantization algorithm with 4-bit weight, 8-bit activation, and 4-bit KV cache. QoQ stands for quattuor-octo-quattuor, which represents 4-8-4 in Latin. QoQ is implemented by the QServe inference library that achieves measured speedup. The key insight driving QServe is that the efficiency of LLM serving on GPUs is critically influenced by operations on low-throughput CUDA cores. Building upon this insight, in QoQ algorithm, we introduce progressive quantization that can allow low dequantization overhead in W4A8 GEMM. Additionally, we develop SmoothAttention to effectively mitigate the accuracy degradation incurred by 4-bit KV quantization. In the QServe system, we perform compute-aware weight reordering and take advantage of register-level parallelism to reduce dequantization latency. We also make fused attention memory-bound, harnessing the performance gain brought by KV4 quantization. As a result, QServe improves the maximum achievable serving throughput of Llama-3-8B by 1.2x on A100, 1.4x on L40S; and Qwen1.5-72B by 2.4x on A100, 3.5x on L40S, compared to TensorRT-LLM. Remarkably, QServe on L40S GPU can achieve even higher throughput than TensorRT-LLM on A100. Thus, QServe effectively reduces the dollar cost of LLM serving by 3x. Code is available at https://github.com/mit-han-lab/qserve.

  • 7 authors
·
May 7, 2024

Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression

Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.

  • 5 authors
·
Mar 21, 2022

OutlierTune: Efficient Channel-Wise Quantization for Large Language Models

Quantizing the activations of large language models (LLMs) has been a significant challenge due to the presence of structured outliers. Most existing methods focus on the per-token or per-tensor quantization of activations, making it difficult to achieve both accuracy and hardware efficiency. To address this problem, we propose OutlierTune, an efficient per-channel post-training quantization (PTQ) method for the activations of LLMs. OutlierTune consists of two components: pre-execution of dequantization and symmetrization. The pre-execution of dequantization updates the model weights by the activation scaling factors, avoiding the internal scaling and costly additional computational overheads brought by the per-channel activation quantization. The symmetrization further reduces the quantization differences arising from the weight updates by ensuring the balanced numerical ranges across different activation channels. OutlierTune is easy to implement and hardware-efficient, introducing almost no additional computational overheads during the inference. Extensive experiments show that the proposed framework outperforms existing methods across multiple different tasks. Demonstrating better generalization, this framework improves the Int6 quantization of the instruction-tuning LLMs, such as OPT-IML, to the same level as half-precision (FP16). Moreover, we have shown that the proposed framework is 1.48x faster than the FP16 implementation while reducing approximately 2x memory usage.

  • 8 authors
·
Jun 26, 2024

MergeQuant: Accurate 4-bit Static Quantization of Large Language Models by Channel-wise Calibration

Quantization has been widely used to compress and accelerate inference of large language models (LLMs). Existing methods focus on exploring the per-token dynamic calibration to ensure both inference acceleration and model accuracy under 4-bit quantization. However, in autoregressive generation inference of long sequences, the overhead of repeated dynamic quantization and dequantization steps becomes considerably expensive. In this work, we propose MergeQuant, an accurate and efficient per-channel static quantization framework. MergeQuant integrates the per-channel quantization steps with the corresponding scalings and linear mappings through a Quantization Step Migration (QSM) method, thereby eliminating the quantization overheads before and after matrix multiplication. Furthermore, in view of the significant differences between the different channel ranges, we propose dimensional reconstruction and adaptive clipping to address the non-uniformity of quantization scale factors and redistribute the channel variations to the subsequent modules to balance the parameter distribution under QSM. Within the static quantization setting of W4A4, MergeQuant reduces the accuracy gap on zero-shot tasks compared to FP16 baseline to 1.3 points on Llama-2-70B model. On Llama-2-7B model, MergeQuant achieves up to 1.77x speedup in decoding, and up to 2.06x speedup in end-to-end compared to FP16 baseline.

  • 9 authors
·
Mar 6

QVGen: Pushing the Limit of Quantized Video Generative Models

Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules (Phi) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of Phi, we propose a rank-decay strategy that progressively eliminates Phi. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization gamma to identify and decay low-contributing components. This strategy retains performance while zeroing out inference overhead. Extensive experiments across 4 state-of-the-art (SOTA) video DMs, with parameter sizes ranging from 1.3B sim14B, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of +25.28 in Dynamic Degree and +8.43 in Scene Consistency on VBench.

  • 7 authors
·
May 16 2

Jointly Optimizing Query Encoder and Product Quantization to Improve Retrieval Performance

Recently, Information Retrieval community has witnessed fast-paced advances in Dense Retrieval (DR), which performs first-stage retrieval with embedding-based search. Despite the impressive ranking performance, previous studies usually adopt brute-force search to acquire candidates, which is prohibitive in practical Web search scenarios due to its tremendous memory usage and time cost. To overcome these problems, vector compression methods have been adopted in many practical embedding-based retrieval applications. One of the most popular methods is Product Quantization (PQ). However, although existing vector compression methods including PQ can help improve the efficiency of DR, they incur severely decayed retrieval performance due to the separation between encoding and compression. To tackle this problem, we present JPQ, which stands for Joint optimization of query encoding and Product Quantization. It trains the query encoder and PQ index jointly in an end-to-end manner based on three optimization strategies, namely ranking-oriented loss, PQ centroid optimization, and end-to-end negative sampling. We evaluate JPQ on two publicly available retrieval benchmarks. Experimental results show that JPQ significantly outperforms popular vector compression methods. Compared with previous DR models that use brute-force search, JPQ almost matches the best retrieval performance with 30x compression on index size. The compressed index further brings 10x speedup on CPU and 2x speedup on GPU in query latency.

  • 6 authors
·
Aug 2, 2021

CrossQuant: A Post-Training Quantization Method with Smaller Quantization Kernel for Precise Large Language Model Compression

Post-Training Quantization (PTQ) is an effective technique for compressing Large Language Models (LLMs). While many studies focus on quantizing both weights and activations, it is still a challenge to maintain the accuracy of LLM after activating quantization. To investigate the primary cause, we extend the concept of kernel from linear algebra to quantization functions to define a new term, "quantization kernel", which refers to the set of elements in activations that are quantized to zero. Through quantitative analysis of the quantization kernel, we find that these elements are crucial for maintaining the accuracy of quantized LLMs. With the decrease of quantization kernel, the precision of quantized LLMs increases. If the quantization kernel proportion is kept below 19% for OPT models and below 1% for LLaMA models, the precision loss from quantizing activations to INT8 becomes negligible. Motivated by the goal of developing a quantization method with small quantization kernel, we propose CrossQuant: a simple yet effective method for quantizing activations. CrossQuant cross-quantizes elements using row and column-wise absolute maximum vectors, achieving a quantization kernel of approximately 16% for OPT models and less than 0.1% for LLaMA models. Experimental results on LLMs (LLaMA, OPT) ranging from 6.7B to 70B parameters demonstrate that CrossQuant improves or maintains perplexity and accuracy in language modeling, zero-shot, and few-shot tasks.

  • 4 authors
·
Oct 9, 2024

AffineQuant: Affine Transformation Quantization for Large Language Models

The significant resource requirements associated with Large-scale Language Models (LLMs) have generated considerable interest in the development of techniques aimed at compressing and accelerating neural networks. Among these techniques, Post-Training Quantization (PTQ) has emerged as a subject of considerable interest due to its noteworthy compression efficiency and cost-effectiveness in the context of training. Existing PTQ methods for LLMs limit the optimization scope to scaling transformations between pre- and post-quantization weights. In this paper, we advocate for the direct optimization using equivalent Affine transformations in PTQ (AffineQuant). This approach extends the optimization scope and thus significantly minimizing quantization errors. Additionally, by employing the corresponding inverse matrix, we can ensure equivalence between the pre- and post-quantization outputs of PTQ, thereby maintaining its efficiency and generalization capabilities. To ensure the invertibility of the transformation during optimization, we further introduce a gradual mask optimization method. This method initially focuses on optimizing the diagonal elements and gradually extends to the other elements. Such an approach aligns with the Levy-Desplanques theorem, theoretically ensuring invertibility of the transformation. As a result, significant performance improvements are evident across different LLMs on diverse datasets. To illustrate, we attain a C4 perplexity of 15.76 (2.26 lower vs 18.02 in OmniQuant) on the LLaMA2-7B model of W4A4 quantization without overhead. On zero-shot tasks, AffineQuant achieves an average of 58.61 accuracy (1.98 lower vs 56.63 in OmniQuant) when using 4/4-bit quantization for LLaMA-30B, which setting a new state-of-the-art benchmark for PTQ in LLMs.

  • 9 authors
·
Mar 19, 2024

XQuant: Breaking the Memory Wall for LLM Inference with KV Cache Rematerialization

Although LLM inference has emerged as a critical workload for many downstream applications, efficiently inferring LLMs is challenging due to the substantial memory footprint and bandwidth requirements. In parallel, compute capabilities have steadily outpaced both memory capacity and bandwidth over the last few decades, a trend that remains evident in modern GPU hardware and exacerbates the challenge of LLM inference. As such, new algorithms are emerging that trade increased computation for reduced memory operations. To that end, we present XQuant, which takes advantage of this trend, enabling an order-of-magnitude reduction in memory consumption through low-bit quantization with substantial accuracy benefits relative to state-of-the-art KV cache quantization methods. We accomplish this by quantizing and caching the layer input activations X, instead of using standard KV caching, and then rematerializing the Keys and Values on-the-fly during inference. This results in an immediate 2times memory savings compared to KV caching. By applying XQuant, we achieve up to sim 7.7times memory savings with <0.1 perplexity degradation compared to the FP16 baseline. Furthermore, our approach leverages the fact that X values are similar across layers. Building on this observation, we introduce XQuant-CL, which exploits the cross-layer similarity in the X embeddings for extreme compression. Across different models, XQuant-CL attains up to 10times memory savings relative to the FP16 baseline with only 0.01 perplexity degradation, and 12.5times memory savings with only 0.1 perplexity degradation. XQuant exploits the rapidly increasing compute capabilities of hardware platforms to eliminate the memory bottleneck, while surpassing state-of-the-art KV cache quantization methods and achieving near-FP16 accuracy across a wide range of models.

  • 10 authors
·
Aug 14 2

Vector Quantized Diffusion Model for Text-to-Image Synthesis

We present the vector quantized diffusion (VQ-Diffusion) model for text-to-image generation. This method is based on a vector quantized variational autoencoder (VQ-VAE) whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). We find that this latent-space method is well-suited for text-to-image generation tasks because it not only eliminates the unidirectional bias with existing methods but also allows us to incorporate a mask-and-replace diffusion strategy to avoid the accumulation of errors, which is a serious problem with existing methods. Our experiments show that the VQ-Diffusion produces significantly better text-to-image generation results when compared with conventional autoregressive (AR) models with similar numbers of parameters. Compared with previous GAN-based text-to-image methods, our VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin. Finally, we show that the image generation computation in our method can be made highly efficient by reparameterization. With traditional AR methods, the text-to-image generation time increases linearly with the output image resolution and hence is quite time consuming even for normal size images. The VQ-Diffusion allows us to achieve a better trade-off between quality and speed. Our experiments indicate that the VQ-Diffusion model with the reparameterization is fifteen times faster than traditional AR methods while achieving a better image quality.

  • 8 authors
·
Nov 29, 2021 1

QuantEase: Optimization-based Quantization for Language Models

With the rising popularity of Large Language Models (LLMs), there has been an increasing interest in compression techniques that enable their efficient deployment. This study focuses on the Post-Training Quantization (PTQ) of LLMs. Drawing from recent advances, our work introduces QuantEase, a layer-wise quantization framework where individual layers undergo separate quantization. The problem is framed as a discrete-structured non-convex optimization, prompting the development of algorithms rooted in Coordinate Descent (CD) techniques. These CD-based methods provide high-quality solutions to the complex non-convex layer-wise quantization problems. Notably, our CD-based approach features straightforward updates, relying solely on matrix and vector operations, circumventing the need for matrix inversion or decomposition. We also explore an outlier-aware variant of our approach, allowing for retaining significant weights (outliers) with complete precision. Our proposal attains state-of-the-art performance in terms of perplexity and zero-shot accuracy in empirical evaluations across various LLMs and datasets, with relative improvements up to 15% over methods such as GPTQ. Leveraging careful linear algebra optimizations, QuantEase can quantize models like Falcon-180B on a single NVIDIA A100 GPU in sim3 hours. Particularly noteworthy is our outlier-aware algorithm's capability to achieve near or sub-3-bit quantization of LLMs with an acceptable drop in accuracy, obviating the need for non-uniform quantization or grouping techniques, improving upon methods such as SpQR by up to two times in terms of perplexity.

  • 7 authors
·
Sep 4, 2023

Extreme Image Compression using Fine-tuned VQGANs

Recent advances in generative compression methods have demonstrated remarkable progress in enhancing the perceptual quality of compressed data, especially in scenarios with low bitrates. However, their efficacy and applicability to achieve extreme compression ratios (<0.05 bpp) remain constrained. In this work, we propose a simple yet effective coding framework by introducing vector quantization (VQ)--based generative models into the image compression domain. The main insight is that the codebook learned by the VQGAN model yields a strong expressive capacity, facilitating efficient compression of continuous information in the latent space while maintaining reconstruction quality. Specifically, an image can be represented as VQ-indices by finding the nearest codeword, which can be encoded using lossless compression methods into bitstreams. We propose clustering a pre-trained large-scale codebook into smaller codebooks through the K-means algorithm, yielding variable bitrates and different levels of reconstruction quality within the coding framework. Furthermore, we introduce a transformer to predict lost indices and restore images in unstable environments. Extensive qualitative and quantitative experiments on various benchmark datasets demonstrate that the proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics and human perception at extremely low bitrates (le 0.04 bpp). Remarkably, even with the loss of up to 20% of indices, the images can be effectively restored with minimal perceptual loss.

  • 7 authors
·
Jul 17, 2023

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration

Large language models (LLMs) have shown excellent performance on various tasks, but the astronomical model size raises the hardware barrier for serving (memory size) and slows down token generation (memory bandwidth). In this paper, we propose Activation-aware Weight Quantization (AWQ), a hardware-friendly approach for LLM low-bit weight-only quantization. Our method is based on the observation that weights are not equally important: protecting only 1% of salient weights can greatly reduce quantization error. We then propose to search for the optimal per-channel scaling that protects the salient weights by observing the activation, not weights. AWQ does not rely on any backpropagation or reconstruction, so it can well preserve LLMs' generalization ability on different domains and modalities, without overfitting to the calibration set; it also does not rely on any data layout reordering, maintaining the hardware efficiency. AWQ outperforms existing work on various language modeling, common sense QA, and domain-specific benchmarks. Thanks to better generalization, it achieves excellent quantization performance for instruction-tuned LMs and, for the first time, multi-modal LMs. We also implement efficient tensor core kernels with reorder-free online dequantization to accelerate AWQ, achieving a 1.45x speedup over GPTQ and is 1.85x faster than the cuBLAS FP16 implementation. Our method provides a turn-key solution to compress LLMs to 3/4 bits for efficient deployment.

  • 6 authors
·
Jun 1, 2023 1

PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression

There has been significant interest in "extreme" compression of large language models (LLMs), i.e., to 1-2 bits per parameter, which allows such models to be executed efficiently on resource-constrained devices. Existing work focused on improved one-shot quantization techniques and weight representations; yet, purely post-training approaches are reaching diminishing returns in terms of the accuracy-vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and AQLM include fine-tuning (part of) the compressed parameters over a limited amount of calibration data; however, such fine-tuning techniques over compressed weights often make exclusive use of straight-through estimators (STE), whose performance is not well-understood in this setting. In this work, we question the use of STE for extreme LLM compression, showing that it can be sub-optimal, and perform a systematic study of quantization-aware fine-tuning strategies for LLMs. We propose PV-Tuning - a representation-agnostic framework that generalizes and improves upon existing fine-tuning strategies, and provides convergence guarantees in restricted cases. On the practical side, when used for 1-2 bit vector quantization, PV-Tuning outperforms prior techniques for highly-performant models such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal quantization for Llama 2 family models at 2 bits per parameter.

  • 8 authors
·
May 23, 2024

Distill-VQ: Learning Retrieval Oriented Vector Quantization By Distilling Knowledge from Dense Embeddings

Vector quantization (VQ) based ANN indexes, such as Inverted File System (IVF) and Product Quantization (PQ), have been widely applied to embedding based document retrieval thanks to the competitive time and memory efficiency. Originally, VQ is learned to minimize the reconstruction loss, i.e., the distortions between the original dense embeddings and the reconstructed embeddings after quantization. Unfortunately, such an objective is inconsistent with the goal of selecting ground-truth documents for the input query, which may cause severe loss of retrieval quality. Recent works identify such a defect, and propose to minimize the retrieval loss through contrastive learning. However, these methods intensively rely on queries with ground-truth documents, whose performance is limited by the insufficiency of labeled data. In this paper, we propose Distill-VQ, which unifies the learning of IVF and PQ within a knowledge distillation framework. In Distill-VQ, the dense embeddings are leveraged as "teachers", which predict the query's relevance to the sampled documents. The VQ modules are treated as the "students", which are learned to reproduce the predicted relevance, such that the reconstructed embeddings may fully preserve the retrieval result of the dense embeddings. By doing so, Distill-VQ is able to derive substantial training signals from the massive unlabeled data, which significantly contributes to the retrieval quality. We perform comprehensive explorations for the optimal conduct of knowledge distillation, which may provide useful insights for the learning of VQ based ANN index. We also experimentally show that the labeled data is no longer a necessity for high-quality vector quantization, which indicates Distill-VQ's strong applicability in practice.

  • 13 authors
·
Mar 31, 2022

Rethinking Diffusion for Text-Driven Human Motion Generation

Since 2023, Vector Quantization (VQ)-based discrete generation methods have rapidly dominated human motion generation, primarily surpassing diffusion-based continuous generation methods in standard performance metrics. However, VQ-based methods have inherent limitations. Representing continuous motion data as limited discrete tokens leads to inevitable information loss, reduces the diversity of generated motions, and restricts their ability to function effectively as motion priors or generation guidance. In contrast, the continuous space generation nature of diffusion-based methods makes them well-suited to address these limitations and with even potential for model scalability. In this work, we systematically investigate why current VQ-based methods perform well and explore the limitations of existing diffusion-based methods from the perspective of motion data representation and distribution. Drawing on these insights, we preserve the inherent strengths of a diffusion-based human motion generation model and gradually optimize it with inspiration from VQ-based approaches. Our approach introduces a human motion diffusion model enabled to perform bidirectional masked autoregression, optimized with a reformed data representation and distribution. Additionally, we also propose more robust evaluation methods to fairly assess different-based methods. Extensive experiments on benchmark human motion generation datasets demonstrate that our method excels previous methods and achieves state-of-the-art performances.

  • 5 authors
·
Nov 25, 2024

Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE

Given an incomplete image without additional constraint, image inpainting natively allows for multiple solutions as long as they appear plausible. Recently, multiplesolution inpainting methods have been proposed and shown the potential of generating diverse results. However, these methods have difficulty in ensuring the quality of each solution, e.g. they produce distorted structure and/or blurry texture. We propose a two-stage model for diverse inpainting, where the first stage generates multiple coarse results each of which has a different structure, and the second stage refines each coarse result separately by augmenting texture. The proposed model is inspired by the hierarchical vector quantized variational auto-encoder (VQ-VAE), whose hierarchical architecture isentangles structural and textural information. In addition, the vector quantization in VQVAE enables autoregressive modeling of the discrete distribution over the structural information. Sampling from the distribution can easily generate diverse and high-quality structures, making up the first stage of our model. In the second stage, we propose a structural attention module inside the texture generation network, where the module utilizes the structural information to capture distant correlations. We further reuse the VQ-VAE to calculate two feature losses, which help improve structure coherence and texture realism, respectively. Experimental results on CelebA-HQ, Places2, and ImageNet datasets show that our method not only enhances the diversity of the inpainting solutions but also improves the visual quality of the generated multiple images. Code and models are available at: https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting.

  • 4 authors
·
Mar 18, 2021

Efficient Personalization of Quantized Diffusion Model without Backpropagation

Diffusion models have shown remarkable performance in image synthesis, but they demand extensive computational and memory resources for training, fine-tuning and inference. Although advanced quantization techniques have successfully minimized memory usage for inference, training and fine-tuning these quantized models still require large memory possibly due to dequantization for accurate computation of gradients and/or backpropagation for gradient-based algorithms. However, memory-efficient fine-tuning is particularly desirable for applications such as personalization that often must be run on edge devices like mobile phones with private data. In this work, we address this challenge by quantizing a diffusion model with personalization via Textual Inversion and by leveraging a zeroth-order optimization on personalization tokens without dequantization so that it does not require gradient and activation storage for backpropagation that consumes considerable memory. Since a gradient estimation using zeroth-order optimization is quite noisy for a single or a few images in personalization, we propose to denoise the estimated gradient by projecting it onto a subspace that is constructed with the past history of the tokens, dubbed Subspace Gradient. In addition, we investigated the influence of text embedding in image generation, leading to our proposed time steps sampling, dubbed Partial Uniform Timestep Sampling for sampling with effective diffusion timesteps. Our method achieves comparable performance to prior methods in image and text alignment scores for personalizing Stable Diffusion with only forward passes while reducing training memory demand up to 8.2times.

  • 4 authors
·
Mar 18 2

EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs

Large language models (LLMs) have proven to be very superior to conventional methods in various tasks. However, their expensive computations and high memory requirements are prohibitive for deployment. Model quantization is an effective method for reducing this overhead. The problem is that in most previous works, the quantized model was calibrated using few samples from the training data, which might affect the generalization of the quantized LLMs to unknown cases and tasks. Hence in this work, we explore an important question: Can we design a data-independent quantization method for LLMs to guarantee its generalization performance? In this work, we propose EasyQuant, a training-free and data-independent weight-only quantization algorithm for LLMs. Our observation indicates that two factors: outliers in the weight and quantization ranges, are essential for reducing the quantization error. Therefore, in EasyQuant, we leave the outliers (less than 1%) unchanged and optimize the quantization range to reduce the reconstruction error. With these methods, we surprisingly find that EasyQuant achieves comparable performance to the original model. Since EasyQuant does not depend on any training data, the generalization performance of quantized LLMs is safely guaranteed. Moreover, EasyQuant can be implemented in parallel so that the quantized model could be attained in a few minutes even for LLMs over 100B. To our best knowledge, we are the first work that achieves almost lossless quantization performance for LLMs under a data-independent setting and our algorithm runs over 10 times faster than the data-dependent methods.

  • 6 authors
·
Mar 5, 2024 3

AuON: A Linear-time Alternative to Semi-Orthogonal Momentum Updates

Orthogonal gradient updates have emerged as a promising direction in optimization for machine learning. However, traditional approaches such as SVD/QR decomposition incur prohibitive computational costs of O(n^3) and underperform compared to well-tuned SGD with momentum, since momentum is applied only after strict orthogonalization. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and producing semi-orthogonal matrices via Newton-Schulz iterations, reducing complexity to O(n^2). Nevertheless, quadratic costs remain a bottleneck. In this work, we study the semi-orthogonal properties of momentum-based updates and develop a method to bound momentum updates under a spectral-norm trust region, preserving directional information without requiring explicit semi-orthogonalization. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without constructing semi-orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. Our approach combines hyperbolic-cosine RMS scaling transformations with normalization, demonstrating both effectiveness and computational efficiency compared to Newton-Schulz methods. We further introduce a hybrid variant (Hybrid-AuON) that applies a single Newton-Schulz iteration. Experiments across vision and language benchmarks show that AuON and its hybrid variant achieve performance comparable to strong baselines such as AdamW and Muon. Code is available at: https://github.com/ryyzn9/AuON

  • 1 authors
·
Sep 29

EAQuant: Enhancing Post-Training Quantization for MoE Models via Expert-Aware Optimization

Mixture-of-Experts (MoE) models have emerged as a cornerstone of large-scale deep learning by efficiently distributing computation and enhancing performance. However, their unique architecture-characterized by sparse expert activation and dynamic routing mechanisms-introduces inherent complexities that challenge conventional quantization techniques. Existing post-training quantization (PTQ) methods struggle to address activation outliers, router consistency and sparse expert calibration, leading to significant performance degradation. To bridge this gap, we propose EAQuant, a novel PTQ framework tailored for MoE architectures. Our method systematically tackles these challenges through three key innovations: (1) expert-aware smoothing aggregation to suppress activation outliers and stabilize quantization, (2) router logits distribution alignment to preserve expert selection consistency post-quantization, and (3) expert-level calibration data balance to optimize sparsely activated experts. Extensive experiments across W4A4 and extreme W3A4 quantization configurations demonstrate that EAQuant significantly outperforms existing methods, achieving average score improvements of 1.15 - 2.28% across three diverse MoE architectures, with particularly pronounced gains in reasoning tasks and robust performance retention under aggressive quantization. By integrating these innovations, EAQuant establishes a new state-of-the-art for high-precision, efficient MoE model compression. Our code is available at https://github.com/darren-fzq/EAQuant.

  • 8 authors
·
Jun 16

Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM

Large Language Models (LLMs) pose significant hardware challenges related to memory requirements and computational ability. There are two mainstream quantization schemes for LLMs: coarse-grained (e.g., channel-wise) quantization and fine-grained (e.g., group-wise) quantization. Fine-grained quantization has smaller quantization loss, consequently achieving superior performance. However, when applied to weight-activation quantization, it disrupts continuous integer matrix multiplication, leading to inefficient inference. In this paper, we introduce Dual Grained Quantization (DGQ), a novel A8W4 quantization for LLM that maintains superior performance while ensuring fast inference speed. DSQ dequantizes the fine-grained INT4 weight into coarse-grained INT8 representation and preform matrix multiplication using INT8 kernels. Besides, we develop a two-phase grid search algorithm to simplify the determination of fine-grained and coarse-grained quantization scales. We also devise a percentile clipping schema for smoothing the activation outliers without the need for complex optimization techniques. Experimental results demonstrate that DGQ consistently outperforms prior methods across various LLM architectures and a wide range of tasks. Remarkably, by our implemented efficient CUTLASS kernel, we achieve 1.12 times memory reduction and 3.24 times speed gains comparing A16W4 implementation. These advancements enable efficient deployment of A8W4 LLMs for real-world applications.

  • 6 authors
·
Oct 7, 2023

Global Context with Discrete Diffusion in Vector Quantised Modelling for Image Generation

The integration of Vector Quantised Variational AutoEncoder (VQ-VAE) with autoregressive models as generation part has yielded high-quality results on image generation. However, the autoregressive models will strictly follow the progressive scanning order during the sampling phase. This leads the existing VQ series models to hardly escape the trap of lacking global information. Denoising Diffusion Probabilistic Models (DDPM) in the continuous domain have shown a capability to capture the global context, while generating high-quality images. In the discrete state space, some works have demonstrated the potential to perform text generation and low resolution image generation. We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context, which compensates for the deficiency of the classical autoregressive model along pixel space. Meanwhile, the integration of the discrete VAE with the diffusion model resolves the drawback of conventional autoregressive models being oversized, and the diffusion model which demands excessive time in the sampling process when generating images. It is found that the quality of the generated images is heavily dependent on the discrete visual codebook. Extensive experiments demonstrate that the proposed Vector Quantised Discrete Diffusion Model (VQ-DDM) is able to achieve comparable performance to top-tier methods with low complexity. It also demonstrates outstanding advantages over other vectors quantised with autoregressive models in terms of image inpainting tasks without additional training.

  • 5 authors
·
Dec 3, 2021

Oscillation-free Quantization for Low-bit Vision Transformers

Weight oscillation is an undesirable side effect of quantization-aware training, in which quantized weights frequently jump between two quantized levels, resulting in training instability and a sub-optimal final model. We discover that the learnable scaling factor, a widely-used de facto setting in quantization aggravates weight oscillation. In this study, we investigate the connection between the learnable scaling factor and quantized weight oscillation and use ViT as a case driver to illustrate the findings and remedies. In addition, we also found that the interdependence between quantized weights in query and key of a self-attention layer makes ViT vulnerable to oscillation. We, therefore, propose three techniques accordingly: statistical weight quantization (rm StatsQ) to improve quantization robustness compared to the prevalent learnable-scale-based method; confidence-guided annealing (rm CGA) that freezes the weights with high confidence and calms the oscillating weights; and query-key reparameterization (rm QKR) to resolve the query-key intertwined oscillation and mitigate the resulting gradient misestimation. Extensive experiments demonstrate that these proposed techniques successfully abate weight oscillation and consistently achieve substantial accuracy improvement on ImageNet. Specifically, our 2-bit DeiT-T/DeiT-S algorithms outperform the previous state-of-the-art by 9.8% and 7.7%, respectively. Code and models are available at: https://github.com/nbasyl/OFQ.

  • 3 authors
·
Feb 4, 2023

OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models

Large language models (LLMs) have revolutionized natural language processing tasks. However, their practical deployment is hindered by their immense memory and computation requirements. Although recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM, they hand-craft quantization parameters, which leads to low performance and fails to deal with extremely low-bit quantization. To tackle this issue, we introduce an Omnidirectionally calibrated Quantization (OmniQuant) technique for LLMs, which achieves good performance in diverse quantization settings while maintaining the computational efficiency of PTQ by efficiently optimizing various quantization parameters. OmniQuant comprises two innovative components including Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET). LWC modulates the extreme values of weights by optimizing the clipping threshold. Meanwhile, LET tackles activation outliers by shifting the challenge of quantization from activations to weights through a learnable equivalent transformation. Operating within a differentiable framework using block-wise error minimization, OmniQuant can optimize the quantization process efficiently for both weight-only and weight-activation quantization. For instance, the LLaMA-2 model family with the size of 7-70B can be processed with OmniQuant on a single A100-40G GPU within 1-16 hours using 128 samples. Extensive experiments validate OmniQuant's superior performance across diverse quantization configurations such as W4A4, W6A6, W4A16, W3A16, and W2A16. Additionally, OmniQuant demonstrates effectiveness in instruction-tuned models and delivers notable improvements in inference speed and memory reduction on real devices. Codes and models are available at https://github.com/OpenGVLab/OmniQuant.

  • 10 authors
·
Aug 24, 2023

Quantized Visual Geometry Grounded Transformer

Learning-based 3D reconstruction models, represented by Visual Geometry Grounded Transformers (VGGTs), have made remarkable progress with the use of large-scale transformers. Their prohibitive computational and memory costs severely hinder real-world deployment. Post-Training Quantization (PTQ) has become a common practice for compressing and accelerating models. However, we empirically observe that PTQ faces unique obstacles when compressing billion-scale VGGTs: the data-independent special tokens induce heavy-tailed activation distributions, while the multi-view nature of 3D data makes calibration sample selection highly unstable. This paper proposes the first Quantization framework for VGGTs, namely QuantVGGT. This mainly relies on two technical contributions: First, we introduce Dual-Smoothed Fine-Grained Quantization, which integrates pre-global Hadamard rotation and post-local channel smoothing to mitigate heavy-tailed distributions and inter-channel variance robustly. Second, we design Noise-Filtered Diverse Sampling, which filters outliers via deep-layer statistics and constructs frame-aware diverse calibration clusters to ensure stable quantization ranges. Comprehensive experiments demonstrate that QuantVGGT achieves the state-of-the-art results across different benchmarks and bit-width, surpassing the previous state-of-the-art generic quantization method with a great margin. We highlight that our 4-bit QuantVGGT can deliver a 3.7times memory reduction and 2.5times acceleration in real-hardware inference, while maintaining reconstruction accuracy above 98\% of its full-precision counterpart. This demonstrates the vast advantages and practicality of QuantVGGT in resource-constrained scenarios. Our code is released in https://github.com/wlfeng0509/QuantVGGT.

  • 11 authors
·
Sep 25 2

Efficient Generative Modeling with Residual Vector Quantization-Based Tokens

We explore the use of Residual Vector Quantization (RVQ) for high-fidelity generation in vector-quantized generative models. This quantization technique maintains higher data fidelity by employing more in-depth tokens. However, increasing the token number in generative models leads to slower inference speeds. To this end, we introduce ResGen, an efficient RVQ-based discrete diffusion model that generates high-fidelity samples without compromising sampling speed. Our key idea is a direct prediction of vector embedding of collective tokens rather than individual ones. Moreover, we demonstrate that our proposed token masking and multi-token prediction method can be formulated within a principled probabilistic framework using a discrete diffusion process and variational inference. We validate the efficacy and generalizability of the proposed method on two challenging tasks across different modalities: conditional image generation} on ImageNet 256x256 and zero-shot text-to-speech synthesis. Experimental results demonstrate that ResGen outperforms autoregressive counterparts in both tasks, delivering superior performance without compromising sampling speed. Furthermore, as we scale the depth of RVQ, our generative models exhibit enhanced generation fidelity or faster sampling speeds compared to similarly sized baseline models. The project page can be found at https://resgen-genai.github.io

  • 4 authors
·
Dec 13, 2024 2

MambaQuant: Quantizing the Mamba Family with Variance Aligned Rotation Methods

Mamba is an efficient sequence model that rivals Transformers and demonstrates significant potential as a foundational architecture for various tasks. Quantization is commonly used in neural networks to reduce model size and computational latency. However, applying quantization to Mamba remains underexplored, and existing quantization methods, which have been effective for CNN and Transformer models, appear inadequate for Mamba models (e.g., Quarot suffers a 21% accuracy drop on Vim-T^dagger even under W8A8). We have pioneered the exploration of this issue and identified several key challenges. First, significant outliers are present in gate projections, output projections, and matrix multiplications. Second, Mamba's unique parallel scan further amplifies these outliers, leading to uneven and heavy-tailed data distributions. Third, even with the application of the Hadamard transform, the variance across channels in weights and activations still remains inconsistent. To these ends, we propose MambaQuant, a post-training quantization (PTQ) framework consisting of: 1) Karhunen-Loeve Transformation (KLT) enhanced rotation, rendering the rotation matrix adaptable to diverse channel distributions. 2) Smooth-Fused rotation, which equalizes channel variances and can merge additional parameters into model weights. Experiments show that MambaQuant can quantize both weights and activations into 8-bit with less than 1% accuracy loss for Mamba-based vision and language tasks. To the best of our knowledge, MambaQuant is the first comprehensive PTQ design for the Mamba family, paving the way for further advancements in its application.

  • 10 authors
·
Jan 23

SVGDreamer++: Advancing Editability and Diversity in Text-Guided SVG Generation

Recently, text-guided scalable vector graphics (SVG) synthesis has demonstrated significant potential in domains such as iconography and sketching. However, SVGs generated from existing Text-to-SVG methods often lack editability and exhibit deficiencies in visual quality and diversity. In this paper, we propose a novel text-guided vector graphics synthesis method to address these limitations. To enhance the editability of output SVGs, we introduce a Hierarchical Image VEctorization (HIVE) framework that operates at the semantic object level and supervises the optimization of components within the vector object. This approach facilitates the decoupling of vector graphics into distinct objects and component levels. Our proposed HIVE algorithm, informed by image segmentation priors, not only ensures a more precise representation of vector graphics but also enables fine-grained editing capabilities within vector objects. To improve the diversity of output SVGs, we present a Vectorized Particle-based Score Distillation (VPSD) approach. VPSD addresses over-saturation issues in existing methods and enhances sample diversity. A pre-trained reward model is incorporated to re-weight vector particles, improving aesthetic appeal and enabling faster convergence. Additionally, we design a novel adaptive vector primitives control strategy, which allows for the dynamic adjustment of the number of primitives, thereby enhancing the presentation of graphic details. Extensive experiments validate the effectiveness of the proposed method, demonstrating its superiority over baseline methods in terms of editability, visual quality, and diversity. We also show that our new method supports up to six distinct vector styles, capable of generating high-quality vector assets suitable for stylized vector design and poster design. Code and demo will be released at: http://ximinng.github.io/SVGDreamerV2Project/

  • 6 authors
·
Nov 26, 2024

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

Large language models have been widely adopted but require significant GPU memory for inference. We develop a procedure for Int8 matrix multiplication for feed-forward and attention projection layers in transformers, which cut the memory needed for inference by half while retaining full precision performance. With our method, a 175B parameter 16/32-bit checkpoint can be loaded, converted to Int8, and used immediately without performance degradation. This is made possible by understanding and working around properties of highly systematic emergent features in transformer language models that dominate attention and transformer predictive performance. To cope with these features, we develop a two-part quantization procedure, LLM.int8(). We first use vector-wise quantization with separate normalization constants for each inner product in the matrix multiplication, to quantize most of the features. However, for the emergent outliers, we also include a new mixed-precision decomposition scheme, which isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9% of values are multiplied in 8-bit. Using LLM.int8(), we show empirically it is possible to perform inference in LLMs with up to 175B parameters without any performance degradation. This result makes such models much more accessible, for example making it possible to use OPT-175B/BLOOM on a single server with consumer GPUs. We open-source our software.

  • 4 authors
·
Aug 15, 2022 1

COMET: Towards Partical W4A4KV4 LLMs Serving

Quantization is a widely-used compression technology to reduce the overhead of serving large language models (LLMs) on terminal devices and in cloud data centers. However, prevalent quantization methods, such as 8-bit weight-activation or 4-bit weight-only quantization, achieve limited performance improvements due to poor support for low-precision (e.g., 4-bit) activation. This work, for the first time, realizes practical W4A4KV4 serving for LLMs, fully utilizing the INT4 tensor cores on modern GPUs and reducing the memory bottleneck caused by the KV cache. Specifically, we propose a novel fine-grained mixed-precision quantization algorithm (FMPQ) that compresses most activations into 4-bit with negligible accuracy loss. To support mixed-precision matrix multiplication for W4A4 and W4A8, we develop a highly optimized W4Ax kernel. Our approach introduces a novel mixed-precision data layout to facilitate access and fast dequantization for activation and weight tensors, utilizing the GPU's software pipeline to hide the overhead of data loading and conversion. Additionally, we propose fine-grained streaming multiprocessor (SM) scheduling to achieve load balance across different SMs. We integrate the optimized W4Ax kernel into our inference framework, COMET, and provide efficient management to support popular LLMs such as LLaMA-3-70B. Extensive evaluations demonstrate that, when running LLaMA family models on a single A100-80G-SMX4, COMET achieves a kernel-level speedup of 2.88times over cuBLAS and a 2.02 times throughput improvement compared to TensorRT-LLM from an end-to-end framework perspective.

  • 9 authors
·
Oct 15, 2024

HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec

Audio codec models are widely used in audio communication as a crucial technique for compressing audio into discrete representations. Nowadays, audio codec models are increasingly utilized in generation fields as intermediate representations. For instance, AudioLM is an audio generation model that uses the discrete representation of SoundStream as a training target, while VALL-E employs the Encodec model as an intermediate feature to aid TTS tasks. Despite their usefulness, two challenges persist: (1) training these audio codec models can be difficult due to the lack of publicly available training processes and the need for large-scale data and GPUs; (2) achieving good reconstruction performance requires many codebooks, which increases the burden on generation models. In this study, we propose a group-residual vector quantization (GRVQ) technique and use it to develop a novel High Fidelity Audio Codec model, HiFi-Codec, which only requires 4 codebooks. We train all the models using publicly available TTS data such as LibriTTS, VCTK, AISHELL, and more, with a total duration of over 1000 hours, using 8 GPUs. Our experimental results show that HiFi-Codec outperforms Encodec in terms of reconstruction performance despite requiring only 4 codebooks. To facilitate research in audio codec and generation, we introduce AcademiCodec, the first open-source audio codec toolkit that offers training codes and pre-trained models for Encodec, SoundStream, and HiFi-Codec. Code and pre-trained model can be found on: https://github.com/yangdongchao/AcademiCodec{https://github.com/yangdongchao/AcademiCodec}

  • 6 authors
·
May 4, 2023 1

SmoothQuant+: Accurate and Efficient 4-bit Post-Training WeightQuantization for LLM

Large language models (LLMs) have shown remarkable capabilities in various tasks. However their huge model size and the consequent demand for computational and memory resources also pose challenges to model deployment. Currently, 4-bit post-training quantization (PTQ) has achieved some success in LLMs, reducing the memory footprint by approximately 75% compared to FP16 models, albeit with some accuracy loss. In this paper, we propose SmoothQuant+, an accurate and efficient 4-bit weight-only PTQ that requires no additional training, which enables lossless in accuracy for LLMs for the first time. Based on the fact that the loss of weight quantization is amplified by the activation outliers, SmoothQuant+ smoothes the activation outliers by channel before quantization, while adjusting the corresponding weights for mathematical equivalence, and then performs group-wise 4-bit weight quantization for linear layers. We have integrated SmoothQuant+ into the vLLM framework, an advanced high-throughput inference engine specially developed for LLMs, and equipped it with an efficient W4A16 CUDA kernels, so that vLLM can seamlessly support SmoothQuant+ 4-bit weight quantization. Our results show that, with SmoothQuant+, the Code Llama-34B model can be quantized and deployed on a A100 40GB GPU, achieving lossless accuracy and a throughput increase of 1.9 to 4.0 times compared to the FP16 model deployed on two A100 40GB GPUs. Moreover, the latency per token is only 68% of the FP16 model deployed on two A100 40GB GPUs. This is the state-of-the-art 4-bit weight quantization for LLMs as we know.

  • 6 authors
·
Dec 6, 2023

T-MAC: CPU Renaissance via Table Lookup for Low-Bit LLM Deployment on Edge

The deployment of Large Language Models (LLMs) on edge devices is increasingly important to enhance on-device intelligence. Weight quantization is crucial for reducing the memory footprint of LLMs on devices. However, low-bit LLMs necessitate mixed precision matrix multiplication (mpGEMM) of low precision weights and high precision activations during inference. Existing systems, lacking native support for mpGEMM, resort to dequantize weights for high precision computation. Such an indirect way can lead to a significant inference overhead. In this paper, we introduce T-MAC, an innovative lookup table(LUT)-based method designed for efficient low-bit LLM (i.e., weight-quantized LLM) inference on CPUs. T-MAC directly supports mpGEMM without dequantization, while simultaneously eliminating multiplications and reducing additions required. Specifically, T-MAC transforms the traditional data-type-centric multiplication to bit-wise table lookup, and enables a unified and scalable mpGEMM solution. Our LUT-based kernels scale linearly to the weight bit-width. Evaluated on low-bit Llama and BitNet models, T-MAC demonstrates up to 4x increase in throughput and 70% reduction in energy consumption compared to llama.cpp. For BitNet-b1.58-3B, T-MAC delivers a token generation throughput of 30 tokens/s with a single core and 71 tokens/s with eight cores on M2-Ultra, and 11 tokens/s on lower-end devices like Raspberry Pi 5, which significantly exceeds the adult average reading speed. T-MAC with LUT-based computing paradigm, paves the way for the practical deployment of low-bit LLMs on resource-constrained edge devices without compromising computational efficiency. The system is open-sourced at https://github.com/microsoft/T-MAC.

  • 7 authors
·
Jun 25, 2024 1

ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models

Large Language Models (LLMs) have revolutionized natural language processing tasks. However, their practical application is constrained by substantial memory and computational demands. Post-training quantization (PTQ) is considered an effective method to accelerate LLM inference. Despite its growing popularity in LLM model compression, PTQ deployment faces two major challenges. First, low-bit quantization leads to performance degradation. Second, restricted by the limited integer computing unit type on GPUs, quantized matrix operations with different precisions cannot be effectively accelerated. To address these issues, we introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM. It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU. ABQ-LLM introduces several key innovations: (1) a distribution correction method for transformer blocks to mitigate distribution differences caused by full quantization of weights and activations, improving performance at low bit-widths. (2) the bit balance strategy to counteract performance degradation from asymmetric distribution issues at very low bit-widths (e.g., 2-bit). (3) an innovative quantization acceleration framework that reconstructs the quantization matrix multiplication of arbitrary precision combinations based on BTC (Binary TensorCore) equivalents, gets rid of the limitations of INT4/INT8 computing units. ABQ-LLM can convert each component bit width gain into actual acceleration gain, maximizing performance under mixed precision(e.g., W6A6, W2A8). Based on W2*A8 quantization configuration on LLaMA-7B model, it achieved a WikiText2 perplexity of 7.59 (2.17downarrow vs 9.76 in AffineQuant). Compared to SmoothQuant, we realized 1.6times acceleration improvement and 2.7times memory compression gain.

  • 9 authors
·
Aug 16, 2024

MBQ: Modality-Balanced Quantization for Large Vision-Language Models

Vision-Language Models (VLMs) have enabled a variety of real-world applications. The large parameter size of VLMs brings large memory and computation overhead which poses significant challenges for deployment. Post-Training Quantization (PTQ) is an effective technique to reduce the memory and computation overhead. Existing PTQ methods mainly focus on large language models (LLMs), without considering the differences across other modalities. In this paper, we discover that there is a significant difference in sensitivity between language and vision tokens in large VLMs. Therefore, treating tokens from different modalities equally, as in existing PTQ methods, may over-emphasize the insensitive modalities, leading to significant accuracy loss. To deal with the above issue, we propose a simple yet effective method, Modality-Balanced Quantization (MBQ), for large VLMs. Specifically, MBQ incorporates the different sensitivities across modalities during the calibration process to minimize the reconstruction loss for better quantization parameters. Extensive experiments show that MBQ can significantly improve task accuracy by up to 4.4% and 11.6% under W3 and W4A8 quantization for 7B to 70B VLMs, compared to SOTA baselines. Additionally, we implement a W3 GPU kernel that fuses the dequantization and GEMV operators, achieving a 1.4x speedup on LLaVA-onevision-7B on the RTX 4090. The code is available at https://github.com/thu-nics/MBQ.

  • 13 authors
·
Dec 27, 2024

Reduce Information Loss in Transformers for Pluralistic Image Inpainting

Transformers have achieved great success in pluralistic image inpainting recently. However, we find existing transformer based solutions regard each pixel as a token, thus suffer from information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration, incurring information loss and extra misalignment for the boundaries of masked regions. 2) They quantize 256^3 RGB pixels to a small number (such as 512) of quantized pixels. The indices of quantized pixels are used as tokens for the inputs and prediction targets of transformer. Although an extra CNN network is used to upsample and refine the low-resolution results, it is difficult to retrieve the lost information back.To keep input information as much as possible, we propose a new transformer based framework "PUT". Specifically, to avoid input downsampling while maintaining the computation efficiency, we design a patch-based auto-encoder P-VQVAE, where the encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by quantization, an Un-Quantized Transformer (UQ-Transformer) is applied, which directly takes the features from P-VQVAE encoder as input without quantization and regards the quantized tokens only as prediction targets. Extensive experiments show that PUT greatly outperforms state-of-the-art methods on image fidelity, especially for large masked regions and complex large-scale datasets. Code is available at https://github.com/liuqk3/PUT

  • 9 authors
·
May 10, 2022

Q-Sched: Pushing the Boundaries of Few-Step Diffusion Models with Quantization-Aware Scheduling

Text-to-image diffusion models are computationally intensive, often requiring dozens of forward passes through large transformer backbones. For instance, Stable Diffusion XL generates high-quality images with 50 evaluations of a 2.6B-parameter model, an expensive process even for a single batch. Few-step diffusion models reduce this cost to 2-8 denoising steps but still depend on large, uncompressed U-Net or diffusion transformer backbones, which are often too costly for full-precision inference without datacenter GPUs. These requirements also limit existing post-training quantization methods that rely on full-precision calibration. We introduce Q-Sched, a new paradigm for post-training quantization that modifies the diffusion model scheduler rather than model weights. By adjusting the few-step sampling trajectory, Q-Sched achieves full-precision accuracy with a 4x reduction in model size. To learn quantization-aware pre-conditioning coefficients, we propose the JAQ loss, which combines text-image compatibility with an image quality metric for fine-grained optimization. JAQ is reference-free and requires only a handful of calibration prompts, avoiding full-precision inference during calibration. Q-Sched delivers substantial gains: a 15.5% FID improvement over the FP16 4-step Latent Consistency Model and a 16.6% improvement over the FP16 8-step Phased Consistency Model, showing that quantization and few-step distillation are complementary for high-fidelity generation. A large-scale user study with more than 80,000 annotations further confirms Q-Sched's effectiveness on both FLUX.1[schnell] and SDXL-Turbo.

NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers

The complicated architecture and high training cost of vision transformers urge the exploration of post-training quantization. However, the heavy-tailed distribution of vision transformer activations hinders the effectiveness of previous post-training quantization methods, even with advanced quantizer designs. Instead of tuning the quantizer to better fit the complicated activation distribution, this paper proposes NoisyQuant, a quantizer-agnostic enhancement for the post-training activation quantization performance of vision transformers. We make a surprising theoretical discovery that for a given quantizer, adding a fixed Uniform noisy bias to the values being quantized can significantly reduce the quantization error under provable conditions. Building on the theoretical insight, NoisyQuant achieves the first success on actively altering the heavy-tailed activation distribution with additive noisy bias to fit a given quantizer. Extensive experiments show NoisyQuant largely improves the post-training quantization performance of vision transformer with minimal computation overhead. For instance, on linear uniform 6-bit activation quantization, NoisyQuant improves SOTA top-1 accuracy on ImageNet by up to 1.7%, 1.1% and 0.5% for ViT, DeiT, and Swin Transformer respectively, achieving on-par or even higher performance than previous nonlinear, mixed-precision quantization.

  • 6 authors
·
Nov 29, 2022

VQ-Logits: Compressing the Output Bottleneck of Large Language Models via Vector Quantized Logits

Large Language Models (LLMs) have achieved remarkable success but face significant computational and memory challenges, particularly due to their extensive output vocabularies. The final linear projection layer, mapping hidden states to vocabulary-sized logits, often constitutes a substantial portion of the model's parameters and computational cost during inference. Existing methods like adaptive softmax or hierarchical softmax introduce structural complexities. In this paper, we propose VQ-Logits, a novel approach that leverages Vector Quantization (VQ) to drastically reduce the parameter count and computational load of the LLM output layer. VQ-Logits replaces the large V * dmodel output embedding matrix with a small, shared codebook of K embedding vectors (K << V ). Each token in the vocabulary is mapped to one of these K codebook vectors. The LLM predicts logits over this compact codebook, which are then efficiently "scattered" to the full vocabulary space using the learned or preassigned mapping. We demonstrate through extensive experiments on standard language modeling benchmarks (e.g., WikiText-103, C4) that VQ-Logits can achieve up to 99% parameter reduction in the output layer and 6x speedup in logit computation, with only a marginal 4% increase in perplexity compared to full softmax baselines. We further provide detailed ablation studies on codebook size, initialization, and learning strategies, showcasing the robustness and effectiveness of our approach.

  • 7 authors
·
May 15

FP4DiT: Towards Effective Floating Point Quantization for Diffusion Transformers

Diffusion Models (DM) have revolutionized the text-to-image visual generation process. However, the large computational cost and model footprint of DMs hinders practical deployment, especially on edge devices. Post-training quantization (PTQ) is a lightweight method to alleviate these burdens without the need for training or fine-tuning. While recent DM PTQ methods achieve W4A8 on integer-based PTQ, two key limitations remain: First, while most existing DM PTQ methods evaluate on classical DMs like Stable Diffusion XL, 1.5 or earlier, which use convolutional U-Nets, newer Diffusion Transformer (DiT) models like the PixArt series, Hunyuan and others adopt fundamentally different transformer backbones to achieve superior image synthesis. Second, integer (INT) quantization is prevailing in DM PTQ but doesn't align well with the network weight and activation distribution, while Floating-Point Quantization (FPQ) is still under-investigated, yet it holds the potential to better align the weight and activation distributions in low-bit settings for DiT. In response, we introduce FP4DiT, a PTQ method that leverages FPQ to achieve W4A6 quantization. Specifically, we extend and generalize the Adaptive Rounding PTQ technique to adequately calibrate weight quantization for FPQ and demonstrate that DiT activations depend on input patch data, necessitating robust online activation quantization techniques. Experimental results demonstrate that FP4DiT outperforms integer-based PTQ at W4A6 and W4A8 precision and generates convincing visual content on PixArt-alpha, PixArt-Sigma and Hunyuan in terms of several T2I metrics such as HPSv2 and CLIP.

  • 3 authors
·
Mar 19

SQUASH: Serverless and Distributed Quantization-based Attributed Vector Similarity Search

Vector similarity search presents significant challenges in terms of scalability for large and high-dimensional datasets, as well as in providing native support for hybrid queries. Serverless computing and cloud functions offer attractive benefits such as elasticity and cost-effectiveness, but are difficult to apply to data-intensive workloads. Jointly addressing these two main challenges, we present SQUASH, the first fully serverless vector search solution with rich support for hybrid queries. It features OSQ, an optimized and highly parallelizable quantization-based approach for vectors and attributes. Its segment-based storage mechanism enables significant compression in resource-constrained settings and offers efficient dimensional extraction operations. SQUASH performs a single distributed pass to guarantee the return of sufficiently many vectors satisfying the filter predicate, achieving high accuracy and avoiding redundant computation for vectors which fail the predicate. A multi-level search workflow is introduced to prune most vectors early to minimize the load on Function-as-a-Service (FaaS) instances. SQUASH is designed to identify and utilize retention of relevant data in re-used runtime containers, which eliminates redundant I/O and reduces costs. Finally, we demonstrate a new tree-based method for rapid FaaS invocation, enabling the bi-directional flow of data via request/response payloads. Experiments comparing SQUASH with state-of-the-art serverless vector search solutions and server-based baselines on vector search benchmarks confirm significant performance improvements at a lower cost.

  • 2 authors
·
Feb 3